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Abstract. We examine the mechanism by which feature selection im-
proves the accuracy of supervised learning. An empirical bias/variance
analysis as feature selection progresses indicates that the most accurate
feature set corresponds to the best bias-variance trade-off point for the
learning algorithm. Often, this is not the point separating relevant from
irrelevant features, but where increasing variance outweighs the gains
from adding more (weakly) relevant features. In other words, feature se-
lection can be viewed as a variance reduction method that trades off the
benefits of decreased variance (from the reduction in dimensionality) with
the harm of increased bias (from eliminating some of the relevant fea-
tures). If a variance reduction method like bagging is used, more (weakly)
relevant features can be exploited and the most accurate feature set is
usually larger. In many cases, the best performance is obtained by using
all available features.

1 Introduction

In a collaboration with ecologists, we were faced with the following challenge:
learn accurate models for the presence and absence of bird species from noisy ob-
servational data collected by volunteers watching bird feeders. Trying many dif-
ferent supervised learning algorithms (SVMs, boosted trees, neural nets, ...), we
found that bagged decision trees yielded the best performance for the task. The
resulting models were large, complicated, and used almost all of the 200 features
available to the learning algorithm. Since the ultimate goal was to gain ecolog-
ical understanding about avian population dynamics, we ran forward stepwise
feature selection to find the smallest feature set yielding excellent performance.

To our surprise, after 30 steps of feature selection performance was still inferior
to the performance when using all features and the gap was closing slowly as more
features were added (see Figure 1). Unlike most learning algorithms, bagging
appeared to perform remarkably well with many noisy features.

In this paper we examine how feature selection improves the accuracy of super-
vised learning through the lens of bias/variance analysis. We run feature selection
for nineteen data sets and compare the bias-variance decompositions of single
and bagged decision trees for many different feature subset sizes. The results
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Fig. 1. Bagging performance with forward stepwise feature selection. The all features
line shows performance of bagging with all 200 features.

show that the most accurate feature sets correspond to the best bias-variance
trade-off point, and this depends on the learning algorithm. Particularly with
high variance algorithms such as decision trees, this is usually not the separat-
ing point between relevant and irrelevant features. With too many variables, the
increase in variance outweighs the potential gains of adding (weakly) relevant
features. When bagging is used, however, the increases in variance are small,
which makes the reduction in bias beneficial for many more features. In many
cases, the best bagging performance is obtained by using all available features.

While it is known that ensemble methods improve the base learner’s ability to
ignore irrelevant features [1,2], little is known about their effects on weak/noisy
features. To explore this, we generate synthetic data and randomly damage vary-
ing percentages of the feature values. The results show that bagging dramatically
improves the ability of decision trees to profitably use noisy features.

2 Background

This section reviews feature selection and bagging, and situates the current paper
in the context of prior work.

2.1 Feature Selection

Four reasons are traditionally given to motivate feature selection [3]: better pre-
dictive performance; computational efficiency from working with fewer inputs;
cost savings from having to measure fewer features; and simpler, more intelligi-
ble models. Different types of feature selection exist to satisfy varying balances
of these competing goals under a variety of data regimes. This work focuses on
forward stepwise feature selection (FSFS) [4] and correlation-based feature fil-
tering (CFF). FSFS is preferred when getting the best performance from the
smallest feature set possible is important — as long as it is computationally
feasible. For large data sets with hundreds or thousands of features, simple filter
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methods like CFF are affordable and often surprisingly competitive. In the NIPS
2003 Feature Selection Challenge, “[s]everal high ranking participants obtain[ed]
good results using only filters, even simple correlation coefficients” ([5], p. 6).
The main drawback to univariate filters like CFF is that they estimate the value
of a feature in isolation, ignoring a) possible interactions with other features, and
b) redundant information contained in features ranked higher (already selected).

Starting from an empty selected set, FSFS measures the benefit of adding each
individual feature to the selected set. The benefit is measured by training a model
using only the selected features (including the feature under consideration). The
most beneficial (or least harmful) feature is added to the selected set, and the
process is repeated for all remaining unselected features. The search stops after
a fixed number of steps, once performance has stopped improving, or after all
features have been selected. If feasible, the learning algorithm used in wrapper-
based feature selection usually is the same algorithm to be used with the reduced
feature set.

It is important for the search process to measure performance using data
withheld during training to ensure good performance estimates. Additionally,
the search process itself can potentially overfit this withheld data, so a third
data set should be used to get an unbiased estimate of the selected subsets’
performance [6]. The FSFS experiments below use a validation set to decide
which feature to add, and a test set to measure the final performance.

CFF ranks the set of features by their individual correlation with the class
label. Our experiments with large data sets use the magnitude of Pearson’s
correlation coefficient as the ranking criterion. The absolute correlation of feature
x.j with the label y is:

rj =
|∑i(xij − x.j)(yi − y)|

√∑
i(xij − x.j)2

∑
i(yi − y)2

where i indexes over examples and x.j and y are the respective means of x.j

and y.1 Features above a cutoff point are retained, while the others are dis-
carded. Common strategies for selecting cutoff points include statistical tests
of significance and cross-validated model performance at different ranks. We are
interested in the performance at varying rank-levels, so we do not need to choose
a cutoff.

Some researchers have looked at bias-variance estimates in the context of
feature selection, but typically only for the final feature set selected (e.g. [7]).
Van der Putten and van Someran [8] use bias-variance analysis to understand
the wide performance spread of contestants in the 2000 CoIL challenge. They
compare the bias-variance decompositions of a single subset (the top 7 features)
against the original feature set, and find that feature selection is important for
their problem (the decrease in variance outweighs the increase in bias).
1 The high dimensional data sets we use are all binary classification problems with

binary and/or continuous features, so Pearson’s correlation coefficient is reasonable.
Spearman’s rank correlation would be a reasonable alternative for non-binary prob-
lems or nominal-valued features.
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2.2 Bagging

Bagging [9] is a meta-learning algorithm that repeatedly creates sub-samples of
the training data and trains a model (e.g. decision tree) on each sample. To make
predictions, the bagged model averages the predictions of the constituent models.
Bagging frequently improves the performance of a learning algorithm, and rarely
hurts it. Bauer and Kohavi [10] showed empirically that the main benefit from
bagging is a reduction in the variance of the underlying models. Bagging works
best when models have good performance and make uncorrelated mistakes [11].

Several pieces of work exist that address features and bagging. We mention
them here to avoid confusion and clarify the differences. (These techniques are
not used in the experiments below.) First, feature bagging generates diverse sim-
ple models by training individual models with random samples of the features
instead of (or in addition to) random samples of training examples [12,13], and
is particularly useful for building ensembles with simple learners that are inher-
ently stable [2]. In ensemble feature selection [14] multiple good feature sets are
sought such that a) a good simple model can be built from each set, and b) the
simple models are maximally diverse from each other. Finally, feature selection
using ensembles [15] uses statistics derived from tree ensembles to rank features.
More generally, ensembles have been used in feature selection to find more stable
feature subsets [16,17].

3 Methodology

3.1 Learning Algorithms

To handle the wide range of data sizes, we used two different decision tree pack-
ages. In all cases bagging used 25 trees per ensemble, and training samples were
drawn with replacement.

For data sets with small to medium dimensionality (< 200 features), we used
minimum message length (MML) decision trees implemented in Buntine’s IND
package [18]. IND’s MML trees use a Bayesian splitting rule with Wallace’s MML
tree prior [19] and use a small amount of pre-pruning to limit node expansions
unwarranted by the tree’s posterior probability. Predictions are smoothed by
getting a prediction from the leaf and each of its ancestors on the path to the root;
these fine- to coarse-grained predictions are combined in a weighted average. See
Buntine [20] for full details.

We selected MML trees because the Bayesian smoothing makes them rela-
tively low variance, so in our experience the individual trees perform well and
seem to be resilient to spurious and noisy features. Thus, they are less likely to
require feature selection to achieve good performance (vs. a less sophisticated
decision tree like ID3), making them a strong baseline method. At the same
time, they are not aggressively pruned and are large trees, making them good
candidates for bagging.2

2 Experiments with other very different tree methods such as C4.5 yield similar results.
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For the high-dimensionality data sets, we used FEST3, a decision tree package
optimized for sparse data. To prevent overfitting, we tuned the maximum tree
depth parameter in FEST to maximize performance of a single tree, using all
features, on the validation fold of each data set. We tried depths of 1 through
10, and then the powers of 2 from 16 through 1024. The best performing depth
was used for both single and bagged tree models.

A single FEST tree makes predictions from negative to positive infinity. We
calibrated the predictions by fitting a sigmoid to convert them to probabili-
ties [21]. Validation data was used to fit the calibrating sigmoid.

3.2 Performance Metrics

Model performance was measured using zero-one loss and squared error. Note that
the models described above predict a probability distribution for an example, indi-
cating the likelihood of the example belonging to each class. When the model needs
to pick a single class (i.e. for zero-one loss), the class with the largest probability is
chosen. A loss of zero represents perfect prediction for these measures.

Zero-one loss is the percentage of predictions that do not predict the correct
class. It equals 1 − accuracy, and is often simply called the error rate for a
classification model.

Mean squared error (MSE) is the average squared difference between the true pre-
diction and the model’s prediction. Let x denote an example, and let p(xk) and
q(xk) be the true and predicted probability, respectively, that x is class k. Then:

MSE ≡ 1
nK

∑

x

∑

k

(p(xk) − q(xk))2

where K is the number of classes for the task.4

Zero-one loss frequently has high variance, so MSE was used as the perfor-
mance metric during FSFS when deciding which feature to add.

3.3 Data Sets

We used 19 classification tasks in our experiments: American Goldfinch pres-
ence/absence at bird feeders (amegfi), Lark Bunting presence/absence in the
plains east of the Rocky Mountains (bunting), forest cover-type (covtype),
Pima Indians Diabetes (pima), letter recognition (letters), mushroom identifi-
cation (mushroom), land classification from satellite images (satimage, Statlog
dataset), sonar classification (sonar), soybean disease classification (soybean),
spam detection (spambase and spamtrec5), cardiac abnormalities (spectf),
3 http://www.cs.cornell.edu/∼nk/fest/
4 Normalizing by K is not strictly necessary, but places MSE on the same scale re-

gardless of the number of classes.
5 Created from TREC 2005 Spam Public Corpora. Nikos Karampatziakis, personal

communication.

http://www.cs.cornell.edu/~nk/fest/
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Table 1. Summary of datasets

Data Set # Samples # Features # Classes Max Depth

amegfi 23948 195 2
bunting 20998 175 2
covtype †‡ 30,000 54 7
letters † 20,000 16 26
medis 14199 63 2
mg5 22157 100 2
mushroom † 8124 22 2
pima † 768 8 2
satimage † 6535 36 6
sonar † 208 60 2
soybean † 683 35 19
spambase † 4601 57 2
spectf † 266 44 2
thyroid † 3772 27 5

cryst 5,498 1341 2 4
digits 70,000 779 2 16–1024
real-sim 72,309 20,958 2 256–1024
spamtrec 87,688 405,915 2 256–1024
tis 13,375 927 2 5–6

†: Available from UCI Machine Learning Repository [22].
‡: First 30,000 examples from full data set.

hyper-thyroid conditions (thyroid), two medical prediction tasks (medis and
mg5), protein crystallography diffraction pattern analysis (cryst6), hand-
written digit recognition (digits7), real vs. simulated auto racing and aviation
text categorization (real-sim8), and finding translation initiation sites (tis9.).

Table 1 summarizes the data sets; high-dimensional data sets are listed below
the line along with the maximum tree depth(s) chosen during parameter tun-
ing. Data sets were chosen to cover a range of sizes (number of examples) and
dimensionalities (number of features). We used the first 30,000 points from the
covtype data set to make the experiments more affordable.

Each data set was divided into five folds. For FSFS, three folds were used for
training, one for validation (to pick which feature to add), and one for testing
final performance. For CFF, feature ranks were computed from the three training
folds. The description for satimage warns against using cross-validation; for
that data set we used the given train/test split instead of cross-validation and

6 http://ajbcentral.com/CrySis/dataset.html, unscaled version
7 MNIST data set converted to binary classification (class 0 = digits 5 or below; class

1 = rest). Original available from http://yann.lecun.com/exdb/mnist/
8 http://csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
9 http://datam.i2r.a-star.edu.sg/datasets/krbd/ (Kent Ridge Biomedical Data

Repository)

http://ajbcentral.com/CrySis/dataset.html
http://yann.lecun.com/exdb/mnist/
http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://datam.i2r.a-star.edu.sg/datasets/krbd/
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pulled 435 examples from the train set to use as a validation set (about 10% of
training).

3.4 Bias-Variance Decomposition

The bias-variance decomposition (BVD) of loss is a useful tool for understanding
the performance characteristics of a learning algorithm. The squared error for a
single example x can be decomposed into the sum of noise, bias, and variance [23],
all non-negative. The noise is the intrinsic error / uncertainty for x’s correct pre-
diction, regardless of learning algorithm. Bias measures how closely the learning
algorithm’s average prediction (considering all possible training sets of a fixed
size) matches the optimal prediction (the Bayes rate prediction). Finally, the
variance of an algorithm is how much the algorithm’s prediction fluctuates over
different possible training sets of a given size.

We adopt the notation and definitions from Domingos [24] to formally express
these quantities. Let L(t, y) denote the squared loss of the prediction y for test
example x which has the true value t. Further let ED[] be the expectation over the
distribution of possible data sets of a fixed size; similarly, Et[] is the expectation
over the distribution of possible true values for x (in a stochastic domain), and
ED,t[] is over the joint distribution of D and t. Then expected squared loss for
x can be decomposed as:

ED,t[L(t, y)] =N(x) + B(x) + V (x), N(x) =Et[L(t, y∗)]
B(x) =L(y∗, ym)
V (x) =ED[L(ym, y)]

where y is the prediction from a model trained on data drawn from D, y∗ is the
optimal prediction that minimizes Et[L(t, y∗)], and ym is the main prediction
that minimizes ED[L(y, ym)]. For squared loss ym is the mean prediction of the
algorithm across possible training data sets. The expected bias and variance are
computed by averaging over multiple test examples.

To estimate bias and variance on real data sets, we follow the same basic sam-
pling procedure used by Bauer and Kohavi [10], since Bouckaert [25] shows that
bootstrap sampling results in less reliable bias-variance estimates. The train and
validation sets are pooled to create D. Twenty samples of size |D|/2 are drawn
from D without replacement. Each sample is used to train a model that makes
predictions on the test set. This empirical distribution of the algorithm’s predic-
tions is used to compute expected bias and variance. To improve the estimates of
bias and variance, we repeat this process for each fold and average the estimates.

In practice, we cannot know y∗ for real data so we follow previous authors
[10,24] in using y∗ = t. As a result, the bias and noise cannot be separated and
are combined in one term for our estimates.

There are multiple proposals for the bias-variance decomposition of zero-one
loss [26,24]. In the results below we focus on the decomposition for squared er-
ror because feature selection hill climbing used MSE. We did, however, compute
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the bias and variance of zero-one loss; the results were qualitatively identical to
those obtained using the squared error decomposition.

4 Bias-Variance of Feature Selection

We estimated the bias-variance decomposition for all the data sets in Table 1
at multiple feature set sizes, for both single and bagged decision trees. Feature
subset orderings were found using forward stepwise feature selection (FSFS, top
of table) and correlation coefficients (CFF, bottom of table). FSFS evaluated
performance using single trees or bagged trees, to match the algorithm used in
the final comparison. After establishing subset orderings (and tuning the maxi-
mum tree depth for the high dimensional data sets), the training and validation
sets were pooled as described in Sect. 3.4.10 Bias-variance estimates were made
at several points along the subset ordering sequence. The entire experiment was
repeated across 5-folds and the 5 estimates averaged.11

The results cluster into two categories. Figure 2 shows representative results
for two of the data sets. The total height of each bar is the error for the number of
features on the x-axis. The pair of bars for each number of features correspond to
using a single tree (left in pair) and using bagged trees (right in pair). Each bar
is subdivided into portions that are due to a) the variance of the algorithm, and
b) the bias of the algorithm. The bias portion also contains any noise inherent
in the domain. For comparison’s sake, results are shown for both mean squared
error (left column) and zero-one loss (right column). For the moment we focus
on patterns in the total error. Detailed observations about bias and variance are
below.

Feature selection does not improve the performance of single or bagged trees
on data sets in category one. Consider the graphs for covtype (top row of
Figure 2). Both bagging and the single tree perform as well (or better) using
all features (right side of graph) than when using a subset (interior of graph).
The graphs in Figure 3 show qualitatively similar results: feature selection does
not improve the accuracy of single or bagged trees. (The results for zero-one loss
are qualitatively the same as for squared error, and are omitted for most of the
data sets.)

The second category, however, contains data sets on which feature selection
improves single tree accuracy but does not improve bagging’s accuracy. Look-
ing at medis (bottom row of Figure 2), the single tree achieves the minimum
loss between five and ten features. Bagging, on the other hand, first reaches its
minimum loss around 50 features, at which point the loss flattens out and stays
roughly constant. The graphs in Figure 4 (except bunting — see discussion

10 When validation data was needed to calibrate predictions, we set aside 10% of the
training sample drawn from the pooled data. Thus, the calibration data varied with
each training sample.

11 The pima, sonar, spectf, and thyroid data sets exhibited substantial variance in
the results, so we repeated the 5-fold cross-validation five times using different seeds
to divide the data into folds.



152 M.A. Munson and R. Caruana

bias/noise
variance

  0.02

  0.05

  0.06

  0.07

  0.08

54504030201054321

M
SE

# features

covtype

  0.03

  0.04

bias/noise
variance

  0.05

  0.2

  0.25

  0.3

  0.35

  0.4

54504030201054321

0/
1 

L
os

s

# features

covtype

  0.1

  0.15

bias/noise
variance

  0.06

  0.075

  0.08

  0.085

  0.09

  0.095

  0.1

6360504030201054321

M
SE

# features

medis

  0.065

  0.07

bias/noise
variance

  0.09

  0.12

  0.13

  0.14

  0.15

  0.16

6360504030201054321

0/
1 

L
os

s

# features

medis

  0.1

  0.11

Fig. 2. Bias-variance decomposition of squared error and zero-one error for typical data
sets. Left bar in pair: single tree; right bar: bagging. To better show interesting parts
of graphs, the y-axes do not start at 0.

below) contain similar results. While single trees eventually lose performance as
more features are added, bagging maintains or improves its performance with
more features.

It is worth noting that for data sets in both categories (cryst, letters,
medis, pima, satimage, sonar, spambase, spectf, tis), bagging perfor-
mance continues to improve as more features are added after the performance of
single trees has plateaued (category 1) or peaked (category 2). In other words,
bagging performance flattens further to the right in the graphs. Bagging seems
to be capable of extracting information from noisy features as well as ignoring
irrelevant ones. Section 5 explores this issue further.

For all the data sets, bias decreases as more features are added. This makes
intuitive sense since extra features can be thought of as extra degrees of freedom.
The decrease is largest for the first few features; after that, the bias levels off
as the algorithms become sufficiently flexible. Although the bias error is very
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Fig. 3. Bias-variance decomposition of squared error for feature selection on data sets
where feature selection does not improve performance (category 1). Left bar in pair:
single tree; right bar: bagging.
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Fig. 4. Bias-variance decomposition of squared error for feature selection on data sets
where feature selection helps single trees (category 2). Left bar in pair: single tree; right
bar: bagging.

similar for single trees and bagged trees, bagging does sometimes reduce bias
slightly. This corroborates findings in other studies [10].

Counter to bias, variance increases with the number of features. However,
this effect is much stronger for single trees than for bagged trees. Whereas the
variance for bagging quickly asymptotes to a small amount, the variance for
single trees grows quickly and may not asymptote. This is bagging’s primary
advantage.

In data sets where the performance of single trees levels off (e.g. covtype),
the algorithm’s bias and variance asymptote so that adding more features does
not hurt. Usually bagging’s variance stabilizes earlier and to a lower amount,
which allows it to reach lower error and benefit from additional bias decreases
as more features are added.

In data sets where the single tree performance gets worse with too many fea-
tures (e.g. medis), the variance increases outstrip the initial benefits of reduced
bias. This rarely happens to bagging because its variance typically asymptotes
to a small amount of error.

Figures 3 and 4 contain three anomalies, one large and two small. The most
important anomaly is the graph for bunting, which does not fit into either cat-
egory described above. On this data set, both single trees and bagging hit peak
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performance between 5 and 20 features, after which their performance degrades.
Thinking that perhaps this domain was just extremely noisy and that more
averaging would eliminate bagging’s overfitting, we re-ran feature selection on
one fold using 100 trees instead of 25. With 100 trees, bagging’s performance was
slightly better at all points along the x-axis (compared to bagging with 25 trees),
but still overfit past 20 features and to the same degree. Further investigation
revealed that this data set contains several features that can be combined to
create semi-unique identifiers for individual examples in the training set. All the
trees in the ensemble effectively memorize these identifiers and then do poorly on
the validation and test data. This can be seen in the bias-variance decomposition.
Although the variance has asymptoted, the bias for bagging stops decreasing
and begins increasing. With the extra features, the trees in the ensemble more
consistently construct unique identifiers for training examples and lose diversity
in their incorrect predictions.12

The other two anomalies are that single decision trees perform (slightly) better
than the bagged tree ensemble for the mushroom and soybean data sets. For
mushroom, the single tree is extremely confident in the class probabilities it
assigns, and always picks the right class (zero-one loss is 0%). Bagging also always
picks the right class, but the randomization from sub-sampling the training data
plus averaging results in slightly less confident class probabilities (probability
mass is pushed away from the extremes). This small bias away from extreme
values has a small effect on squared error. soybean has a different problem. This
small data set has 19 classes. Cross-validation and bagging sampling reduces the
number of cases for some classes in the training samples so that probability
estimates become less reliable and MML pre-pruning prevents leaf expansions,
yielding trees that are too small.

Throughout this section (and most of the paper), noise and bias have been
conflated since we do not have a way to separate them on real data. We hy-
pothesize that the large decreases in bias—coinciding with adding the first few
features—is partly due to decreases in noise. Intuitively, the Bayes optimal error
rate, given only a single feature as an information source, may be quite bad
(effectively high noise). As more information becomes available (more features),
the Bayes rate should improve as uncertainty decreases.

To summarize this section, these graphs show that bagging is resilient to noisy
features. Feature selection usually is unnecessary to get good performance from
bagged models. Further, picking the best subset size (using cross-validation, for

12 A more detailed explanation follows. The task in bunting is to predict the presence
or absence of a Lark Bunting. Data are collected at multiple sites; in particular,
repeat observations are made at sites over time. Identifying the site is incredibly
useful for predicting presence or absence, but is not ecologically interesting. Thus,
the five data folds were partitioned by site (i.e. all examples from a site appear in
a single fold). Most features are tied to location (e.g. habitat), so the decision trees
can easily learn to map inputs to sites in the training set using only a few features.
Trees that do this make bad predictions on the validation and test folds. If the folds
are created by assigning examples to folds instead of sites (spreading sites across
train/valid/test), bagging does not overfit while a single tree does.
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example) is not equivalent to choosing the informative features and discarding
irrelevant features. Rather, a discarded feature may be weakly informative (or
correlated with a feature already selected) but cause too much variance when
selected for the extra information to improve accuracy. The fact that discarded
features are sometimes informative was previously noted and exploited to im-
prove model accuracy by using discarded features as extra model outputs during
training [27].

5 Noisy Informative Features

In the experiments above, bagging’s performance continues to improve after
the single tree’s performance peaks or plateaus. This suggests that ensemble
methods are not only resilient to irrelevant features [1], but also better able to
take advantage of features containing useful but noisy information.

We generated synthetic data to study whether bagging improves the base
learner’s ability to use weak features. A binary classification problem was derived
from the equation:

v =X1 + X2X3 + X2
4 + sign(X5 + X6)

The class label is 1 when v ≥ 0, and 0 otherwise. Each Xi is a univariate Gaussian
variable with 0 mean and unit variance. The sign(z) function returns 1 if z > 0
and -1 otherwise. This function was chosen to be challenging for decision tree
learning algorithms.

We generated 5,000 examples using the above function, randomly corrupted
some of the inputs to generate weak features, split the data set into 5 folds, and
ran a bias-variance analysis using the procedure outlined in Sect. 3.4. A feature
was corrupted by permuting a fraction of its values, chosen randomly among the
examples. For example, at the 0.1 corruption level, 10% of the values in corrupted
features are shuffled. This was repeated 20 times, creating 20 noisy versions of
each corrupted feature. Half of the Xi features were corrupted, independently of
each other, while the other Xi were left intact. Single decision trees and bagged
decision trees were trained using the intact features and the noisy duplicates,
but not the original versions of the corrupted features. To avoid experimental
bias, this process was repeated for all

(
6
3

)
combinations of choosing 3 features to

corrupt, and the results averaged.
Figure 5 shows the results for different corruption levels. The far left column,

core, is the error obtained when training using only the unblemished 6 original
features, and shows the best performance obtainable on this data set for these
algorithms (i.e. when the ideal feature set is used). The 0.0 column shows the
performance obtained using only the 3 intact features, without any corrupted
features. Performances that beat this baseline indicate an algorithm is learning
something useful from noisy features. Finally, the far right column (1.0) shows
the performance when the corrupted features are pure noise (irrelevant features).



On Feature Selection, Bias-Variance, and Bagging 157

variance
bias/noise

  0.05

  0.1

  0.15

  0.2

  0.25

  0.3

co
re 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M
SE

fraction feature values corrupted

damaged

variance
bias/noise

  0.05

  0.1

  0.15

  0.2

  0.25

  0.3

  0.35

co
re 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0/
1 

L
os

s

fraction feature values corrupted

damaged

Fig. 5. Bias-variance decompositions for damaged data sets with corrupted feature
values. Left bar in pair: single tree; right bar: bagging. Note that the y-axes do not
start at 0.

We make the following observations. First, at low corruption levels both sin-
gle and bagged trees learn something useful from the noisy features. For bagged
trees, performance is close to that of using the ideal feature set. Second, noisy
features increase the bias (because noise is lumped in with bias in our empirical
decomposition) of both single and bagged trees (vs. core), and increase the vari-
ance of single trees. Third, the main effect of increasing the corruption level is to
increase the bias/noise component. Finally, the extra variance in the single trees
means that the benefits of noisy features are quickly lost as the corruption level
increases. At least for this synthetic task, the problem is more pronounced for
squared error. In contrast, the bagged trees are remarkably resilient to damaging
the feature values, and are able to extract useful information when as much as
80% of the values are corrupted.

6 Conclusions

Our experiments show that feature selection finds the feature set that represents
the best trade-off between the bias of having too few features and the variance of
having too many features. Because of this, most feature selection algorithms are
not reliable methods for determining which features are relevant and irrelevant
to a given problem: the threshold for feature inclusion/exclusion depends on
the learning algorithm. Ultimately this limits the utility of feature selection for
discovering which factors are important and unimportant in problems such as
the avian analysis that originally motivated this work.

A by-product of our analysis is the discovery that when feature selection is
too expensive to be feasible or effective, bagging provides a viable alternative to
protect from the overfitting that can occur when models are trained with too



158 M.A. Munson and R. Caruana

many features.13 The bagged models always benefit from using at least as many
features as the individual unbagged models. In fact, when models will be bagged,
any amount of feature selection often is detrimental, and it is better to train the
base models using all available features. One interpretation of our results is that
feature selection is best viewed as a model regularization method instead of as
a means of distinguishing relevant from irrelevant inputs.
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References

1. Ali, K.M., Pazzani, M.J.: Error reduction through learning multiple descriptions.
Machine Learning 24(3), 173–202 (1996)

2. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature sub-
sets. In: ICML 1998: Proceedings of the 15th International Conference on Machine
Learning, pp. 37–45. Morgan Kaufmann Publishers Inc., San Francisco (1998)

3. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

4. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97(1-2), 273–324 (1997)

5. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003
feature selection challenge. In: Advances in Neural Information Processing Systems
17, pp. 545–552. MIT Press, Cambridge (2005)

6. Reunanen, J.: Overfitting in making comparisons between variable selection meth-
ods. Journal of Machine Learning Research 3, 1371–1382 (2003)

7. Loughrey, J., Cunningham, P.: Using early-stopping to avoid overfitting in wrapper-
based feature selection employing stochastic search. Technical Report TCD-CS-
2005-37, Trinity College Dublin, Department of Computer Science (May 2005)

8. van der Putten, P., van Someren, M.: A bias-variance analysis of a real world
learning problem: The CoIL challenge 2000. Machine Learning 57(1-2), 177–195
(2004)

9. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
10. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine Learning 36(1-2), 105–139 (1999)
11. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.

(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
12. Ho, T.K.: The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence 20, 832–844 (1998)
13. Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: Improving accuracy

of classifier ensembles by using random feature subsets. Pattern Recognition 36(6),
1291–1302 (2003)

13 Of course, feature rankers like CFF are less expensive than training a single bagged
tree ensemble. Even with a ranker, however, there is the problem of choosing a cutoff
threshold for which features to include — which typically requires training models
for multiple candidate threshold levels. Thus, carefully choosing a threshold could
easily cause a feature ranker to be more computationally expensive than training a
single ensemble.



On Feature Selection, Bias-Variance, and Bagging 159

14. Opitz, D.W.: Feature selection for ensembles. In: AAAI 1999: Proceedings of the
16th National Conference on Artificial Intelligence, pp. 379–384. American Asso-
ciation for Artificial Intelligence, Menlo Park (1999)

15. Tuv, E., Borisov, A., Torkkola, K.: Feature selection using ensemble based ranking
against artificial contrasts. In: International Joint Conference on Neural Networks,
pp. 2181–2186 (2006)

16. Saeys, Y., Abeel, T., Peer, Y.: Robust feature selection using ensemble feature
selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML
PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg
(2008)

17. Tuv, E.: Ensemble learning. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.
(eds.) Feature Extraction: Foundations, and Applications. Studies in Fuzziness and
Soft Computing, vol. 207, pp. 187–204. Springer, Heidelberg (2006)

18. Buntine, W., Caruana, R.: Introduction to IND and recursive partitioning. Tech-
nical Report FIA-91-28, NASA Ames Research Center (October 1991)

19. Wallace, C.S., Patrick, J.D.: Coding decision trees. Machine Learning 11(1), 7–22
(1993)

20. Buntine, W.: Learning classification trees. Statistics and Computing 2(2), 63–73
(1992)

21. Platt, J.C.: Probabilistic outputs for support vector machines and comparison
to regularized likelihood methods. In: Smola, A.J., Bartlett, P.J., Schoelköpf, B.,
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