
Chapter 7

SARS Coronavirus Replicative Enzymes:

Structures and Mechanisms

Isabelle Imbert, Rachel Ulferts, John Ziebuhr, and Bruno Canard

Abstract The SARS coronavirus (SARS-CoV) replicase gene encodes 16 non-

structural proteins (nsps) with multiple enzymatic activities. Several of these

enzymes are common components of replication complexes of other plus-strand

RNA viruses, such as picornavirus 3C-like protease, papain-like protease, RNA-

dependent RNA polymerase, RNA helicase, and ribose 20-O-methyltransferase

activities, while others such as exoribonuclease, endoribonuclease, and adenosine

diphosphate-ribose 100-phosphatase activities, are rarely or not conserved in viruses

outside the order Nidovirales. The latter enzymes are believed to be involved in

unique metabolic pathways used by coronaviruses to (1) replicate and transcribe

their extremely large RNA genomes, and (2) interfere with cellular functions and

antiviral host responses.

Since the global outbreak of SARS in 2003, major efforts have been made to

elucidate the structures of the protein components of the SARS-CoV replication/

transcription complex. Thus, in less than 5 years, the structures of as many as 16

SARS-CoV proteins or functional domains have been determined. Remarkably,

eight of these 16 structures had novel folds, illustrating the uniqueness of the

coronavirus replicative machinery. Furthermore, several new protein functions

and potential drug targets have been identified in these studies. Current structural

studies mainly focus on the few remaining proteins for which no structural infor-

mation is available and larger protein complexes comprised of different nsps. The

studies aim at obtaining detailed information on the functions and macromolecular

assembly of the coronavirus replication/transcription machinery which, over a long

period of time, may be used to develop selective antiviral drugs. This chapter

reviews structural information on the SARS-CoV macro domain (ADRP) as well
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as nsps 7, 8, 9, and 15 and summarizes our current knowledge of active-site residues

and intermolecular interactions of these proteins.

7.1 The ADP-Ribose-100-Phosphatase Domain

The SARS coronavirus (SARS-CoV) ADP-ribose-100-phosphatase (ADRP) is part

of nonstructural protein nsp3, a large multidomain protein of 1,922 amino acids

(Snijder et al. 2003; Thiel et al. 2003). The protein is thought to contain at least

seven domains: (1) N-terminal Glu/Asp-rich domain (acidic domain, AD); (2)

ADRP domain (also called macro domain or X domain); (3) SUD (for “SARS-

CoV unique domain,” not conserved in other coronaviruses); (4) papain-like prote-

ase (PLpro), which cleaves the viral polyproteins at three N-proximal sites and also

has deubiquitinating activity (Barretto et al. 2005; Harcourt et al. 2004; Lindner

et al. 2005; Ratia et al. 2006; Thiel et al. 2003); (5) an uncharacterized domain

possibly extending the papain-like protease domain (termed PLnc for papain-like

noncanonical); (6) a transmembrane domain (Kanjanahaluethai et al. 2007) in the

N-terminal region of the Y domain (Ziebuhr et al. 2001); and (7) the remainder of

the Y domain which includes a number of conserved metal-binding residues.

Macro domains are conserved in a wide variety of bacteria, archaea and eukar-

yotes. The name macro domain refers to the early finding that members of this

group of proteins are related to the nonhistone domain of the histone macroH2A

(Pehrson and Fried 1992). Macro domains are also conserved in a number of

positive-strand RNA viruses, including specific genera of the Nidovirales, members

of the Togaviridae, Rubella virus and Hepatitis E virus (HEV) (Gorbalenya et al.

1991; Snijder et al. 2003). The biological role of macro domains in the life cycle of

positive-strand RNA viruses has not been resolved. ADRP is a side-product of

cellular pre-tRNA splicing, a pathway seemingly unrelated to viral RNA replica-

tion. ADRP activity was first identified for a macro domain homolog from yeast

using a proteomics approach (Martzen et al. 1999) and subsequently demonstrated

for other related proteins including homologs from three coronaviruses, HCoV-

229E, TGEV, and SARS-CoV, as well as alphaviruses and HEV (Egloff et al. 2006;

Putics et al. 2005, 2006). Inactivation of macro domain-associated ADRP activity

in HCoV-229E did not affect viral genome replication and subgenomic RNA

synthesis in cell culture, suggesting that the activity, which is conserved across

members of the Coronaviridae, may have important functions in vivo, for example

in evading antiviral host responses (Putics et al. 2005).

The structure of the SARS-CoV macro domain has been determined at 1.8 Å

resolution, both in the apo form and in complex with ADP-ribose (Egloff et al.

2006; Saikatendu et al. 2005) (Fig. 7.1). To date, the catalytic residues of the

coronavirus macro domain have not been well defined. Only one absolutely con-

served Asn residue (N41, Fig. 7.1a) could be implicated in ADRP activity whereas

other residues in the vicinity of the catalytic center are not conserved and therefore

less likely to be critically involved in catalysis. Similar to archaebacterial macro
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Fig. 7.1 Crystal structure of the SARS-CoV nsp3 macro domain (from Egloff et al. 2006; PDB

2FAV). (a) Ribbon representation of the SARS-CoV macro domain in complex with ADP-ribose.

Shown is the only conserved residue whose mutation abrogates activity in all homologs studied so

far (N41). (b) Surface potential analysis (blue, positive charge; red, negative charge) of the whole
domain showing the presumed active site accommodating an ADP-ribose molecule. Images were

generated using PYMOL
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domains, SARS-CoV and several other RNA virus macro domains were shown to

have poly(ADP-ribose)-binding activities (Egloff et al. 2006). A possible binding

mode for poly(ADP-ribose) which does not appear to involve a charged groove

(Fig. 7.1b) has been modeled by Egloff et al. (2006). The significance of the

observed poly(ADP-ribose)-binding activity and the biologically relevant sub-

strates of RNA virus macro domains are currently not clear and remain to be

studied in more detail.

7.2 The nsp7–nsp8–nsp9–nsp10 Cistron

The nsp7 to nsp10 proteins are encoded by the 30-terminal ORF1a region. The

proteins are highly conserved amongst members of the genus Coronavirus and,

albeit to a lesser extent, members of other genera within the Coronaviridae family.

Interestingly, the proteins encoded in the equivalent 30-terminal ORF1a region of

arterivirus genomes do not appear to be closely related to the coronavirus nsp7 to

nsp10 proteins (Pasternak et al. 2006), which may indicate differences in the

structures, functions and subunit compositions of replication/transcription com-

plexes between the various families within the order Nidovirales. Using a reverse

genetics approach, nsp 7, 8, 9, and 10 were shown to be essential for replication of

murine hepatitis virus (MHV) in cell culture (Deming et al. 2007). Deletion of any

of the four proteins abolished RNA synthesis and, consequently, production of

infectious virus progeny (Deming et al. 2007). The precise functions of the proteins

in viral replication remain to be characterized.

7.2.1 The nsp7 Protein

Nsp7 is a small protein of about 10 kDa that is well conserved in coronaviruses but

has no detectable homolog outside the Coronaviridae. The SARS-CoV nsp7 struc-

ture was solved by NMR (Peti et al. 2005). The protein features a single domain

with a novel fold comprised of five helical secondary structures (Fig. 7.2a) whose

mutual positions are stabilized by a number of interhelical side-chain interactions.

The residues involved in these interactions are predominantly hydrophobic; they

form two interdigitated layers that hold the helices together and thus stabilize the

fold. The surface charge distribution is asymmetrical (Fig. 7.2b) and both surfaces

may be involved in protein–protein interactions.

In infected cells, coronavirus nsp7 and/or nsp7-containing precursors localize to

cytoplasmic membrane structures which are thought to be the sites of viral replica-

tion (Bost et al. 2000; Ng et al. 2001). SARS-CoV nsp7 was shown to dimerize and

interact with nsp5, nsp8 (see below), nsp9 and nsp13 (von Brunn et al. 2007; Zhai

et al. 2005). Furthermore, the MHV nsp7 was shown to interact specifically with

nsp1 and nsp10 (Brockway et al. 2004).
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7.2.2 The nsp8 Protein

The protein has a molecular mass of about 22 kDa and is conserved among the

various genera of the family Coronaviridae. It has interesting functional and

structural properties. Initial crystallization trials of bacterially expressed SARS-

CoV nsp8 remained unsuccessful until 2005, when the crystal structure of SARS-

CoV nsp8 in complex with SARS-CoV nsp7 was solved (Zhai et al. 2005). The

crystal structure revealed a hexadecameric complex composed of eight molecules

of nsp8 and eight molecules of nsp7 (Fig. 7.3a). This so-called nsp7–nsp8 super-

complex has an intricate hollow cylindrical structure with an inner diameter of

about 30 Å. Most of the nsp8 residues that face the interior of the channel are highly

conserved among coronaviruses. The inner dimensions and electrostatic properties

enable the cylindrical nsp7�nsp8 structure to encircle and interact with nucleic

acid. Interactions with dsRNA were demonstrated for nsp8 (but not nsp7) by

Fig. 7.2 Views of the

solution structure of SARS-

CoV nsp7 (from Peti et al.

2005; PDB 1YSY).

(a) Ribbon presentation of the

SARS-CoV nsp7 NMR

structure. (b) The surface

shows the electrostatic

potential (blue, positive
charge; red, negative charge).
Images were generated

using PYMOL
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electrophoretic mobility shift assays and critical residues involved in RNA binding

were identified by mutagenesis.

The a-helical fold seen in the previously reported NMR solution structure of

nsp7 (Peti et al. 2005) was also seen in the crystal structure, where nsp7 was part of

a complex with Nsp8. nsp8 was found to possess a novel fold with two slightly

different conformations. One of the conformations was described as a “golf-club”-

like structure composed of an N-terminal a-helical “shaft” domain and a C-termi-

nal, mixed a/b “head” domain (Fig. 7.3b). The second conformation was described

as resembling a golf club with a bent shaft, whereas the rest of the structure

(particularly, the head domain) is very similar to the first structure (Fig. 7.3b).

The eight nsp8 molecules constitute the framework of a large protein complex

made up of “bricks” (nsp8) and “mortar” (nsp7), with nsp7 filling some of the

remaining space between individual nsp8 molecules, thereby stabilizing the struc-

ture of the complex. Despite a number of intricate interactions between nsp7 and

nsp8, the absence of nsp7 is not generally thought to markedly change the overall

shape of the structure. On the basis of the architecture and electrostatic properties of

the complex it was suggested that nsp7�nsp8 might function as a processivity

factor, similar to bacterial (b2-clamp) or eukaryotic DNA polymerase processivity

factors, such as PCNA (proliferating cell nuclear antigen).

This hypothesis was supported and significantly extended by data demonstrating

that SARS-CoV nsp8 represents a second, noncanonical RNA-dependent RNA

polymerase (RdRp) (Imbert et al. 2006). A recombinant form of the SARS-CoV

nsp8 proved to be capable of synthesizing short oligonucleotides (<6 residues). It

had relatively low fidelity and strongly preferred RNA with a 50-(G/U)CC-30

trinucleotide consensus sequence as a template. Three charged/polar residues,

Lys-58, Lys-82 and Ser-85, all of them located in the N-terminal domain, were

found to be essential for activity and may be part of a network of residues that

catalyzes the phosphoryl transfer reaction. A structure and activity-based model of

the nsp8-associated RdRp activity is presented in Fig. 7.3c,d. The structure of the

C-terminal “head” domain of nsp8 appears to be distantly related to the catalytic

palm subdomain of RNA virus RdRps. Moreover, it was shown that the “canonical”

coronavirus RdRp domain residing in nsp12 contains a conserved sequence, called

motif G, that is usually found in primer-dependent RNA polymerases (Gorbalenya

et al. 2002). Taken together, the available information suggests that nsp8 may

function as a primase to catalyze the synthesis of RNA primers to be used by the

primer-dependent coronavirus nsp12 RdRp.

Fig. 7.3 Different views of the SARS-CoV nsp7�nsp8 supercomplex (from Zhai et al. 2005; PDB

2AHM). (a) Structure of the nsp7�nsp8 hexadecamer supercomplex. Nsp7 and the two conforma-

tions of nsp8 are colored green, blue, and orange, respectively. (b) The two alternative nsp8

conformations. (c) Model of two nsp8 monomers in complex with a ssRNA template (50-UAGC-
30) and two nucleotides (GTP and CTP). RNA template, GTP, and CTP are shown by a stick

model. Two amino acid residues, Lys-58 and Arg-75, whose substitution abolished activity are

represented in yellow. The two first NTPs incorporated (GTP in +1 and CTP in +2) are indicated.

(d) The surface is colored according to electrostatic potential (blue, positive charge; red, negative
charge). Images were generated using PYMOL

<
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The presumed central role of nsp8 in coronavirus replication gains additional

support by data suggesting that nsp8 interacts with a large number of SARS-CoV

replicative proteins, including nsp2, nsp5 (3CLpro), nsp6, nsp7, nsp8, nsp9, nsp12

(RdRp), nsp13 (helicase), and nsp14 (exoribonuclease) (Imbert et al. 2008; von

Brunn et al. 2007). Finally, an elegant MHV reverse genetics study provided

evidence to suggest interactions between nsp8 (and also nsp9) with the

30untranslated region, which is consistent with the proposed role of these proteins

in coronavirus RNA synthesis, possibly the initiation of minus-strand RNA synthe-

sis (Zust et al. 2008).

7.2.3 The nsp9 Protein

Crystal structures of nsp9, a protein of about 13 kDa, were solved simultaneously in

two laboratories in 2004, one to a resolution of 2.7 Å (Egloff et al. 2004) and the

other to 2.8 Å (Sutton et al. 2004). The studies consistently established that nsp9 is a

single-strand RNA/DNA binding protein. The structure of SARS-CoV nsp9 has a

central core comprised of seven b-strands. The core is flanked by a C-terminal

a-helix and an N-terminal extension (Fig. 7.4a). X-ray crystallography, dynamic

light scattering, analytical ultracentrifugation and GST pull-down experiments

indicate that nsp9 forms dimers in solution (Campanacci et al. 2003; Imbert et al.

2008; Sutton et al. 2004). RNA binding by nsp9 has been suggested to involve the

loops of the b-barrel domain while the C-terminal b-hairpin and helix, which are

well conserved across coronaviruses, are probably involved in dimerization and

interactions with other proteins. Database searches did not reveal structural homo-

logs for nsp9 (Egloff et al. 2004). However, the short six-stranded b-barrel of nsp9
includes an open five-stranded barrel that is reminiscent of the five-stranded b-barrel
structure of oligosaccharide/oligonucleotide-binding (OB)-fold proteins. About

two-thirds of the proteins belonging to this protein superfamily are nucleic acid-

binding proteins (Arcus 2002). As in OB-fold proteins, SARS-CoV nsp9 appears to

bind nucleic acids by using a network of positively charged amino acids for binding

the phosphate backbone of the substrate, whereas several exposed aromatic residues

probably make additional stacking interactions with nucleobases (Fig. 7.4b). The

nucleic acid-binding properties of nsp9 were subsequently confirmed by surface

plasmon resonance, fluorescence quenching studies (Egloff et al. 2004) and electro-

phoretic mobility shift assays (Sutton et al. 2004). To date, there is no evidence to

suggest that the nucleic acid-binding activity of nsp9 is sequence-specific.

SARS-CoV nsp9 was shown to interact with nsp6, nsp7 and nsp8 (von Brunn

et al. 2007). Nsp9/nsp8 interactions were confirmed by a number of methods,

including analytical ultracentrifugation, yeast two-hybrid data, GST pull-down

and co-immunoprecipitation experiments, suggesting quite stable interactions

between the two proteins. Moreover, the structural disorder of the nsp8 N-terminal

region in solution has been reported to decrease when nsp9 was added to a solution

containing nsp8 (Sutton et al. 2004). On the basis of the nsp7–nsp8 hexadecameric
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structure (see Sect. 7.2.2), it was suggested that the most probable nsp9 binding site

is formed by the N-terminal 50 residues of nsp8. This part of the structure is close to

the entrance of the central pore and appears to be quite flexible, as indicated by the

lack of electron density for these residues. Both the nsp9 structure and tryptophan

fluorescence quenching data suggest that ssRNA is wrapped around the nsp9 dimer

(Egloff et al. 2004). It has been speculated that nsp9 dimers bind to single-stranded

nascent and template strands as they emerge from the channel of the nsp7–nsp8

Fig. 7.4 Ribbon representation of SARS-CoV nsp9 (from Egloff et al. 2004; PDB 1QZ8). (a) One

molecule of the dimer is yellow and the other is blue. (b) Electrostatic surface potential of nsp9 is

colored according to electrostatic potential (blue, positive charge; red, negative charge). Images

were generated using PYMOL
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complex at a time when stable secondary structures have not yet formed, thereby

protecting ssRNAs from ribonucleolytic cleavage.

7.2.4 The nsp10 Protein

Nsp10 is well conserved among coronaviruses. In the polyprotein 1a, the protein is

located upstream of nsp11, a short 13-residue peptide encoded by the 30-terminal

nucleotides of ORF1a. Nsp10 is thought to have an essential role in viral replica-

tion. It was shown that a MHV temperature-sensitive mutant carrying a nonsynon-

ymous mutation in the nsp10 coding sequence has a defect in minus-strand RNA

synthesis at the nonpermissive temperature (Sawicki et al. 2005; Siddell et al.

2001). Crystallization of nsp10 revealed monomers and homodimers (Joseph

Fig. 7.5 Ribbon diagram of SARS-CoV nsp10 (from Joseph et al. 2006; PDB 2FYG). Residues

coordinating the two Zn2+ ions are shown as sticks and pink balls, respectively. Atoms are colored

as follows: green, carbon; blue, nitrogen; red, oxygen; orange, sulfur
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et al. 2006) whereas a complex dodecameric structure was observed when nsp10

was expressed and crystallized as a fusion with nsp11 (Su et al. 2006). The nsp10

monomer consists of a pair of antiparallel N-terminal helices stacked against an

irregular b-sheet, a coil-rich C-terminus, and two zinc fingers (Fig. 7.5). Nsp10

represents a novel fold and is the first structural representative of this family of zinc

finger proteins. The zinc finger motifs are strictly conserved in coronaviruses,

supporting their essential role in viral replication.

It is currently unclear whether or not the nsp10 dodecameric structure seen in

one of the structural studies is of biological relevance. The relevance has been

questioned for several reasons. First, site-directed mutagenesis of the nsp10–nsp11

cleavage site in the MHV genome generated nonviable viruses, indicating that

3CLpro-mediated cleavage at this site is essential for viral replication (Deming

et al. 2007). Second, the monomer structure has an intact second zinc finger

which appears to stabilize the structure of the C-terminal tail of nsp10. By contrast,

in the dodecamer structure, the second zinc finger lacks the C-proximal cysteine

residue, resulting in local disorder at the nsp10 carboxyl terminus. Finally, sub-

stitutions of residues predicted to be crucial for the dodecamer formation did not

cause a lethal phenotype in MHV (Donaldson et al. 2007).

Gel shift assays indicate that nsp10 binds single- and double-stranded RNA and

DNAwith low affinity and without obvious sequence specificity (Joseph et al. 2006).

SARS-CoV nsp10 was shown to interact with nsp9 (Su et al. 2006). It also interacts

strongly with nsp14 and nsp16 and, to a lesser extent, with nsp8 (Imbert et al.

2008). The precise role of nsp10 within the coronavirus replication/transcription

complex remains to be identified.

7.3 The Endoribonuclease, nsp15

The uridylate-specific endoribonuclease (nsp15 or NendoU) is conserved in all

members of the Nidovirales but no other virus, which makes the protein a major

genetic marker of this group of viruses (Gorbalenya et al. 2006; Ivanov et al. 2004a).

Distantly-related homologs of NendoUwere also identified in some prokaryotes and

eukaryotes, where they form a small protein family prototyped by XendoU, a

Xenopus laevis endoribonuclease involved in the nucleolytic processing of intron-

encoded box C/D U16 small nucleolar RNAs (Laneve et al. 2003; Snijder et al.

2003). Mainly on the basis of this sequence relationship, it has been speculated that

NendoU may (also) have cellular substrates and it should be interesting to investi-

gate whether NendoU is involved in producing small regulatory RNAs (similar to

the small nucleolar RNAs produced by XendoU). Nsp15 activity is significantly

stimulated bymanganese ions and the enzyme generates 20–30 cyclic phosphate ends
(Ivanov et al. 2004a). It is generally accepted that nsp15 functions as a homohex-

amer, even though the enzyme has some activity as a monomer (Guarino et al. 2005;

Ivanov et al. 2004a; Joseph et al. 2007; Ricagno et al. 2006). NendoU cleaves

downstream of uridylates, both in single and double-stranded RNA. The sequence
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context of the uridylate has been shown to affect cleavage efficiency and differential

cleavage efficiencies have been reported for base-paired and nonbase-paired uridy-

lates, respectively (Bhardwaj et al. 2006; Ivanov et al. 2004a).

Nsp15 crystal structures have been reported for SARS-CoV (Fig. 7.6) (Joseph

et al. 2007; Ricagno et al. 2006; Bhardwaj et al. 2008) and MHV (Xu et al. 2006).

Nsp15 exhibits a unique fold and assembles into a toric hexameric structure

(Fig. 7.6b) with a central pore and six potentially active catalytic sites at the

periphery. Unlike the situation in the nsp7–nsp8 complex, the diameter of the

central pore seen in the nsp15 hexamer is too small to accommodate RNA.

Furthermore, this part of the structure does not appear to interact with RNA

(Bhardwaj et al. 2006; Ricagno et al. 2006). Each protomer contains nine a-helices
and 21 b-strands (Fig. 7.6a). Alanine substitutions of highly conserved residues

demonstrated that the C-terminal domain contains the active site. There are striking

similarities between the active site residues of nsp15 and RNase A, suggesting that

the enzymes use common catalytic mechanisms, although they are not related in

their tertiary structures (Ricagno et al. 2006). The general acid–base mechanism

used by coronavirus NendoUs probably involves His-234, His-249, and Lys-289

(SARS-CoV nsp15 numbering). Additional conserved residues likely involved in

substrate specificity have been identified by X-ray crytallography and site-directed

mutagenesis (Bhardwaj et al. 2008; Ricagno et al. 2006).

The overall architecture of coronavirus NendoUs suggests that the protein might

be tethered to other partners connecting this hexameric assembly to the viral

replication complex and, potentially, cellular structures. Consistent with this idea,

NendoU has been implicated in coronavirus and arterivirus RNA synthesis and/or

the production of virus progeny (Ivanov et al. 2004a; Kang et al. 2007; Posthuma

Fig. 7.6 Structure of SARS-CoV nsp15 endoribonuclease (from Ricagno et al. 2006; PDB 2H85).

(a) Cartoon representation of the nsp15 monomer. The structure consists of three domains:

N-terminal domain (a1–a2), central domain (a3–b8), and C-terminal domain (a6–b14). Second-
ary structures are colored as follows: red, a-helices; yellow, b-sheets; and green, loops. (b) A view

of the nsp15 hexamer. In the trimer shown in the foreground, the subdomains of one of the

monomers are colored as follows: green, N-terminal domain; yellow, central domain; and red,
C-terminal domain. The other two molecules are shown in blue and magenta
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et al. 2006) and interactions between SARS-CoV nsp15 and nsp3, nsp8, nsp9, and

nsp12 have been reported (Imbert et al. 2008). Although endonucleases are ubiqui-

tous enzymes that are involved in many aspects of RNA metabolism, they

are extremely rare in the RNA virus world, with only very few exceptions (e.g.,

in orthomyxo-, pesti-, and retroviruses). Although the precise role of the enzyme

in the viral life cycle and its biologically relevant substrates remain to be identified,

it seems reasonable to think that NendoU acts as part of a larger protein complex

and that nucleolytic activity and substrate specificity are tightly regulated by

additional factors to minimize uncontrolled nucleolytic cleavage of viral and

cellular RNAs.

7.4 Conclusion

The SARS outbreak in 2003 sparked significant new interest in the molecular

biology and biochemistry of coronavirus replication. A multitude of structural

and functional studies into SARS-CoV replicative enzymes have been published

over the past few years, giving a major boost to coronavirus and, more generally,

nidovirus research. Interestingly, in several instances, crystal structures of corona-

virus proteins have uncovered new biochemical and enzymatic activities, thus

opening up new vistas for future studies and stimulating exciting biochemical and

genetic studies into the biological functions of specific coronavirus nonstructural

proteins. Also, the SARS-CoV structural work has been extremely rewarding for

crystallographers interested in novel folds and original enzymes. There are still

major challenges ahead, mainly with respect to ORF1b-encoded proteins. For

example, there is still no crystal structure available for the special type of primer-

dependent RNA polymerases encoded by coronaviruses. Also studies of the zinc-

binding domain-containing superfamily 1 helicase (Ivanov et al. 2004b) and 30–50

exonuclease (Minskaia et al. 2006) domains residing in nsp13 and nsp14, respec-

tively, and the functionally interesting nsp16 20-O-methyltransferase (Decroly et al.

2008) promise to reveal exciting new structural and functional insight. Undoubt-

edly, these upcoming structures will greatly stimulate coronavirus (nidovirus)

research and perhaps even reveal novel and truly unique RNA processing pathways

involved in the replication of these viruses.
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