Constructing a Multi-OS Platform with Minimal
Engineering Cost

Yuki Kinebuchi!, Takushi Morita!, Kazuo Makijima®,
Midori Sugaya?, and Tatsuo Nakajima'

! Department of Computer Science, Waseda University
{yukikine,morita t,makijima,tatsuo}@dcl.info.waseda.ac.jp
%2 Dependable Embedded OS Center, Japan Science and Technology Agency (JST)
doly@dependable-os.net

Abstract. Constructing an embedded device with a real-time and a
general-purpose operating system has attracted attention as a promising
approach to let the device balance real-time responsiveness and rich func-
tionalities. This paper introduces our methodology for constructing such
multi-OS platform with minimal engineering cost by assuming asymmet-
ric OS combinations unique to embedded systems. Our methodology con-
sists of two parts. One is a simple hypervisor for multiplexing resources
to be shared between operating systems. The other is modifying operat-
ing systems to allow them to be aware of each other. We constructed an
experimental system executing TOPPERS and Linux simultaneously on
a hardware equipped with an SH-4A processor. The modification to each
operating system kernel limited to a few dozen lines of code and do not
introduce any overhead that would compromise real-time responsiveness
or system throughput.

1 Introduction

Software for embedded systems used to be small and simple, but nowadays it is
dominating a large part of the system implementation for providing rich func-
tionalities. For instance, modern cell-phones consist of control software (such as a
radio transmitter device controller) and rich applications (such as a web browser,
a video player, a mailer, etc.). Thus, development with traditional embedded
real-time OSes (RTOSes) are unsuited for modern devices. Those traditional
RTOSes are only equipped with minimal functionalities, therefore it is hard to
meet the strict time-to-market requirements while implementing considerable
applications and middleware on top of such RTOSes to provide rich function-
alities. This motivated manufacturers to use general-purpose OSes (GPOSes),
instead of traditional RT'OSes, as the platforms of embedded system software.
However, because GPOSes are unsuited for supporting real-time properties re-
quired by embedded systems, some efforts are made to modify them to achieve
sufficient real-time responsiveness. The modification to a GPOS kernel requires
deep insights into the kernel internal architecture and also requires significant
engineering cost. For instance, adding preemption points into a large monolithic

A. Rettberg et al. (Eds.): IESS 2009, IFIP AICT 310, pp. 195 20009.
© IFIP International Federation for Information Processing 2009

196 Y. Kinebuchi et al.

kernel requires redesigning various parts of the kernel and could introduce com-
plex timing bugs.

To balance real-time responsiveness and rich functionalities, some approaches
constructing an embedded device with both an RTOS and a GPOS have been
proposed. One of the approaches is the hybrid system[Il2]. It is a method to
link an RTOS kernel and a functional GPOS kernel together. This approach
achieves constructing a system supporting the high real-time responsiveness of
an RTOS together with the rich functionalities of a GPOS. However even though
this solution is capable of executing real-time applications, the engineering cost
of porting existing real-time applications to the real-time layer is problematic
for manufacturers. This can be mitigated by using an existing RTOS for a hard-
real-time layer like Linux on ITRONJ[3]. Linux on ITRON has a capability to
execute applications developed for the pITRON specification[4].

Typically embedded device manufacturers leverage diverse RTOSes depending
on the real-time constraints, the applications set, the software properties they
require, etc. Considering various combinations of RTOSes and GPOSes, even
though the engineering cost of constructing a single hybrid system is claimed
to be small enough, the engineering cost for supporting various combinations of
RTOSes and GPOSes would still introduce a great engineering effort.

In this paper, we propose an approach for constructing an embedded device
with an RTOS and a GPOS while introducing minimal modifications to both
OS kernels by assuming asymmetric OS combinations unique to embedded sys-
tems. Our approach is based on a simple hypervisor and paravirtualization like
technique. By leveraging the hypervisor, our approach is free to combine var-
ious RTOSes and GPOSes. The contributions of this paper are proposing the
methodology, and showing its validity by implementing and evaluating it against
real-world software and hardware. We developed the hypervisor from scratch,
paravirtualized the TOPPERS RTOS and the Linux kernel, and executed them
on top of the SH-4A architecture processor. The resulting implementation is
simple and efficient enough to accommodate multiple OSes together with a few
dozen lines of modifications to both OS kernels while maintaining the real-time
responsiveness of the RTOS.

2 Related Work

Various approaches are proposed to balance real-time responsiveness and rich func-
tionalities on a single platform. One of the approaches is modifying a GPOS to
support real-time responsiveness. The real-time patch is a modification to a plain
Linux kernel to support kernel preemption[5]. It achieves a few hundred pseconds
latency[6], but still the result is slower by a factor of ten comparing to typical
RTOSes. Even though the mechanism is potentially capable of achieving real-time
responsiveness, it could be easily spoiled by a bad-mannered device driver, which
holds a lock for a long period. Porting software from an RTOS to Linux would
increase the risk of implementing such drivers, because of the difference of pro-
gramming models between the RTOS and Linux or the developers being unfamiliar

Constructing a Multi-OS Platform with Minimal Engineering Cost 197

with programming on Linux. In addition, porting all the software from the RTOS
to Linux would impose substantial engineering cost.

Another approach, known as the hybrid system, is to link an RTOS with a
GPOS. RTLinux and RTAI replace the Linux hardware abstraction layer with
their own version of RTOSes[Il2]. Those RTOSes would be executed in privi-
leged mode together with the Linux kernel. The interrupt response time would
only be a few pseconds, which is comparable to typical RTOSes. However those
microkernels only support their original programming interfaces, which prevents
the straight-forward reuse of some real-time software developed for traditional
RTOSes. Linux on ITRON is an alternative method to RTLinux and RTAI,
which replaces the Linux hardware abstraction layer with an existing RTOS,
pITRON[3]. This architecture enables the system to reuse both the software
developed for Linux and pITRON. The hybrid system provides high real-time
responsiveness comparable with an RTOS with reasonable engineering cost by
reusing existing GPOSes. However considering another combination of an RTOS
and a GPOS would impose redesigning the hybrid system again from scratch.
Because it is usual for manufacturers to leverage diverse OSes, this engineering
cost would be problematic.

A virtual machine monitor (VMM) is another technology focusing on ac-
commodating an RTOS and a GPOS into a single embedded device without
modifications or with just minimal modifications to the OS kernels[7]. A VMM
provides a virtual hardware interface which is identical (or almost identical) to
some real hardware and isolation between virtualized guest OSes. To leverage a
VMM on embedded systems, developers should consider three trade-offs. First
is the trade-off between system throughput and real-time responsiveness, which
is a well-known trade-off on system design. Traditional VMMs focus on how
to increase the total throughput of workloads provided by guest OSes, because
their main targets are enterprise systems or high-performance computing[8J9J].
Thus, they are unsuited for handling real-time properties or supporting embed-
ded system processor architectures. Some VMMs for embedded systems have
been developed to meet these real-time requirements on embedded systems. L4
is one of them, and is capable of executing Linux on top of it[I0]. Second is the
trade-off between full virtualization and paravirtualization. A VMM support-
ing full virtualization exposes a virtual hardware interface identical to a real
hardware interface. OSes can be executed without any modification on full vir-
tualization. However, implementing full virtualization complexifies the design of
the VMM itself or requires hardware support for virtualization. Unfortunately
hardware support for virtualization is still an unfamiliar feature for embedded
system processors. This motivates embedded system VMMSs to use paravirtu-
alization for their system design, like L4 did. Third is the trade-off between
providing isolation among OSes or not. Strong isolation among guest OSes is
an attractive feature for constructing a secure and reliable system. However un-
like the VMMs used in the area of enterprise systems, most embedded systems
consist of a fixed number of OSes. In addition, as the guest OSes are statically
decided by the hardware manufacturer, they can be ‘trusted’. This removes the

198 Y. Kinebuchi et al.

necessity of strong isolation. Without isolation, the design of VMMs would be
simpler and their overhead would be smaller.

The previous contributions take a good balance of performance and engineer-
ing cost. However their propositions only focus on the combinations of specific
RTOSes and GPOSes, and do not consider neither the portability of applica-
tions developed for various OSes nor the portability of OSes themselves. From
the aspect of accommodating diverse combinations of RTOSes and GPOSes
together into a single embedded device, portability should be the primary con-
cern of manufacturers. The advantage of minimizing modifications to OS ker-
nels reduces the possibility of introducing new bugs into virtualized systems.
Furthermore, it helps updating the virtualized OSes for bug fixes and security
patches.

In order to achieve this requirement while not penalizing performance, our
virtualization layer executes guest OS kernels and itself in privileged mode. The
virtualization layer multiplexes only minimal hardware resources, while other
resources are exclusively assigned to each OS by simply modifying each OS ker-
nel not to access the same devices. Relocating OS kernels in privileged mode
degrades the reliability of the system. However, in a multi-OS platform, even
though the failure of real-time applications are not propagated to other part of
the system, it is a fatal error for the system to continue its service. Recover-
ing from such a real-time application failure with seamless execution is a topic
beyond this paper.

3 Design and Implementation

This section introduces our methodology for constructing an embedded device
with multiple OSes. The methodology is based on a simple hypervisor called
SPUMONE and some modifications to guest OS kernels.

Unprivileged Unprivileged

Cow [ow | w]
RT || RT RT || RT
App J{ App J| App GPOS App || App

g

GPOS
RTOS RTOS
1 VCPU VCPU ; " veeu 1 overu [VCPU ;
SPUMONE SPUMONE SPUMONE
[CPU] [Core 0 M Core 1]
Privileged Privileged
Fig.1. SPUMONE based system Fig.2. SPUMONE based system on a

on a single-core processor multi-core processor

Constructing a Multi-OS Platform with Minimal Engineering Cost 199

3.1 SPUMONE

SPUMONE (Software Processing Unit, Multiplexing ONE into two or more) is
a thin software layer for multiplexing a single physical processor into multiple
virtual ones. Unlike traditional hypervisors, SPUMONE itself and guest OSes
are executed in privileged mode as shown in Fig[l] in order to simplify the system
design and to eliminate the overhead of trapping between privileged and non-
privileged mode for system-calls and hypercalls. If an OS does not support user
land, its applications would be executed in privileged mode altogether.

This contributes to minimize the overhead and the amount of modifications to
the guest OS kernels. Furthermore it makes the implementation of SPUMONE
itself simple. Executing OS kernels in non-privileged mode complicates the im-
plementation of the hypervisor, because various privileged instructions have to
be emulated. The majority of the kernel and application instructions, includ-
ing the privileged instructions, are executed directly by the real processor, and
only the minimal instructions are emulated by SPUMONE. These emulated in-
structions are invoked from the OS kernels using a simple function call. Since
the interface has no binary compatibility with the original processor interface,
we simply modify the source code of guest OS kernels, a method known as the
paravirtualization[I1J§]. Thus we assume we have access to the source code of
the guest OS kernels. The modifications required to the guest OS kernels are
described in details in Sec3.2

Virtual Processor Scheduling. A processor is multiplexed by scheduling the
execution of guest OSes. The execution states of the guest OSes are managed
by a data structure that we call a virtual processor. When switching the exe-
cution of the virtual processors, all the hardware registers are stored into the
corresponding virtual processor’s register table, and then loaded from the table
of the next executing virtual processor. The mechanism is similar to the pro-
cess paradigm of a classical OS, however the virtual processor saves the entire
processor state, including the privileged control registers.

The scheduling algorithm of virtual processors is a fixed priority preemptive
scheduling. A virtual processor bound to the RTOS would gain a higher priority
than a virtual processor bound to the GPOS in order to maintain the real-
time responsiveness. This means the GPOS is executed only when the virtual
processor for the RTOS is in an idle state and has no task to execute. The process
or task scheduling is left up to guest OS so the scheduling model for each OS
is maintained as is. The idle RTOS resumes its execution when it receives an
interrupt. The interrupt for RTOS preempts the GPOS immediately, even if the
GPOS is disabling interrupts.

Interrupt/Trap Delivery. Interrupt virtualization is a key feature of
SPUMONE. Interrupts are investigated by SPUMONE before they are deliv-
ered to each OS. SPUMONE receives an interrupt, then looks up the interrupt
destination table to see which OS should receive it. The destination virtual pro-
cessor is statically defined for each interrupt. Traps are also sent to SPUMONE
first, then are directly forwarded to the currently executing OS.

200 Y. Kinebuchi et al.

(1) (2)
GPOS tasks =]
GPOS ISR o — —
g - interrupt for GPOS
RTOS task
asks 1 - interrupt for RTOS
RTOS ISR
SPUMONE = 7
&5 g

>

Fig. 3. Interrupt Delivery Mechanism

To let SPUMONE receive interrupts before the guest OSes, we modified the
entry point of the interrupts to SPUMONE’s vector table. The entry point of
each OS is notified to SPUMONE via a virtual instruction for registering their
vector table. An interrupt is first handled by SPUMONE interrupt handler in
which the destination virtual processor is decided and the corresponding sched-
uler is invoked. When the interrupt triggers an OS switch, all the registers of the
current OS are saved into the register stack, then the register stack for the other
OS is loaded. Finally the execution branches into the entry point of the desti-
nation OS. The processor registers are setup just as the real interrupt occurred,
so the code of the guest OS entry points does not need to be modified.

The interrupt enable and disable instructions are also replaced with the virtual
instruction interface. A typical OS disables all interrupt sources when disabling
interrupts for atomic execution. In our approach, by leveraging the interrupt
mechanism of the processor, we assign the higher half of the interrupt priority
levels to the RTOS and the lower half to the GPOS. When the GPOS tries to
block the interrupts, it modifies its interrupt mask to the middle priority. The
RTOS may therefore preempt the GPOS even if it is disabling the interrupts
(FigBl (1)). On the other hand when the RTOS is running, the interrupts are
blocked by the processor (Figll (2)). These blocked interrupts could be sent
immediately when the GPOS is dispatched.

Multi-core Support. SPUMONE also runs on multi-core processors. The de-
sign of multi-core SPUMONE is basically the same as the single-core version.
As shown in Figl2 each core is managed by a dedicated SPUMONE instance.
Interrupts are handled by the instance bound to each core, then forwarded to
the guest OS. Each instance communicates using inter-core interrupt (ICI) and
shared memory area. The original processor mechanism of resetting a core is re-
placed with SPUMONE’s function. The development of multi-core SPUMONE
is still in progress, so we would not go in details in this paper.

3.2 Modifying OS Kernels

Each OS is modified to be aware of the existence of the other OS, because
hardware resources other than the processor are not multiplexed by SPUMONE.

Constructing a Multi-OS Platform with Minimal Engineering Cost 201

Thus those are exclusively assigned to each OS by modifying their kernels. The
following describes the points of the OSes to be modified in order to run on top
of SPUMONE.

Interrupt Vector Table Register Instruction. The instruction registering
the address of a vector table is modified to notify the address to SPUMONE’s
interrupt manager. Typically this instruction is invoked once during the OS
initialization.

Interrupt Enable and Disable Instruction. The instructions enabling and
disabling interrupts are typically provided as kernel internal APIs. They are
typically coded as inline functions or macros in the kernel source code. For the
GPOS, we replace those APIs with the instructions enabling the entire level
of interrupts and disabling only low priorities interrupts. For the RTOS, we
replace those APIs with the instructions enabling only high priority interrupts
and disabling the entire level of interrupts. Therefore, interrupts assigned to the
RTOS are immediately delivered to the RTOS, and the interrupts assigned to
the GPOS are blocked during the RTOS execution.

Figure [shows the interrupt priority levels assignment for each OS, which we
used in the evaluation environment.

Physical Memory. A fixed physical memory area is assigned to each OS. The
physical address for the guest OSes can be simply changed by modifying the
configuration file or their source code. Virtualizing the physical memory would
impose a large code into the virtualization layer and substantial performance
overhead. In addition, unlike the virtual machine monitor for enterprise systems,
embedded systems have a fixed number of OSes. From these reasons we assigned
fixed physical memory area for each OS.

IPL = Interrupt Priority Level

int. disable —{ 0xf _|Je— int. disable int. disable —] Oxr
Timer IPL —f 0xd
TOPPERS
Timer IPL — 0xa Serial IPL — 0xa
TOPPERS Linux int. enable — 0x8
0x7__f+— int. disable
Serial IPL —f 0x6
Linux
Timer & Timer &
ox1__ [« Serial IPL Ox1__ [Serial IPL
int. enable —»| 0x0 _|e— int. enable 0x0 _le— int. enable
(a) Native OS (b) Modified OS

Fig. 4. The interrupt priority levels assignment

202 Y. Kinebuchi et al.

Idle Instruction. On a real processor, the idle instruction suspends a proces-
sor till it receives an interrupt. On a virtualized environment, this is used to yield
the use of real processor to another guest OS. We prevent the execution of this
instruction by replacing it with the SPUMONE API. Typically this instruction
is embedded in a specific part of kernel, which is fairly easy to find.

Peripheral Devices. Peripheral devices are assigned by SPUMONE to each OS
exclusively. This is done by modifying the configuration of each OS not to share
the same peripherals. We assume that most of devices are assigned exclusively
to each OS. This assumption is reasonable because embedded system multi-
OS platforms have asymmetric OS combinations unlike a symmetric multi-OS
platform for enterprise systems. It consists of different kinds of OSes, usually
an RTOS and a GPOS. For instance, an RTOS is used for controlling specific
peripherals such as a radio transmitter and some digital signal processors, and
a GPOS for controlling a display and buttons.

However some devices cannot be assigned exclusively to each OS because
both systems need to use them. For instance, only one interrupt controller is
provided by the experimental processor we used. Usually the OS clears some of
its registers during its initialization. In the case of running on SPUMONE;, the
OS booting after the first one should be careful not to clear or overwrite the
settings of the OS executed first. We modified the Linux initialization code to
preserve the settings done by TOPPERS.

4 Evaluation

We evaluated the basic overhead, the engineering cost of modifying the guest OS
kernels, and the real-time responsiveness of an RTOS running on SPUMONE.
The evaluation is done on the SH-2007 reference board, with the SH-4A 400 MHz
processor and 128MB memory. We use TOPPERS/JSP 1.3 as RTOS and Linux
2.6.20.1 as GPOS. Linux mounts an NFS share exported by the host machine
as its root file system.

4.1 Basic Overhead

For evaluating the basic overhead of SPUMONE, we measured the overhead of
interrupt handling delay, and the time to build the Linux kernel on top of native
(an unmodified OS running on bare-metal hardware) Linux and modified Linux,
respectively. Table[Il shows the average and the worst case CPU cycles required
to handle the interrupts sent to native TOPPERS and modified TOPPERS. In
the average case SPUMONE imposes 0.67us overhead to the delay. The worst
case overhead shows the time required to save the state of Linux and restore the
state of TOPPERS. The increased delay is sufficiently small and predictable for
executing real-time applications.

Table 2] shows the time required to build Linux kernel on native Linux and
modified Linux executed on top of SPUMONE together with TOPPERS. TOP-
PERS only receives the timer interrupts each 1ms, and executes no other tasks.

Constructing a Multi-OS Platform with Minimal Engineering Cost 203

Table 1. The delay of handling the timer interrupts in TOPPERS. Over 20,000 inter-
rupts were measured to obtained the average and the worst case time.

Configuration
TOPPERS average
(native) worst
TOPPERS average

on SPUMONE worst

102

102

367
1582

CPU Clocks Time (us) Overhead (us)

0.25 -
0.26 -
0.92 0.67
3.96 3.70

Table 2. Linux kernel build time

Configuration

Linux only

Time Overhead
68mb5.898s -

Linux and TOPPERS on SPUMONE 69m3.091s 1.4%

Table 3. A list of the modifications to the Linux kernel

File Function/Variable

CONFIG MEMORY START
CONFIG MEMORY SIZE

.config

setup.c

setup-sh7780.c intc2 irq table

head.S Flag register initial value
traps.c per cpu trap init(void)
irqflags.h raw local irq disable(void)

raw local irq disable(void)
raw local irq restore(void)

processor.h cpu sleep()

sh2007 setup(char **cmdline p)

Description

Modified to use the upper half
(64MB) of the main memory
Modified not to overwrite the
value in the interrupt controller
register set by TOPPERS

The interrupt source table.
Removed one of the serial devices
which is used by TOPPERS
Modified IPL, not to block the
interrupts for TOPPERS
Replaced the vector table register
instruction with SPUMONE API
Modified not to mask the
interrupts assigned to TOPPERS

Replaced the idle instruction with
the SPUMONE API

The result shows that SPUMONE and TOPPERS impose overhead of 1.4% to
Linux performance. Note that the overhead includes the cycles consumed by
TOPPERS. The result shows that the overhead of the virtualization to the sys-

tem throughput is sufficiently small.

4.2 Engineering Cost

We evaluated the engineering cost of reusing the RTOS and the GPOS by com-
paring the number of modified lines of code (LOC) in each guest OS kernel.
Table [is a list of the modified files in Linux. Table M shows the amount of

204 Y. Kinebuchi et al.

Table 4. The total number of modified LOC in *.c, *.S, *.h, Makefiles

(O

Linux on SPUMONE (Linux 2.6.20.1)

RTLinux 3.2 (Linux 2.6.9)
RTAI 3.6.2 (Linux 2.6.19)
OK Linux (Linux 2.6.24)

" TOPPERS only ——

Sampe mbe

o0 3 o 3 o0
Fig. 5. The frequency distribution of
the periodic task execution intervals.
TOPPERS only. Only the periodic

task running.

Added LOC Removed LOC

56 17
2798 1131
5920 163
28149 -
TOPPERS & Linux (no strass) ——
. T - -
Cydle [us]

Fig. 6. The frequency distribution of
the periodic task execution intervals.
TOPPERS and Linux with no load on
SPUMONE.

code added and removed from the original OS kernels. Since we could not find
RTLinux, RTAI, OK Linux for the SH-4A processor architecture, we evaluated
them developed for the x86 architecture. OK Linux is a Linux kernel virtualized
to run on the L4 microkernel. For OK Linux, we only counted the code added to
the architecture dependent directory arch/14 and include/asm-14. The com-
parison would not be fair in a precise sense, however as the table shows, it is
clear that our approach requires significantly small modifications to the Linux
kernel. This result is achieved because we are executing guest OS in privileged
mode.

4.3 Effect of Linux Load to TOPPERS Real-Time Properties

We measured the effect of Linux load to TOPPERS periodic task execution
intervals. Only the periodic task is executed on TOPPERS. Figure B 6, [1, B
shows the frequency distribution of the intervals of the 1ms periodic task running
on TOPPERS. Figure [[and [§ are measured with running the stress command
on Linux to show the effect of the CPU load and the I/O load. CPU load repeat
invoking sqrt (). I/O load repeats invoking sync (), which triggers flushing data
to the file system. The intervals are sampled 100,000 times each. Note that the
y-axis is showed in log scale. The overhead of switching from Linux to TOPPERS
and execution inside SPUMONE would delay the start-up of the periodic task,
which could be the cause of jitters. The maximum error for delay was 20us

Constructing a Multi-OS Platform with Minimal Engineering Cost 205

TOPPERS & Linux (stess c32) ——

Sampe mbe

ol
‘ ‘
%

980 000 020 040
Cycle [us]

Fig. 7. The frequency distribution of
the periodic task execution intervals.
TOPPERS and Linux with CPU load
on SPUMONE.

00000

TOPPERS& x5 oss 82 ——

0000

000

Sample [rumbe |

980

Fig. 8. The frequency distribution of
the periodic task execution intervals.
TOPPERS and Linux with 1/0 load
on SPUMONE.

040

000
s

Cyee

showed in Figl8l The results show the jitters are small, however we need further
investigations to explain the cause of the jitters.

5 Conclusion

One of the primary requirements for constructing a hybrid system for embedded
system is engineering cost. Existing research only focused on the engineering cost
of a specific combination of RTOSes and GPOSes, however those approaches did
not consider diverse combinations of OSes. This paper introduced our approach
to construct an embedded device with an RTOS and a GPOS with minimal en-
gineering cost, which can be adapted to various OS kernels in the similar way.
The approach is based on utilizing the thin SPUMONE virtualization layer and
modifying a few parts of the guest OS kernels, a method known as paravir-
tualization. Our approach executes the virtualization layer and the guest OS
kernels in privileged mode altogether in order to reduce the performance over
head engineering cost of virtualization. The evaluation shows our approach re-
quires significantly small modifications with introducing reasonable overhead to
the real-time responsiveness of the guest RTOS, which allows the freedom of
combining various RTOSes and GPOSes to run on top of embedded devices.

References

1. Yodaiken, V.: The RTLinux Manifesto. In: Proc. of The 5th Linux Expo. (1999)

2. Mantegazza, P., Dozio, E., Papacharalambous, S.: RTAI: Real Time Application
Interface, vol. 2000. Specialized Systems Consultants, Inc., Seattle (2000)

3. Takada, H., Kindaichi, T., Hachiya, S.: Linux on ITRON: A Hybrid Operating
System Architecture for Embedded Systems. In: Proceedings of the 2002 Sym-
posium on Applications and the Internet (SAINT) Workshops, Washington DC,
USA. IEEE Computer Society, Los Alamitos (2002)

4. ITRON Project: pitron4.0 specification, http://www.ertl.jp/ITRON/

http://www.ertl.jp/ITRON/

206

10.

11.

Y. Kinebuchi et al.

. Molnar, I.: The realtime preemption patch (2009),

http://www.kernel.org/pub/linux/kernel/projects/rt/

. Abeni, L., Goel, A., Krasic, C., Snow, J., Walpole, J.: A measurement-based analy-

sis of the real-time performance of linux. In: Proceedings of Eighth IEEE Real-Time
and Embedded Technology and Applications Symposium, 2002, pp. 133-142 (2002)

. Heiser, G., Sydney, A.: The role of virtualization in embedded systems. In: 1st

IIES, Glasgow, UK (April 2008)

. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164-177. ACM Press, New York (2003)

. Sugerman, J., Venkitachalam, G., Lim, B.H.: Virtualizing I/O devices on VMware

workstation’s hosted virtual machine monitor. In: Proceedings of the General
Track: 2002 USENIX Annual Technical Conference, Berkeley, CA, USA, USENIX
Association, pp. 1-14 (2001)

Leslie, B., van Schaik, C., Heiser, G.: Wombat: A portable user-mode Linux for
embedded systems. In: Proceedings of the 6th Linux. Conf. Au (2005)

Whitaker, A., Shaw, M., Gribble, S.: Denali: Lightweight virtual machines for dis-
tributed and networked applications. In: Proceedings of the USENIX Annual Tech-
nical Conference, pp. 195-209 (2002)

http://www.kernel.org/pub/linux/kernel/projects/rt/

	Constructing a Multi-OS Platform with Minimal Engineering Cost
	Introduction
	Related Work
	Design and Implementation
	SPUMONE
	Modifying OS Kernels

	Evaluation
	Basic Overhead
	Engineering Cost
	Effect of Linux Load to TOPPERS Real-Time Properties

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

