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Abstract. Graph theory has been shown to provide a powerful tool for
representing and tackling machine learning problems, such as cluster-
ing, semi-supervised learning, and feature ranking. This paper proposes
a graph-based discrete differential operator for detecting and eliminating
competence-critical instances and class label noise from a training set in
order to improve classification performance. Results of extensive exper-
iments on artificial and real-life classification problems substantiate the
effectiveness of the proposed approach.

1 Introduction

In graph-based data analysis, a dataset is represented as a graph, where the
vertices are the instances of the dataset and the edges encode a pairwise rela-
tionship between instances. For instance, the nearest neighbor relation between
points of a finite set in the Euclidean space can be described by the popular near-
est neighbor (proximity) graph [3,27]. Concepts and methods from graph theory
are then used for extracting knowledge from such a representation. In particular,
the graph Laplacian provides a natural interpretation to the geometric structure
of datasets. It has been used in machine learning for tackling diverse tasks such
as dimensionality reduction and clustering, e.g., [4,29], feature selection, e.g.,
[19,34], and semi-supervised learning, e.g., [35,36].

This paper shows how the graph Laplacian operator can be directly used for
filtering competence-critical instances and class label noise from a training set,
in order to improve test accuracy.

Research on instance selection focusses mainly on three types of filtering
techniques [8]: competence preservation, competence enhancement, and hybrid
approaches. Competence preservation algorithms, e.g., [1,14], remove irrelevant
points, that is, that do not affect the classification accuracy of the training
set. Competence enhancement methods, e.g., [23,26,28,31], remove noisy points,
such as those with a wrong class label, as well as points close to the decision
boundary, yielding to smoother decision boundaries, in order to increase clas-
sifier accuracy. Hybrid methods, e.g., [8,20,24,25,32], aim at finding a subset of
the training set that is both noise free and does not contain irrelevant points.
Alternative methods use prototypes instead of instances of the training set, see
for instance [21].
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The algorithm proposed here belongs to the so-called competence enhance-
ment methods. It differs from previous methods for this task in the way it ex-
tracts information from the neighborhood of an instance in order to measure its
relevance. Indeed, while previous methods are based on ‘static’ measures, such
as being correctly classified, the proposed method uses a ‘differential’ measure,
defined by means of a graph Laplacian operator. Specifically, we consider the
graph-based representation of two class dependent K nearest neighbor (KNN)
relations defined over pairs of instances: the within- and between- class KNN.
The between-class KNN graph is used to define a graph Laplacian operator.
The within-class KNN graph is used to define the within-class degree function,
mapping vertices to their degree.

The application of the Laplacian operator to such function, called Laplace
scoring, provides such differential measure of instance relevance. It measures
the flow of the within-class degree function at each vertex of the between-class
KNN graph. Vertices with negative Laplace score are either close to the KNN
decision boundary or are outliers. This motivates the introduction of a simple
Laplace-based instance filtering algorithm, which removes instances having neg-
ative Laplace score.

To the best of our knowledge, this work presents the first attempt to perform
class noise instance filtering using a graph-based differential approach.

In order to test comparatively the effectiveness of this approach, extensive
experiments on artificial and real-life data sets are conducted. We consider three
classifiers: the KNN classifier without instance filtering, with the popular Wil-
son’s editing [31], and with Laplace filtering. Results of the experiments indicate
best test accuracy performance of Laplace filtering over the other methods, as
well as superior robustness with respect to the presence of class noise in the
training set.

Furthermore, comparison of Laplacian filtering with state-of-the-art editing
algorithms indicate similar or improved generalization performance of the 1-NN.

Finally, we investigate the use of Laplacian filtering for improving the perfor-
mance of classifiers other than 1-NN. We consider SVMs with RBF kernels. These
are related to NN methods, because each RBF measures the distance of a test
instance to one of the training instances. SVM training keeps certain training in-
stances as support vectors, and discards others. In this way, SVM/RBF may also
be viewed as a competence-enhancement filtering method. We investigate the ef-
fect of Laplacian filtering as pre-processing step by performing experiments on
datasets with different levels of added class noise. Results of these experiments
show that at all considered levels of class noise, Laplacian filtering has no signifi-
cant positive effect on the generalization performance of SVMs with RBF kernel.

In general, the results substantiate the effectiveness of graph Laplacian oper-
ators for tackling the class noise filtering problem. Therefore this contribution
adds yet another successful application of such powerful graph-based framework
in machine learning.

We begin by setting the stage with the notation and main concepts used in
this study.
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2 Background

In this paper we useX to denote a dataset of n instancesX = {x1, . . . , xn}, where
xi is a real-valued vector of dimensionm. LetC denote the set of class labels ofX ,
and let l : X → C the function mapping each instance xi to its class label l(xi).

A graph G = (V,E) consists of a finite set V and a subset E ⊂ V × V . The
elements of V are the vertices of the graph and those of E are the edges of the
graph. In this work we consider undirected graphs, that is, such that for each
edge (u, v) ∈ E we have also (v, u) ∈ E. We say that u and v are adjacent
vertices, denoted by u ∼ v, if (u, v) ∈ E. The degree function d of a graph is
defined by d(u) = |{v | u ∼ v}|, where |S| denotes the cardinality of a set S.

The graph normalized Laplacian can be defined as follows. Suppose |V | = n.
Consider the n× n matrix L, defined as

L(u, v) =

⎧
⎨

⎩

d(u) if u = v,
−1 if (u, v) ∈ E,
0 otherwise.

The (normalized) Laplacian of G is the n× n matrix

L(u, v) =

⎧
⎪⎨

⎪⎩

1 if u = v and d(u) �= 0,
−1√

d(u)d(v)
if (u, v) ∈ E,

0 otherwise.

The graph Laplacian operator L maps real-valued functions on vertices to real-
valued functions on vertices, defined by

L(f)(u) =
1

√
d(u)

∑

u∼v

(
f(u)
√
d(u)

− f(v)
√
d(v)

)

.

3 Laplacian Instance Filtering

Denote by l a generic element of C. Let Xl be the subset of X consisting of
those instances having class label equal to l. Define KNN(x, l) to be the set of
K nearest neighbors of x computed among those instance in Xl, excluding x.

Define the following two graphs. The within-class KNN graph, denoted by
Gwc = (V,Ewc), such that V = X , and

Ewc = {(xi, xj) | xj ∈ KNN(xi, l(xi)) or xi ∈ KNN(xj , l(xj))}.

Gwc represents the (symmetric) nearest neighbor relation between points of the
same class in the training set.

Analogously, define the between-class KNN graph, denoted by Gbc = (V,Ebc),
such that V = X ,

Ebc={(xi, xj) | (xj ∈ KNN(xi, l) and l �= l(xi)) or (xi ∈ KNN(xj , l) and l �= l(xj))}.
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Gbc represents the (symmetric) KNN relation between points of each pair of
different classes in the training set. Note that this relation differs from the nearest
unlike neighbor relation (NUN) [15] because it considers all pairs of different
classes, while NUN considers one class versus the union of all the other classes.
Clearly, for binary classification problems the two relations coincide.

The within- and between-class graphs with K = 1 for a toy binary classifica-
tion problem are shown in Figure 1.

Let L be the Laplacian operator of Gbc. Let g denote the within-class degree
function, mapping vertex i to its degree in Gwc. g(i) can be viewed as an estimate
of the density of points of class label l(xi) around xi, since the more instances
with label l(xi) are close to xi, the larger the g(i) will be [34].

We define the Laplace score, denoted by Score, to be the real-valued function
on vertices such that

Score(u) = L(g)(u).

This function assigns a small score to an instance whose neighbors from different
classes (that is, its adjacent vertices in Gbc) are in a region containing many
points of their own class, and few points of classes different from their one.

The within-class degree and Laplace score of instances for the considered toy
classification example are shown in Figure 1. Observe that in this example points
with negative Laplace score are close to the one nearest neighbor class decision
boundary. This motivates the introduction of the simple Algorithm 1 for class
noise filtering, which removes from the training set those instances with negative
Laplace score.

The time complexity of this algorithm is dominated by the cost of building
the between- and within-class graphs, which is quadratic in the size of the train-
ing set. However, this bound can be reduced to O(n log(n)) (for small input
dimension) by using metric trees or other spatial data structures, as shown for

Fig. 1. Graphs and Laplace score with K = 1 of a training set for a toy binary
classification problem in the real plane
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Algorithm 1. Laplace instance filtering
Input: training data X of size n
number K of nearest neighbors
Output: subset S of X
Gbc = between-class KNN graph of X
Gwc = within-class KNN graph of X
g = degree function of Gwc

for i = 1 to n do
Score(i) = L(g)(i)

end for
S = {xi ∈ X | Score(i) ≥ 0}

example in [18], as well as structures optimized for a data and query distri-
bution [5,9].

Application of Laplace instance filtering to an instance of the XOR classifica-
tion problem is illustrated in Figure 2. Points filtered out by the algorithm are
highlighted with circles.

Fig. 2. Application of Laplace filtering with K = 1 to an instance, with class noise
examples, of the XOR classification problem in the real plane. The points removed
have filled markings.

3.1 Justification

The score of an instance can be interpreted as a discrete divergence measure.
This can be shown by using discrete analogous of differential operators. To this
end, we use the results contained in [36].

Indeed, consider the graph gradient operator, mapping real-valued functions
of the vertices into real-valued functions on edges.

(∇φ)(u, v) =
φ(v)
d(v)

− φ(u)
d(u)

.

Observe that in this definition, before computing the variation of φ between two
adjacent vertices, the function value is split at each vertex along its adjacent edges.
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The graph gradient can also be defined at vertex v, as

∇φ(u) = {(∇φ)(u, v) | (u, v) ∈ E}.
The graph divergence maps real-valued functions of the edges into real-valued
functions on vertices.

(div ψ)(u) =
∑

u∼v

1
√
d(v)

(ψ(u, v) − ψ(v, u)).

The divergence measures the net outflow of function ψ at each vertex.
The following equality relates the graph divergence and Laplacian operators:

L(φ) = −1
2
div (∇φ).

By instantiating the above formula with the graph Laplacian of Gbc and the
within-class degree function g we obtain

Score = −1
2
div (∇g).

Therefore, the Laplace instance score is a measure of negative divergence. An
instance having high divergence value (hence small Score value) can be consid-
ered critical, since there is a high flow of within-class degree at that instance in
a neighborhood characterized by means of the between-class graph.

4 Experiments

In order to assess comparatively the accuracy performance of the proposed filter-
ing method, we conduct extensive experiments on 19 Machine Learning datasets,
using the K-nearest neighbor classifier (KNN) with no training set pre-processing
[13], here called No-filtering, with Laplace instance filtering, and with the pop-
ular Wilson’s filtering algorithm. The latter one removes those instances that
do not agree with the majority of its K nearest neighbors. We consider three
instances of each algorithm obtained by setting the number K of neighbors to
1, 3, 5, respectively, resulting in a total of nine classifiers.

Cross validation is applied to each dataset. Specifically, for each partition of
the dataset, each filtering algorithm is applied to the training set X from which
a subset S is returned. The KNN classifier that uses only points of S is applied
to the test set.

4.1 Datasets

We consider 3 artificial datasets (Banana, g50c, g10n) and 16 real-life ones, with
different characteristics as shown in Table 1. These datasets have been used in
previous studies on model selection for (semi)supervised learning.

Specifically, Raetsch’s binary classification benchmark datasets have been
used in [22]: they consists of 1 artificial and 12 real-life datasets from the UCI,
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Table 1. Datasets used in the experiments. CL = number of classes, TR = training
set, TE = test set, VA = number of variables, Cl.Inst. = number of instances in each
class.

Dataset CL VA TR Cl.Inst. TE Cl.Inst.

1 Banana 2 2 400 212-188 4900 2712-2188
2 B.Cancer 2 9 200 140-60 77 56-21
3 Diabetes 2 8 468 300-168 300 200-100
4 German 2 20 700 478-222 300 222-78
5 Heart 2 13 170 93-77 100 57-43
6 Image 2 18 1300 560-740 1010 430-580
7 Ringnorm 2 20 400 196-204 7000 3540-3460
8 F.Solar 2 9 666 293-373 400 184-216
9 Splice 2 60 1000 525-475 2175 1123-1052
10 Thyroid 2 5 140 97-43 75 53-22
11 Titanic 2 3 150 104-46 2051 1386-66
12 Twonorm 2 20 400 186-214 7000 3511-3489
13 Waveform 2 21 400 279-121 4600 3074-1526
14 Iris 3 4 120 40-40-40 30 10-10-10
15 Breast-W 2 9 546 353-193 137 91-46
16 Bupa 2 6 276 119-157 69 26-43
17 Pima 2 8 615 398-217 153 102-51
18 g50 2 50 550 252-248 50 23-27
19 g10n 2 10 550 245-255 50 29-21

DELVE and STATLOG benchmark repositories. For each experiment, the 100
(20 for Splice and Image) partitions of each dataset into training and test set
available in the repository are used here.

Two artificial binary classification problems from Chapelle’s benchmark
datasets [11], g50c and g10n, are generated from two standard normal multi-
variate Gaussians. In g50c, the labels correspond to the Gaussians, and the
means are located in a 50-dimensional space such that the Bayes’ error is 5%. In
contrast, g10n is a deterministic problem in 10 dimensions, where the decision
function traverses the centers of the Gaussians, and depends on only two of the
input dimensions. For each experiment, the 10 partitions of each dataset into
training and test set available in the repository are used.

Finally, four standard benchmark datasets from the UCI Machine Learning
repository are used: Iris, Bupa, Pima, and Breast-W. For each experiment, 100
partitions of each dataset into training and test set are used. Each partition
randomly divides the dataset into training and test set, equal to 80% and 20%
of the data, respectively.

4.2 Results

Results of the experiments are summarized in Table 2 (also plotted in
the first row of Figure 3). The table contains average accuracy results of the
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Table 2. A(M) = average (median) results over datasets. S = +/- number of times
Laplace average accuracy is significantly better (+) or significantly worse (-) than the
other algorithm, according to a paired t-test at 0.01 significance level. W = a ’+’
indicates Laplace significantly better than the other algorithm at a 0.01 significance
level according to a Wilcoxon test for paired samples.

Laplace Wilson No-Filtering
1 3 5 1 3 5 1 3 5

1 Banana 88.5 88.9 88.7 87.8 88.2 88.3 86.4 87.9 88.3
2 B.Cancer 70.6 73.0 74.2 69.4 73.4 73.6 67.3 68.5 71.2
3 Diabetes 73.9 74.0 73.8 72.7 73.2 73.6 69.9 72.4 72.6
4 German 74.0 74.0 73.1 73.0 73.9 73.9 70.5 73.1 74.1
5 Heart 81.6 82.6 82.9 80.6 82.0 82.7 76.8 80.5 81.8
6 Image 94.9 92.3 90.8 95.8 94.6 94.1 96.6 95.7 95.1
7 Ringnorm 67.3 63.2 61.0 54.8 51.2 50.6 64.9 59.5 56.7
8 F.Solar 64.0 64.6 64.7 61.4 62.8 62.7 60.7 62.3 62.2
9 Splice 73.3 76.4 77.1 68.4 68.2 66.7 71.1 72.6 73.3
10 Thyroid 94.3 91.9 89.5 94.0 91.9 89.5 95.6 93.8 92.6
11 Titanic 77.2 77.0 77.2 67.3 72.5 74.5 66.9 72.3 74.0
12 Twonorm 95.5 96.6 96.9 94.1 95.9 96.4 93.3 95.5 96.2
13 Waveform 86.2 87.4 87.3 85.4 86.9 87.5 84.1 86.3 87.3
14 Iris 95.2 95.1 94.8 96.1 95.5 95.8 95.6 95.1 95.8
15 Breast-W 97.1 97.3 97.1 96.9 97.2 96.9 96.2 97.1 97.4
16 Bupa 65.8 69.2 68.4 63.5 67.0 67.4 61.2 64.3 66.5
17 Pima 72.5 74.2 75.0 69.6 73.1 73.8 67.3 69.9 72.0
18 g50 85.6 89.8 91.2 82.2 87.2 92.4 79.6 88.4 92.0
19 g10 74.6 79.0 80.8 74.0 79.2 80.0 75.2 78.4 78.2

A 80.6 81.4 81.3 78.3 79.7 80.0 77.9 79.7 80.4

M 77.3 79.0 80.8 74.0 79.2 80.0 75.2 78.4 78.2

S n/a n/a n/a 14/2 15/3 11/2 13/2 7/3 11/5

W n/a n/a n/a + + + + + +

algorithms on each classification task, their average and median, the outcome
of a paired t-test on the results of each classification task, and the outcome of
a paired Wilcoxon test on the (average) results of the entire set of classification
tasks.

Results of a paired t-test at a 0.01 significance level shows improved accuracy
performance of Laplace (see row ‘S’ in Table 2) on the majority of the datasets.
Application of the non parametric Wilcoxon test for paired samples at a 0.01
significance level to the average results on the entire set of classification tasks,
indicates that KNN with Laplace filtering outperforms the other algorithms.

In summary, the experimental analysis indicates effectiveness of Laplace-based
instance filtering and robustness with respect to the presence of high number of
variables, training examples, noise and irrelevant variables.

We turn now to the experimental analysis of classifier robustness with respect
to the presence of class noise.
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Fig. 3. Average test accuracy performance of the methods

4.3 Robustness to Class Noise

In order to analyze experimentally the robustness of the methods with respect
to the presence of class noise in the training set, all experiments are repeated
with modified training sets. The new training sets are obtained by changing the
class labels of a given percentage γ of randomly selected instances.

Figure 3 shows plots of the average accuracy of the nine KNN classifiers
using the original datasets and those obtained by adding γ% class noise, with
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Table 3. Results of experiments on ML benchmark datasets of HMN-EI, ICF, DROP3,
and Laplace filtering

Dataset HMN-EI ICF DROP3 Laplace

Banana 88.6 86.1 87.6 88.5

B.Cancer 69.2 67.0 69.7 70.6

Diabetes 73.5 69.8 72.3 73.9

German 72.9 68.6 72.0 74.0

Heart 81.6 76.7 80.2 81.6

Image 92.7 93.8 95.1 94.9

Ringnorm 65.6 61.2 54.7 67.3

F.Solar 64.7 61.0 61.4 64.0

Splice 70.7 66.3 67.6 73.3

Thyroid 93.2 91.9 92.7 94.3

Titanic 76.0 67.5 67.7 77.2

Twonorm 95.9 89.2 94.3 95.5

Waveform 85.4 82.1 84.9 86.2

Iris 95.4 95.3 95.8 95.2

Breast-W 96.9 95.4 96.8 97.1

Bupa 64.5 60.9 63.1 65.8

Pima 71.7 67.9 69.4 72.5

G50 86.8 82.2 82.8 85.6

G10 79.2 73.0 75.0 74.6

Average 80.2 76.6 78.1 80.6

Median 79.2 73.0 75.0 77.3

S 10/2 18/0 13/0 n/a

W ∼ + + n/a

γ = 10, 20, 40. The Figure contains four rows, one for each value of γ (the original
training set corresponds to setting γ = 0). Each row contains three plots, one for
each value of K. Each plot shows average test accuracy of No-filtering, Laplace,
and Wilson algorithms for the specific value of K and γ.

In all the considered cases, the average test accuracy curve of Laplace dom-
inates those of the other two algorithms, with more improvement for higher
values of K. Indeed, in all these cases, KNN with Laplace filtering outperforms
significantly the other classifiers.

These results substantiate robustness of the Laplace-based instance filtering
approach for KNN with respect to the presence of class noise.

5 Comparison with Other Methods

5.1 Editing Algorithms

In order to compare the performance of the proposed method with that of state-
of-the-art editing algorithms, we report in Figure 3 the test accuracy results of
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the 1-NN classifier, achieved by the state-of-the-art instance editing algorithms
recently investigated in [20]: Iterative Case Filtering (ICF) [7], Decremental Reduc-
tion Optimization (DROP3) [32,33], and Hit Miss Network Editing (HMN-EI) [20].

ICF first applies E-NN noise reduction iteratively until it cannot remove any
point, and next iteratively removes points. At each iteration all points for which
the so-called reachability set is smaller than the coverage one are deleted. The
reachability of a point x consists of the points inside the largest hyper-sphere
containing only points of the same class as x. The coverage of x is defined as the
set of points that contain x in their reachability set.

DROP3 first applies a pre-processing step which discards points of X misclas-
sified by their K nearest neighbors, and then removes a point x from X if the
accuracy of the KNN rule on the set of its associates does not decrease. Each
point has a list of K nearest neighbors and a list of associates, which are updated
each time a point is removed from X . A point y is an associate of x if x belongs
to the set of K nearest neighbors of y. If x is removed then the list of K nearest
neighbors of each of its associates y is updated by adding a new neighbor point
z, and y is added to the list of associates of z. The removal rule is applied to the

Table 4. Results of SVM/RBF with Laplace pre-processing (LAPLACE) and without
(SVM-RBF) at different levels of class noise γ

γ = 0 γ = 20 γ = 40
svm-rbf laplace svm-rbf laplace svm-rbf laplace

1 89.3 89.3 87.3 87.4 65.7 66.0
2 73.1 72.9 71.1 71.1 62.5 63.1
3 76.5 76.5 74.4 74.4 64.9 64.5
4 76.2 76.4 73.3 73.3 65.7 66.1
5 83.9 84.1 81.1 81.6 64.5 65.4
6 96.5 96.5 92.9 92.9 78.7 78.9
7 98.2 98.1 96.5 96.2 81.3 79.0
8 66.8 66.8 65.0 65.1 57.9 58.4
9 88.8 88.6 83.3 83.3 68.0 68.2
10 95.2 95.0 91.5 91.9 76.4 76.4
11 77.3 77.2 76.1 75.9 67.1 68.0
12 97.5 97.5 96.5 96.9 88.0 89.5
13 89.8 89.8 87.1 87.3 74.2 75.9
14 95.8 95.8 95.1 95.6 90.6 91.0
15 94.2 95.0 96.2 96.2 90.2 90.8
16 70.5 70.7 64.2 64.6 54.9 54.9
17 75.6 75.8 72.9 73.0 64.7 64.7
18 95.8 95.8 93.4 92.6 78.6 81.6
19 94.2 95.0 88.4 89.0 69.8 68.2

A 86.1 86.2 83.5 83.6 71.8 72.1

M 89.3 89.3 87.1 87.3 68.0 68.2

S 0/0 0/0 0/0 0/0 0/0 2/0

W ∼ ∼ ∼ ∼ ∼ ∼
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points sorted in decreasing order of distance from their nearest neighbor from
the other classes (nearest enemy).

HMN-EI is an iterative heuristic algorithm based on a directed graph-based rep-
resentation of the training set, called hit miss network. Topological properties of
such network are used for designing an iterative algorithm that removes points
considered irrelevant or harmful to the 1-NN generalization performance. The em-
pirical error on the training set is used as criterion for terminating the iterative
process.

Results in Figure 3 show that test accuracy of Laplace filtering is similar or
better than the one of these state-of-the-art methods. However, observe that
editing algorithms also reduce storage, while Laplace filtering is specifically de-
signed for removing critical instances. In order to reduce also storage reduction,
one could use Laplace instance filtering as pre-processing step, followed by the
application of a competence preservation algorithm, such as [1].

5.2 SVM with RBF Kernels and Optimized Parameters

A family of classifiers different from KNN, whose training process results in the
selection of a subset of the training set, are the Support Vector Machines (SVMs).
They map training points x into a higher (possibly infinite) dimensional feature
space by the function θ. Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional feature space. Given a training
set of real-valued instance-label pairs (xi, l(xi)), i = 1, . . . , n the support vec-
tor machines (SVM) [6,12] require the solution of the following optimization
problem:

min
w,b,ξ

wTw + C

n∑

i=1

ξi

such that l(xi)(wT ξ(xi) + b) ≥ 1 − ξi and ξi ≥ 0.

C > 0 is the penalty parameter of the empirical error term. Furthermore,
K(x, y) = ξ(x)T ξ(y) is called the kernel function. In particular, SVMs with
Radial Basis Function (RBF) kernel use K(x, y) = e−σ||x−y||2. The set of points
with ξi > 0 are called support vectors. They uniquely identify the separating
hyperplane.

It is interesting to investigate whether the use of Laplacian filtering as pre-
processing step improves the performance of SVMs with RBF kernel and opti-
mized parameters.

To this aim, the experimental evaluation described in the previous section is
used. Specifically, first cross-validation is applied to search for the given training
set for the optimal values of the soft-marginC parameter and the RBF parameter
σ1. Next, Laplacian filtering with K = 1 and Euclidean distance is applied for
discarding critical instances from the training set. Finally, a SVM with RBF

1 In the experiments we use the Matlab functions implemented by S. Hashemi of
LIBSVM’s library [10].
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kernel is trained on the selected instances, using the given optimal values for σ
and C.

Results of experiments are reported in Table 4. The new training sets are
obtained by changing the class labels of a given percentage γ of randomly selected
instances. We consider γ = 0, 20, 40. Laplace filtering does not appear to affect
significantly the test accuracy at the considered levels of class noise. This result
is not very surprising, since SVMs with RBF kernel and ’optimized’ parameters
selection have in general good generalization accuracy in the presence of noise.

6 Conclusions and Future Work

This paper introduced a graph differential operator for scoring instances of a
training set. We showed how this scoring is related to the flow of the within-
class density in the between-class KNN graph, and observed empirically that
instances with negative score are close to the class decision boundary or are
outliers. This observation motivated the design of a simple algorithm for class
noise instance filtering which removes instances having negative score.

We performed extensive experiments on artificial and real-life datasets and
analyzed the test accuracy of KNN classifier without filtering, with a traditional
filtering algorithm, and with Laplace filtering. The results indicated superior
performance of Laplace filtering over the other algorithms. Experiments with
modified training sets obtained by permuting the class label of a percentage of
their instances were conducted, to investigate robustness of the approach to the
presence of class noise. Results of the experiments substantiated the robustness
of Laplacian filtering, which achieved significantly better test accuracy perfor-
mance than the other algorithms, at each of the considered levels of class noise.
Comparison of Laplacian filtering with state-of-the-art editing algorithms indi-
cated similar or improved generalization performance of the 1-NN.

Finally, we investigated whether the use of Laplacian filtering as pre-
processing step improves the performance of classifiers other than KNN. We con-
sidered SVMs with RBF kernels. These are related to NN methods, because each
RBF measures the distance of a test instance to one of the training instances.
SVM training keeps certain training instances as support vectors, and discards
others. In this way, SVM/RBF may be view as a competence-enhancement filter-
ing method. Results of extensive experiments seemed to indicate no significant
effect of Laplacian filtering on the generalization performance of SVM with RBF
kernel. The benefits of noise reduction are much more apparent for kNN because
it does not really have an induction step and uses examples directly for classifi-
cation. SVMs with RBF kernel and equipped with cross validation for selecting
optimal values of their parameters, provide a rather powerful tool for selecting
the centers and parameters of the RBF’s, which is robust to the presence of
noise.

In summary, these results show that Laplacian instance filtering provides a
simple yet effective tool for improving accuracy performance of nearest neighbor
classifiers.
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We conclude with a discussion of issues and future research directions.
The Laplacian filtering algorithm does not takes into account the effect of

removing one instances on the remaining ones. An adaptive approach, consisting
in removing the instance having the largest negative score, and then updating
the score of the remaining instances, and so on, could possibly improve the
effectiveness of the algorithm. However, such an approach would increase the
algorithmic complexity of the algorithm.

In the present algorithm, instances with negative Laplacian score are consid-
ered critical. Replacing such ”rule of the thumb” with an incremental procedure
for selecting a cutoff value will possibly have a beneficial effect. Such a procedure
could be based on the leave-one-out error of the original training set, using the
KNN classifier with actual set of instances incrementally constructed starting
from a core subset consisting of instances with high score.

In those cases where the underlying metric is corrupted (e.g., due to irrele-
vant features), instance selection methods that directly depend on the underlying
similarity measure, such as Laplacian filtering, may possibly fail to improve the
classification performance of the KNN classifier. In such cases hybridization with
metric learning techniques (cf. e.g., [17,16]), could help to overcome this draw-
back. In the metric learning approach the goal is typically to change the metric
in order to repair the KNN classifier. We are investigating an hybridization of
Laplacian filtering with Weinberger’s et al. method [30], for effective repairing
of the metric and removal of critical instances.

Another important issue in instance filtering is scalability. Recently, an in-
stance selection method based on distributed computing has been proposed for
speeding up execution of the algorithm without affecting training set accuracy
[2]. It is interesting to investigate whether this approach can be used also to
speed up execution of Laplace filtering, in order to allow its applicability to very
large datasets.
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