
Faster and Timing-Attack Resistant AES-GCM

Emilia Käsper1 and Peter Schwabe2,�

1 Katholieke Universiteit Leuven, ESAT/COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

emilia.kasper@esat.kuleuven.be
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
peter@cryptojedi.org

Abstract. We present a bitsliced implementation of AES encryption in
counter mode for 64-bit Intel processors. Running at 7.59 cycles/byte on
a Core 2, it is up to 25% faster than previous implementations, while si-
multaneously offering protection against timing attacks. In particular, it
is the only cache-timing-attack resistant implementation offering compet-
itive speeds for stream as well as for packet encryption: for 576-byte pack-
ets, we improve performance over previous bitsliced implementations by
more than a factor of 2. We also report more than 30% improved speeds for
lookup-table based Galois/Counter mode authentication, achieving 10.68
cycles/byte for authenticated encryption. Furthermore, we present the first
constant-time implementation of AES-GCM that has a reasonable speed
of 21.99 cycles/byte, thus offering a full suite of timing-analysis resistant
software for authenticated encryption.

Keywords: AES, Galois/Counter mode, cache-timing attacks, fast im-
plementations.

1 Introduction

While the AES cipher has withstood years of scrutiny by cryptanalysts, its im-
plementations are not guaranteed to be secure. Side-channel attacks have become
the most promising attacks, and cache-timing attacks pose a security threat to
common AES implementations, as they make heavy use of lookup tables. Coun-
termeasures against cache-timing attacks on software implementations include
hardware-based defenses to limit cache leakage; or obscuring timing data, e.g.,
� The first author was supported in part by the European Commission through

the ICT Programme under Contract ICT-2007-216646 ECRYPT II, the IAP–
Belgian State–Belgian Science Policy BCRYPT and the IBBT (Interdisciplinary
institute for BroadBand Technology) of the Flemish Government, and by the
FWO-Flanders project nr. G.0317.06 Linear Codes and Cryptography. The sec-
ond author was supported by the European Commission through the ICT Pro-
gramme under Contract ICT–2007–216499 CACE, and through the ICT Programme
under Contract ICT-2007-216646 ECRYPT II. Permanent ID of this document:
cc3a43763e7c5016ddc9cfd5d06f8218. Date: June 15, 2009.

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 1–17, 2009.
c© International Association for Cryptologic Research 2009

2 E. Käsper and P. Schwabe

via adding dummy instructions. However, both approaches are generally deemed
impractical due to a severe performance penalty.

This leaves us with the third option: writing dedicated constant-time software.
While several cryptographic algorithms such as the Serpent block cipher [8] have
been designed with a lookup-table-free implementation in mind, it is generally
extremely difficult to safeguard a cipher against side-channel attacks a posteriori.

Matsui and Nakajima were the first to show a constant-time implementation of
AES on an Intel Core 2 processor faster than any other implementation described
before [24]. However, the reported speed of 9.2 cycles/byte1 is only achieved for
chunks of 2 KB of input data that are transposed into a dedicated bitsliced
format. Including format conversion, this implementation thus runs at around
10 cycles/byte for stream encryption. On the other hand, encrypting, say, 576-
byte packets would presumably cause a slowdown by more than a factor of 3,
making the approach unsuitable for many network applications.

Könighofer presents an alternative implementation for 64-bit platforms that
processes only 4 input blocks in parallel [22], but at 19.8 cycles/byte, his code
is even slower than the reference implementation used in OpenSSL.

Finally, Intel has announced a new AES-NI instruction set [17] that will pro-
vide dedicated hardware support for AES encryption and thus circumvent cache
leaks on future CPUs. However, processors rolled out to the market today do
not yet support these instructions, so cache-timing attacks will continue to be a
threat to AES for several years until all current processors have been replaced.

This paper presents a constant-time implementation of AES which only needs
7.59 cycles/byte on an Intel Core 2 Q9550, including costs for transformation of
input data into bitsliced format and transformation of output back to standard
format. On the newer Intel Core i7, we show even faster speeds of 6.92 cy-
cles/byte, while lookup-table-based implementations on the same platform are
still behind the 10 cycles/byte barrier. Not only is our software up to 30% faster
than any previously presented AES software for 64-bit Intel processors, it also
no longer needs input chunks of 2 KB but only of 128 bytes to achieve optimal
speed and is thus efficient for packet as well as stream encryption.

Secondly, we propose a fast implementation of Galois/Counter mode (GCM)
authentication. Combined with our fast AES encryption, we demonstrate speeds
of 10.68 cycles per encrypted and authenticated byte on the Core 2 Q9550. Our
fast GCM implementation, however, uses the standard method of lookup tables
for multiplication in a finite field. While no cache-timing attacks against GCM
have been published, we acknowledge that this implementation might be vulner-
able to cache leaks. Thus, we also describe a new method for implementing GCM
without lookup tables that still yields a reasonable speed of 21.99 cycles/byte.
The machine-level strategies for implementing AES-GCM in constant time might
be of independent interest to implementors of cryptographic software.

Note. All software presented in this paper is in the public domain and is available
online on the authors’ websites [19, 31] to maximize reusability of results.
1 From here on, we consider only AES-128. All results extend straightforwardly to

other key sizes, with an appropriate downscaling in performance.

Faster and Timing-Attack Resistant AES-GCM 3

Organization of the paper. In Section 2, we analyze the applicability of
cache-timing attacks to each component of AES-GCM authenticated encryption.
Section 3 gives an overview of the target platforms. In Sections 4 and 5, we
describe our implementations of AES and GCM, respectively. Finally, Section 6
gives performance benchmarks on three different platforms.

2 Cache Timing Attacks against AES and GCM

Cache-timing attacks are software side-channel attacks exploiting the timing
variability of data loads from memory. This variability is due to the fact that
all modern microprocessors use a hierarchy of caches to reduce load latency. If
a load operation can retrieve data from one of the caches (cache hit), the load
takes less time than if the data has to be retrieved from RAM (cache miss).

Kocher [21] was the first to suggest cache-timing attacks against cryptographic
algorithms that load data from positions that are dependent on secret informa-
tion. Initially, timing attacks were mostly mentioned in the context of public-key
algorithms until Kelsey et al. [20] and Page [30] considered timing attacks, includ-
ing cache-timing attacks, against secret-key algorithms. Tsunoo et al. demon-
strated the practical feasibility of cache-timing attacks against symmetric-key
ciphers MISTY1 [33] and DES [32], and were the first to mention an attack
against AES (without giving further details).

In the rest of this section, we analyze separately the cache-timing vulnerability
of three components of AES-GCM: encryption, key schedule, and authentication.

2.1 Attacks against AES Encryption

A typical implementation of AES uses precomputed lookup tables to implement
the S-Box, opening up an opportunity for a cache-timing attack. Consider, for
example, the first round of AES: the indices of the table lookups are then defined
simply by the xor of the plaintext and the first round key. As the attacker knows
or even controls the plaintext, information about the lookup indices directly
leaks information about the key.

Bernstein [3] was the first to implement a cache-timing key-recovery attack
against AES. While his attack relies on the attacker’s capability of producing
reference timing distributions from known-key encryptions on a platform iden-
tical to the target platform and has thus been deemed difficult to mount [29,9],
several improved attack strategies have subsequently been described by Bertoni
et al. [6], Osvik et al. [29], Acıiçmez et al. [18], Bonneau and Mironov [9], and
Neve et al. [28, 27].

In particular, Osvik et. al. [29] propose an attack model where the attacker
obtains information about cache access patterns by manipulating the cache be-
tween encryptions via user-level processes. Bonneau and Mironov [9] further
demonstrate an attack detecting cache hits in the encryption algorithm itself, as
opposed to timing a process controlled by the attacker. Their attack requires no
active cache manipulation, only that the tables are (partially) evicted from cache

4 E. Käsper and P. Schwabe

prior to the encryption. Finally, Acıiçmez et. al. [18] note that if the encrypting
machine is running multiple processes, workload on the target machine achieves
the desired cache-cleaning effect, and provide simulation results suggesting that
it is possible to recover an AES encryption key via a passive remote timing
attack.

2.2 Attacks against AES Key Expansion

The expansion of the 128-bit AES key into 11 round keys makes use of the Sub-
Bytes operation which is also used for AES encryption and usually implemented
through lookup tables. During key schedule, the lookup indices are dependent on
the secret key, so in principle, ingredients for a cache-timing attack are available
also during key schedule.

However, we argue that mounting a cache-timing attack against AES key-
expansion will be very hard in practice. Common implementations do the key ex-
pansion just once and store either the fully expanded 11 round keys or partially-
expanded keys (see e.g. [2]); in both cases, table lookups based on secret data are
performed just once, precluding statistical timing attacks, which require multiple
timing samples.

We nevertheless provide a constant-time implementation of key expansion for
the sake of completeness. The cycle count of the constant-time implementation is
however inferior to the table-based implementation; a performance comparison
of the two methods is given in Section 6.

2.3 Attacks against Galois/Counter Mode Authentication

The computationally expensive operations for GCM authentication are multi-
plications in the finite field F2128 . More specifically, each block of input requires
multiplication with a secret constant factor H derived from the master encryp-
tion key. As all common general-purpose CPUs lack support for multiplication of
polynomials over F2, the standard way of implementing GCM is through lookup
tables containing precomputed multiples of H .

The specification of GCM describes different multiplication algorithms involv-
ing tables of different sizes allowing to trade memory for computation speed [25].
The basic idea of all of these algorithms is the same: split the non-constant factor
of the multiplication into bytes or half-bytes and use these as indices for table
lookups.

For the first block of input P1, this non-constant factor is C1, the first block
of ciphertext. Assuming the ciphertext is available to the attacker anyway, the
indices of the first block lookups do not leak any secret information. However,
for the second ciphertext block C2, the non-constant input to the multiplication
is (C1 · H) ⊕ C2. An attacker gaining information about this value can easily
deduce the secret value H necessary for a forgery attack.2

2 The authentication key H is derived from the master key via encrypting a known
constant. Thus, learning H is equivalent to obtaining a known plaintext-ciphertext
pair and should pose no threat to the master encryption key itself.

Faster and Timing-Attack Resistant AES-GCM 5

The lookup tables used for GCM are usually at least as large as AES lookup
tables; common sizes include 4 KB, 8 KB and 64 KB. The values retrieved from
these tables are 16 bytes long; knowledge of the (64-byte) cache line thus leaves
only 4 possibilities for each lookup index. For example, the 64-KB implementa-
tion uses 16 tables, each corresponding to a different byte of the 128-bit input.
Provided that cache hits leak the maximum 6 bits in each byte, a 232 exhaustive
search over the remaining unknown bits is sufficient to recover the authentication
key.

We conclude that common implementations of GCM are potentially vulnera-
ble to authentication key recovery via cache timing attacks. Our software thus
includes two different versions of GCM authentication: a fast implementation
based on 8-KB lookup tables for settings where timing attacks are not consid-
ered a threat; and a slower, constant-time implementation offering full protection
against timing attacks. For a performance comparison of these two implementa-
tions, see Section 6.

3 The Intel Core 2 and Core i7 Processors

We have benchmarked our implementations on three different Intel microarchi-
tectures: the 65-nm Core 2 (Q6600), the 45-nm Core 2 (Q9550) and the Core i7
(920). These microarchitectures belong to the amd64 family, they have 16 128-bit
SIMD registers, called XMM registers.

The 128-bit XMM registers were introduced to Intel processors with the
“Streaming SIMD Extensions” (SSE) on the Pentium III processor. The in-
struction set was extended (SSE2) on the Pentium IV processor, other exten-
sions SSE3, SSSE3 and SSE4 followed. Starting with the Core 2, the processors
have full 128-bit wide execution units, offering increased throughput for SSE
instructions.

Our implementation mostly uses bit-logical instructions on XMM registers.
Intel’s amd64 processors are all able to dispatch up to 3 arithmetic instructions
(including bit-logical instructions) per cycle; at the same time, the number of
simultaneous loads and stores is limited to one.

Virtually all instructions on the amd64 operate on two registers; that is,a two-
operand instruction, such as an XOR, overwrites one of the inputs with the
output. This introduces an overhead in register-to-register moves whenever both
inputs need to be preserved for later reuse.

Aside from these obvious performance bottlenecks, different CPUs have spe-
cific limitations:

The pshufb instruction: This instruction is part of the SSSE3 instruction-set
extension and allows to shuffle the bytes in an XMM register arbitrarily. On
a 65-nm processor, pshufb is implemented through 4 µops; 45-nm Core 2 and
Core i7 CPUs need just 1 µop (see [15]). This reduction was achieved by the
introduction of a dedicated shuffle-unit [12]. The Core i7 has two of these shuffle
units, improving throughput by a factor of two.

6 E. Käsper and P. Schwabe

Choosing between equivalent instructions: The SSE instruction set in-
cludes three different logically equivalent instructions to compute the xor of two
128-bit registers: xorps, xorpd and pxor; similar equivalences hold for other
bit-logical instructions: andps/andpd/pand, orps/orpd/por.

While xorps/xorpd consider their inputs as floating point values, pxor works
on integer inputs. On Core 2 processors, all three instructions yield the same
performance. On the Core i7, on the other hand, it is crucial to use integer
instructions: changing all integer bit-logical instructions to their floating-point
equivalents results in a performance penalty of about 50% on our benchmark
Core i7 920.

What about AMD processors? Current AMD processors do not support the
SSSE3 pshufb instruction, but an even more powerful SSE5 instruction pperm
will be available for future AMDs. It is also possible to adapt the software to
support current 64-bit AMD processors. The performance of the most expensive
part of the computation—the AES S-box—will not be affected by this modifi-
cation, though the linear layer will require more instructions.

4 Bitsliced Implementation of AES in Counter Mode

Bitslicing as a technique for implementing cryptographic algorithms was pro-
posed by Biham to improve the software performance of DES [7]. Essentially,
bitslicing simulates a hardware implementation in software: the entire algorithm
is represented as a sequence of atomic Boolean operations. Applied to AES, this
means that rather than using precomputed lookup tables, the 8 × 8-bit S-Box
as well as the linear layer are computed on-the-fly using bit-logical instructions.
Since the execution time of these instructions is independent of the input values,
the bitsliced implementation is inherently immune to timing attacks.

Obviously, representing a single AES byte by 8 Boolean variables and evalu-
ating the S-Box is much slower than a single table lookup. However, collecting
equivalent bits from multiple bytes into a single variable (register) allows to com-
pute multiple S-Boxes at the cost of one. More specifically, the 16 XMM registers
of the Core 2 processors allow to perform packed Boolean operations on 128 bits.
In order to fully utilize the width of these registers, we thus process 8 16-byte
AES blocks in parallel. While our implementation considers 8 consecutive blocks
of AES in counter mode, the same technique could be applied equally efficiently

Table 1. Instruction count for one AES round

xor/and/or pshufd/pshufb xor (mem-reg) mov (reg-reg) TOTAL

SubBytes 128 – – 35 163

ShiftRows – 8 – – 8

MixColumns 27 16 – – 43

AddRoundKey – – 8 – 8

TOTAL 155 24 8 35 222

Faster and Timing-Attack Resistant AES-GCM 7

to other modes, as long as there is sufficient parallelism. For example, while the
CBC mode is inherently sequential, one could consider 8 parallel independent
CBC encryptions to achieve the same effect.

Table 1 summarizes the instruction count for each component of AES. In
total, one full round of AES requires 222 instructions to process 8 blocks, or 1.73
instructions/byte. In comparison, a typical lookup-table-based implementation
performs 1 lookup per byte per round. As the Core 2 can issue up to 3 arithmetic
instructions per clock cycle, we are able to break the fundamental 1 cycle/byte
barrier of lookup-table-based implementations.

Several AES implementations following a similar bitslicing approach have
been reported previously [22,23,24]. However, compared to previous results, we
have managed to further optimize every step of the round function. Our imple-
mentation of SubBytes uses 15% fewer instructions than previously reported
software implementations. Also, replacing rotates with the more general byte
shuffling instructions has allowed us to design an extremely efficient linear layer
(see Section 4.3 and 4.4). In the rest of this section, we describe implementation
aspects of each step of the AES round function, as well as the format conversion
algorithm.

4.1 Bitsliced Representation of the AES State

The key to a fast bitsliced implementation is finding an efficient bitsliced rep-
resentation of the cipher state. Denote the bitsliced AES state by a[0], . . . , a[7],
where each a[i] is a 128-bit vector fitting in one XMM register. We take 8 16-byte
AES blocks and “slice” them bitwise, with the least significant bits of each byte
in a[0] and the most significant bits in the corresponding positions of a[7]. Now,
the AES S-Box can be implemented equally efficiently whatever the order of bits
within the bitsliced state. The efficiency of the linear layer, on the other hand,
depends crucially on this order.

In our implementation, we collect in each byte of the bitsliced state 8 bits
from identical positions of 8 different AES blocks, assuring that bits within each
byte are independent and all instructions can be kept byte-level. Furthermore,
in order to simplify the MixColumns step, the 16 bytes of an AES state are
collected in the state row by row. Figure 1 illustrates the bit ordering in each
128-bit state vector a[i].

Several solutions are known for converting the data to a bitsliced format and
back [22,24]. Our version of the conversion algorithm requires 84 instructions to
bitslice the input, and 8 byte shuffles to reorder the state row by row.

row 0 row 3

column 0 column 1 column2 column 3 column 0 column 3

b
lo

ck
0

b
lo

ck
1

. . . b
lo

ck
7

b
lo

ck
0

b
lo

ck
1

. . . b
lo

ck
7

b
lo

ck
0

b
lo

ck
1

. . . b
lo

ck
7

b
lo

ck
0

b
lo

ck
1

. . . b
lo

ck
7

. b
lo

ck
0

b
lo

ck
1

. . . b
lo

ck
7

. b
lo

ck
0

b
lo

ck
1

. . . b
lo

ck
7

Fig. 1. Bit ordering in one 128-bit vector of the bitsliced state

8 E. Käsper and P. Schwabe

Table 2. Instruction count for the AES S-Box

xor and/or mov TOTAL

Hardware 82 35 – 117

Software 93 35 35 163

4.2 The SubBytes Step

The SubBytes step of AES transforms each byte of the 16-byte AES state
according to an 8 × 8-bit S-Box S based on inversion in the finite field F28 .
We use well-known hardware implementation strategies for decomposing the S-
Box into Boolean instructions. The starting point of our implementation is the
compact hardware S-Box proposed by Canright [11], requiring 120 logic gates,
and its recent improvements by Boyar and Peralta [10], which further reduce the
gate count to 117. Our implementation of the SubBytes step is obtained by
converting each logic gate (xor, and, or) in this implementation to its equivalent
CPU instruction. All previous bitsliced implementations use a similar approach,
nevertheless, by closely following hardware optimizations, we have improved the
software instruction count by 15%, from 199 instructions [24] to 163.

We omit here the lengthy description of obtaining the Boolean decomposi-
tion; full details can be found in the original paper [11]. Instead, we highlight
differences between the hardware approach and our software “simulation”, as
the exchange rate between hardware gates and instructions on the Core 2 is not
one-to-one.

First, the packed Boolean instructions of the Core 2 processors have one source
and one destination; that is, one of the inputs is always overwritten by the result.
Thus, we need extra move instructions whenever we need to reuse both inputs.
Also, while the compact hardware implementation computes recurring Boolean
subexpressions only once, we are not able to fit all intermediate values in the
available 16 XMM registers. Instead, we have a choice between recomputing some
values, or using extra load/store instructions to keep computed values on the
stack. We chose to do away without the stack: our implementation fits entirely
in the 16 registers and uses 128 packed Boolean instructions and 35 register-
to-register move instructions. Table 2 lists the instruction/gate counts for the
S-Box in software and hardware.

4.3 The ShiftRows Step

Denote the 4 × 4-byte AES state matrix by [aij]. ShiftRows rotates each row
of the matrix left by 0, 1, 2 and 3 bytes, respectively:

⎡
⎢⎢⎣

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32

⎤
⎥⎥⎦ .

Faster and Timing-Attack Resistant AES-GCM 9

Since each byte of the bitsliced state contains 8 bits from identical positions of
8 AES blocks, ShiftRows requires us to permute the 16 bytes in each 128-bit
vector according to the following permutation pattern:

[a00|a01|a02|a03|a10|a11|a12|a13|a20|a21|a22|a23|a30|a31|a32|a33] �→
[a00|a01|a02|a03|a11|a12|a13|a10|a22|a23|a20|a21|a33|a30|a31|a32].

Using the dedicated SSSE3 byte shuffle instruction pshufb, the whole ShiftRows
step can be done in 8 XMM instructions.

4.4 The MixColumns Step

MixColumns multiplies the state matrix [aij] by a fixed 4× 4 matrix to obtain
a new state [bij]:

⎡
⎢⎢⎣

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32

⎤
⎥⎥⎦ .

Owing to the circularity of the multiplication matrix, each resulting byte bij can
be calculated using an identical formula:

bij = 02x · aij ⊕ 03x · ai+1,j ⊕ ai+2,j ⊕ ai+3,j ,

where indices are reduced modulo 4.
Recall that each byte aij is an element of F28 = F2[X]/X8 +X4+X3 +X +1,

so multiplication by 02x corresponds to a left shift and a conditional masking
with 00011011b whenever the most significant bit aij [7] = 1. For example, the
least significant bit bij [0] of each byte is obtained as

bij [0] = aij [7] ⊕ ai+1,j [0] ⊕ ai+1,j [7] ⊕ ai+2,j [0] ⊕ ai+3,j [0].

As the bitsliced state collects the bits of an AES state row by row, computing
ai+1,j [0] from aij [0] for all 128 least significant bits in parallel is equivalent to
rotating a[0] left by 32 bits:

[a00|a01|a02|a03|a10|a11|a12|a13|a20|a21|a22|a23|a30|a31|a32|a33] �→
[a10|a11|a12|a13|a20|a21|a22|a23|a30|a31|a32|a33|a00|a01|a02|a03].

Similarly, computing ai+2,j (ai+3,j) requires rotation by 64 (resp. 96) bits. To
obtain the new bitsliced state vector b[0], we can now rewrite the above equation
as

b[0] = (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[0]) ⊕ rl64(a[0] ⊕ (rl32a[0])).

Similar equations can be obtained for all state vectors b[i] (see App. A for a
complete listing). By observing that rl64a[i] ⊕ rl96a[i] = rl64(a[i] ⊕ rl32a[i]), we

10 E. Käsper and P. Schwabe

are able to save a rotation and we thus only need to compute two rotations
per register, or 16 in total. There is no dedicated rotate instruction for XMM
registers; however, as all our rotations are in full bytes, we can use the pshufd
32-bit-doubleword permutation instruction. This instruction allows to write the
result in a destination register different from the source register, saving register-
to-register moves. In total, our implementation of MixColumns requires 43
instructions: 16 pshufd instructions and 27 xors.

4.5 The AddRoundKey Step

The round keys are converted to bitsliced representation during key schedule.
Each key is expanded to 8 128-bit values, and a round of AddRoundKey
requires 8 xors from memory to the registers holding the bitsliced state. The
performance of the AddRoundKey step can further be slightly optimized by in-
terleaving these instructions with the byte shuffle instructions of the ShiftRows
step.

4.6 AES Key Schedule

The AES key expansion algorithm computes 10 additional round keys from the
initial key, using a sequence of SubBytes operations and xors. With the in-
put/output transform, and our implementation of SubBytes, we have all the
necessary components to implement the key schedule in constant time. The key
schedule performs 10 unavoidably sequential SubBytes calls; its cost in con-
stant time is thus roughly equivalent to the cost of one 8-block AES encryption.
The performance results in Section 6 include an exact cycle count.

5 Implementations of GCM Authentication

Galois/Counter mode is a NIST-standardized block cipher mode of operation
for authenticated encryption [25]. The 128-bit authentication key H is derived
from the master encryption key K during key setup as the encryption of an
all-zero input block. The computation of the authentication tag then requires,
for each 16-byte data block, a 128-bit multiplication by H in the finite field
F2128 = F2[X]/(X128 + X7 + X2 + X + 1). Figure 2 illustrates the mode of
operation; full details can be found in the specification [25].

The core operation required for GCM authentication is thus Galois field mul-
tiplication with a secret constant element H . This section describes two different
implementations of the multiplication—first, a standard table-based approach,
and second, a constant-time solution. Both implementations consist of a one-
time key schedule computing H and tables containing multiples of H ; and an
online phase which performs the actual authentication. Both implementations
accept standard (non-bitsliced) input.

Faster and Timing-Attack Resistant AES-GCM 11

Fig. 2. Galois/Counter Mode Authenticated Encryption

5.1 Table-Based Implementation

Several flavors of Galois field multiplication involving lookup tables of differ-
ent sizes have been proposed for GCM software implementation [25]. We chose
the “simple, 4-bit tables method”, which uses 32 tables with 16 precomputed
multiples of H each, corresponding to a memory requirement of 8 KB.

Following the ideas from [13], we can do one multiplication using 84 arithmetic
instructions and 32 loads.

The computation is free of long chains of dependent instructions and the
computation is thus mainly bottlenecked by the number of 32 loads per mul-
tiplication yielding a performance of 10.68 cycles/byte for full AES-GCM on a
Core 2 Q9550.

5.2 Constant-Time Implementation

Our alternative implementation of GCM authentication does not use any ta-
ble lookups or data-dependent branches and is thus immune to timing attacks.
While slower than the implementation described in Section 5.1, the constant-
time implementation achieves a reasonable speed of 21.99 cycles per encrypted
and authenticated byte and, in addition, requires only 2 KB of memory for pre-
computed values, comparing favorably to lookup-table-based implementations.

During the offline phase, we precompute values H, X · H, X2 · H, . . . , X127 ·
H . Based on this precomputation, multiplication of an element D with H can
be computed using a series of xors conditioned on the bits of D, as shown in
Algorithm 1.

For a constant-time version of this algorithm we have to replace the condi-
tional statements by a sequence of deterministic instructions. Suppose that we
want to xor register %xmm3 into register %xmm4 if and only if bit b0 of register

12 E. Käsper and P. Schwabe

Algorithm 1. Multiplication in F2128 of D with a constant element H .
Require: Input D, precomputed values H, X · H, X2 · H, . . . , X127 · H
Ensure: Output product DH = D · H

DH = 0
for i = 0 to 127 do

if di == 1 then
DH = DH ⊕ Xi · H

end if
end for

Listing 1. A constant-time implementation of conditional xor

1: movdqa %xmm0, %xmm1 # %xmm1 - tmp

2: pand BIT0 , %xmm1 # BIT0 - bit mask in memory

3: pcmpeqd BIT0 , %xmm1

4: pshufd $0xff, %xmm1, %xmm1 #

5: pand %xmm3, %xmm1 #

6: pxor %xmm1, %xmm4 #

%xmm0 is set. Listing 1 shows a sequence of six assembly instructions that imple-
ments this conditional xor in constant time. Lines 1–4 produce an all-zero mask
in register %xmm1 if b0 = 0 and an all-one mask otherwise. Lines 5–6 mask %xmm3
with this value and xor the result. We note that the precomputation described
above is also implemented in constant time, using the same conditional-xor tech-
nique.

In each 128-bit multiplication in the online phase, we need to loop through all
128 bits of the intermediate value D. Each loop requires 6 · 128 instructions, or
48 instructions per byte. We managed to further optimize the code in Listing 1
by considering four bitmasks in parallel and only repeating lines 1–3 of the code
once every four bits, yielding a final complexity of 3.75 instructions per bit, or
30 instructions/byte. As the Core 2 processor can issue at most 3 arithmetic
instructions per cycle, a theoretical lower bound for a single Galois field multi-
plication, using our implementation of the conditional xor, is 10 cycles/byte. The
actual performance comes rather close at around 14 cycles/byte for the complete
authentication.

6 Performance

We give benchmarking results for our software on three different Intel processors.
A description of the computers we used for benchmarking is given in Table 3;
all benchmarks used just one core.

To ensure verifiability of our results, we used the open eSTREAM benchmark-
ing suite [14], which reports separate cycle counts for key setup, IV setup, and
for encryption.

Faster and Timing-Attack Resistant AES-GCM 13

Table 3. Computers used for benchmarking

latour berlekamp dragon

CPU Intel Core 2 Quad Q6600 Intel Core 2 Quad Q9550 Intel Core i7 920

CPU frequency 2404.102 MHz 2833 MHz 2668 MHz

RAM 8 GB 8 GB 3 GB

OS Linux 2.6.27.11 x86 64 Linux 2.6.27.19 x86 64 Linux 2.6.27.9 x86 64

Affiliation Eindhoven University National Taiwan National Taiwan
of Technology University University

Table 4. Performance of AES-CTR encryption in cycles/byte

�Packet size 4096 bytes 1500 bytes 576 bytes 40 bytes Simple Imix

latour

This paper 9.32 9.76 10.77 34.36 12.02

[5] 10.58 10.77 10.77 19.44 11.37

Cycles for key setup (this paper), table-based: 796.77

Cycles for key setup (this paper), constant-time: 1410.56

Cycles for key setup [5]: 163.25

berlekamp

This paper 7.59 7.98 8.86 28.71 9.89

[5] 10.60 10.77 10.75 19.34 11.35

Cycles for key setup (this paper), table-based: 775.14

Cycles for key setup (this paper), constant-time: 1179.21

Cycles for key setup [5]: 163.21

dragon

This paper 6.92 7.27 8.08 26.32 9.03

[5] 10.01 10.24 10.15 18.01 10.72

Cycles for key setup (this paper), table-based: 763.38

Cycles for key setup (this paper), constant-time: 1031.11

Cycles for key setup [5]: 147.70

Benchmarking results for different packet sizes are given in Tables 4 and 5.
The “simple Imix” is a weighted average simulating sizes of typical IP packages:
it takes into account packets of size 40 bytes (7 parts), 576 bytes (4 parts), and
1500 bytes (1 part).

For AES-GCM authenticated encryption, the eSTREAM benchmarking suite
reports cycles per encrypted and authenticated byte without considering final
computations (one 16-byte AES encryption and one multiplication) necessary
to compute the authentication tag. Cycles required for these final computations
are reported as part of IV setup. Table 5 therefore gives performance numbers
as reported by the eSTREAM benchmarking suite (cycles/byte and cycles re-
quired for IV setup) and “accumulated” cycles/byte, illustrating the “actual”
time required for authenticated encryption.

For AES in countermode, we also give benchmarking results of previously fastest
software [5], measured with the same benchmarking suite on the same computers.
Note however that this implementation uses lookup tables. The previous fastest

14 E. Käsper and P. Schwabe

Table 5. Cycles/byte for AES-GCM encryption and authentication

�Packet size 4096 bytes 1500 bytes 576 bytes 40 bytes Simple Imix

latour

Table-based (eSTREAM) 12.22 13.73 16.12 76.82 19.41

Table-based (accumulated) 12.55 14.63 18.49 110.89 23.41

Constant-time (eSTREAM) 27.13 28.79 31.59 99.90 35.25

Constant-time (accumulated) 27.52 29.85 34.36 139.76 39.93

Cycles for precomputation and key setup, table-based: 3083.31

Cycles for precomputation and key setup, constant-time: 4330.94

Cycles for IV setup and final computations for authentication, table-based: 1362.98

Cycles for IV setup and final computations for authentication, constant-time: 1594.39

berlekamp

Table-based (eSTREAM) 10.40 11.64 13.72 65.95 16.54

Table-based (accumulated) 10.68 12.39 15.67 94.24 19.85

Constant-time (eSTREAM) 21.67 23.05 25.34 82.79 28.44

Constant-time (accumulated) 21.99 23.92 27.62 115.57 32.30

Cycles for precomputation and key setup, table-based: 2786.79

Cycles for precomputation and key setup, constant-time: 3614.83

Cycles for IV setup and final computations for authentication, table-based: 1131.97

Cycles for IV setup and final computations for authentication, constant-time: 1311.21

dragon

Table-based (eSTREAM) 9.86 10.97 12.87 59.05 15.34

Table-based (accumulated) 10.12 11.67 14.69 85.24 18.42

Constant-time (eSTREAM) 20.00 21.25 23.04 73.95 25.87

Constant-time (accumulated) 20.29 22.04 25.10 103.56 29.36

Cycles for precomputation and key setup, table-based: 2424.50

Cycles for precomputation and key setup, constant-time: 3429.55

Cycles for IV setup and final computations for authentication, table-based: 1047.49

Cycles for IV setup and final computations for authentication, constant-time: 1184.41

bitsliced implementation [24] is not available for public benchmarking; based on
the results in the paper, we expect it to perform at best equivalent for stream en-
cryption; and significantly slower for all packet sizes below 2 KB.

For AES-GCM, there exist no benchmarking results from open benchmarking
suites such as the eSTREAM suite or the successor eBASC [4]. The designers
of GCM provide performance figures for 128-bit AES-GCM measured on a Mo-
torola G4 processor which is certainly not comparable to an Intel Core 2 [26].
Thus, we only give benchmarks for our software in Table 5. As a frame of refer-
ence, Brian Gladman’s implementation needs 19.8 cycles/byte using 64-KB GCM
lookup tables and 22.3 cycles/byte with 8-KB lookup tables on a non-specified
AMD64 processor [16]. LibTomCrypt needs 25 cycles/byte for AES-GCM on an
Intel Core 2 E6300 [1]. Our implementation of AES-CTR achieves up to 30%
improved performance for stream encryption, depending on the platform. Com-
pared to previous bitsliced implementations, packet encryption is several times
faster. Including also lookup-table-based implementations, we still improve speed
for all packet sizes except for the shortest, 40-byte packets.

Faster and Timing-Attack Resistant AES-GCM 15

Similarly, our lookup-table-based implementation of AES-GCM is more than
30% faster than previously reported. Our constant-time implementation is the
first of its kind, yet its performance is comparable to previously published soft-
ware, confirming that it is a viable solution for protecting GCM against timing
attacks.

Finally, our benchmark results show a solid improvement from the older 65nm
Core 2 to the newer i7, indicating that bitsliced implementations stand to gain
more from wider registers and instruction set extensions than lookup-table-based
implementations. We conclude that bitslicing offers a practical solution for safe-
guarding against cache-timing attacks: several of the techniques described in this
paper extend to other cryptographic algorithms as well as other platforms.

Acknowledgements

Emilia Käsper thanks the Computer Laboratory of the University of Cambridge
for hosting her. The authors are grateful to Dan Bernstein, Joseph Bonneau, Wei
Dai, George Danezis, Samuel Neves, Jing Pan, and Vincent Rijmen for useful
comments and suggestions.

References

1. LTC benchmarks (accessed 2009-03-07), http://libtomcrypt.com/ltc113.html
2. Bernstein, D.J.: AES speed (accessed 2009-03-07),

http://cr.yp.to/aes-speed.html

3. Bernstein, D.J.: Cache-timing attacks on AES (2005),
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

4. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT benchmarking of crypto-
graphic systems, accessed -03-07 (2009), http://bench.cr.yp.to

5. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–
336. Springer, Heidelberg (2008)

6. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES power
attack based on induced cache miss and countermeasure. In: ITCC 2005: Proceed-
ings of the International Conference on Information Technology: Coding and Com-
puting (ITCC 2005), Washington, DC, USA, vol. I, pp. 586–591. IEEE Computer
Society, Los Alamitos (2005)

7. Biham, E.: A fast new des implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

8. Biham, E., Anderson, R.J., Knudsen, L.R.: Serpent: A new block cipher proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidel-
berg (1998)

9. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidel-
berg (2006)

10. Boyar, J., Peralta, R.: New logic minimization techniques with applications to
cryptology. Cryptology ePrint Archive, Report 2009/191 (2009),
http://eprint.iacr.org/

http://libtomcrypt.com/ltc113.html
http://cr.yp.to/aes-speed.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://bench.cr.yp.to
http://eprint.iacr.org/

16 E. Käsper and P. Schwabe

11. Canright, D.: A very compact s-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

12. Coke, J., Baliga, H., Cooray, N., Gamsaragan, E., Smith, P., Yoon, K., Abel, J.,

Valles, A.: Improvements in the Intel c© Core
TM

2 Penryn processor family archi-
tecture and microarchitecture. Technical report, Intel Corporation (2008),
http://download.intel.com/technology/itj/2008/v12i3/Paper2.pdf

13. Dai, W.: Crypto++ library (accessed 2009-06-14), http://www.cryptopp.com
14. De Cannière, C.: The eSTREAM project: software performance (2008),

http://www.ecrypt.eu.org/stream/perf
15. Fog, A.: How to optimize for the Pentium family of microprocessors (2009),

http://www.agner.org/assem/
16. Gladman, B.: AES and combined encryption/authentication modes (2008),

http://fp.gladman.plus.com/AES/ (accessed, 2009-03-07)
17. Gueron, S.: Advanced encryption standard (AES) instructions set. Technical

report, Intel Corporation (2008), http://softwarecommunity.intel.com/isn/

downloads/intelavx/AES-Instructions-Set WP.pdf
18. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the

AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

19. Käsper, E.: AES-GCM implementations (2009),
http://homes.esat.kuleuven.be/~ekasper

20. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2-3), 141–158 (2000)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Könighofer, R.: A fast and cache-timing resistant implementation of the AES.
In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer,
Heidelberg (2008)

23. Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M.J.B. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006),
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf

24. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121–134. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-74735-2_9

25. McGrew, D.A., Viega, J.: The Galois/Counter Mode of operation (GCM),
http://www.cryptobarn.com/papers/gcm-spec.pdf

26. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

27. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In: Bi-
ham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

28. Neve, M., Seifert, J.-P., Wang, Z.: A refined look at Bernstein’s AES side-channel
analysis. In: ASIACCS 2006: Proceedings of the 2006 ACM Symposium on Infor-
mation, computer and communications security, pp. 369–369. ACM Press, New
York (2006)

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

http://download.intel.com/technology/itj/2008/v12i3/Paper2.pdf
http://www.cryptopp.com
http://www.ecrypt.eu.org/stream/perf
http://www.agner.org/assem/
http://fp.gladman.plus.com/AES/
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://homes.esat.kuleuven.be/~ekasper
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf
http://dx.doi.org/10.1007/978-3-540-74735-2_9
http://www.cryptobarn.com/papers/gcm-spec.pdf

Faster and Timing-Attack Resistant AES-GCM 17

30. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report, Department of Computer Science, University of Bristol (June 2002),
http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

31. Schwabe, P.: AES-GCM implementations (2009),
http://cryptojedi.org/crypto/#aesbs

32. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

33. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of block
ciphers implemented on computers with cache. In: Proceedings of the International
Symposium on Information Theory and Its Applications, ISITA 2002, pp. 803–806
(2002)

A Equations for MixColumns

We give the full equations for computing MixColumns as described in Sec-
tion 4.4. In MixColumns, the bits of the updated state are computed as follows:

bij [0] = aij [7] ⊕ ai+1,j [0] ⊕ ai+1,j [7] ⊕ ai+2,j [0] ⊕ ai+3,j [0]
bij [1] = aij [0] ⊕ aij [7] ⊕ ai+1,j [0] ⊕ ai+1,j [1] ⊕ ai+1,j [7] ⊕ ai+2,j [1] ⊕ ai+3,j [1]
bij [2] = aij [1] ⊕ ai+1,j [1] ⊕ ai+1,j [2] ⊕ ai+2,j [2] ⊕ ai+3,j [2]
bij [3] = aij [2] ⊕ aij [7] ⊕ ai+1,j [2] ⊕ ai+1,j [3] ⊕ ai+1,j [7] ⊕ ai+2,j [3] ⊕ ai+3,j [3]
bij [4] = aij [3] ⊕ aij [7] ⊕ ai+1,j [3] ⊕ ai+1,j [4] ⊕ ai+1,j [7] ⊕ ai+2,j [4] ⊕ ai+3,j [4]
bij [5] = aij [4] ⊕ ai+1,j [4] ⊕ ai+1,j [5] ⊕ ai+2,j [5] ⊕ ai+3,j [5]
bij [6] = aij [5] ⊕ ai+1,j [5] ⊕ ai+1,j [6] ⊕ ai+2,j [6] ⊕ ai+3,j [6]
bij [7] = aij [6] ⊕ ai+1,j [6] ⊕ ai+1,j [7] ⊕ ai+2,j [7] ⊕ ai+3,j [7].

In our bitsliced implementation, this translates to the following computation
on the 8 128-bit state vectors:

b[0] = (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[0]) ⊕ rl64(a[0] ⊕ (rl32a[0]))

b[1] = (a[0] ⊕ (rl32a[0])) ⊕ (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[1]) ⊕ rl64(a[1] ⊕ (rl32a[1]))

b[2] = (a[1] ⊕ (rl32a[1])) ⊕ (rl32a[2]) ⊕ rl64(a[2] ⊕ (rl32a[2]))

b[3] = (a[2] ⊕ (rl32a[2])) ⊕ (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[3]) ⊕ rl64(a[3] ⊕ (rl32a[3]))

b[4] = (a[3] ⊕ (rl32a[3])) ⊕ (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[4]) ⊕ rl64(a[4] ⊕ (rl32a[4]))

b[5] = (a[4] ⊕ (rl32a[4])) ⊕ (rl32a[5]) ⊕ rl64(a[5] ⊕ (rl32a[5]))

b[6] = (a[5] ⊕ (rl32a[5])) ⊕ (rl32a[6]) ⊕ rl64(a[6] ⊕ (rl32a[6]))

b[7] = (a[6] ⊕ (rl32a[6])) ⊕ (rl32a[7]) ⊕ rl64(a[7] ⊕ (rl32a[7])).

http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf
http://cryptojedi.org/crypto/#aesbs

	Faster and Timing-Attack Resistant AES-GCM
	Introduction
	Cache Timing Attacks against AES and GCM
	Attacks against AES Encryption
	Attacks against AES Key Expansion
	Attacks against Galois/Counter Mode Authentication

	The Intel Core 2 and Core i7 Processors
	Bitsliced Implementation of AES in Counter Mode
	Bitsliced Representation of the AES State
	The {\sc SubBytes} Step
	The {\sc ShiftRows} Step
	The {\sc MixColumns} Step
	The {\sc AddRoundKey} Step
	AES Key Schedule

	Implementations of GCM Authentication
	Table-Based Implementation
	Constant-Time Implementation

	Performance
	References
	A Equations for MixColumns

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

