
New Birthday Attacks on Some MACs Based on

Block Ciphers�

Zheng Yuan1,2,��, Wei Wang3, Keting Jia3,
Guangwu Xu4, and Xiaoyun Wang1,3,� � �

1 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
{zyuan,xiaoyunwang}@mail.tsinghua.edu.cn

2 Beijing University of Posts and Telecommunications, Beijing 100876, China
3 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
{weiwangsdu,ktjia}@mail.sdu.edu.cn

4 Department of Electrical Engineering and Computer Science,
University of Wisconsin-Milwaukee, USA

gxu4uwm@uwm.edu

Abstract. This paper develops several new techniques of cryptanalyz-
ing MACs based on block ciphers, and is divided into two parts.

The first part presents new distinguishers of the MAC construction
Alred and its specific instance Alpha-MAC based on AES. For the
Alred construction, we first describe a general distinguishing attack
which leads to a forgery attack directly with the complexity of the
birthday attack. A 2-round collision differential path of Alpha-MAC
is adopted to construct a new distinguisher with about 265.5 chosen mes-
sages and 265.5 queries. One of the most important results is to use this
new distinguisher to recover the internal state, which is an equivalent sub-
key of Alpha-MAC. Moreover, our distinguisher on Alred construction
can be applied to the MACs based on CBC and CFB encryption modes.

The second part describes the first impossible differential attack on
MACs-Pelican, MT-MAC-AES and PC-MAC-AES. Using the birthday
attack, enough message pairs that produce the inner near-collision with
some specific differences are detected, then the impossible differential at-
tack on 4-round AES to the above mentioned MACs is performed. For
Pelican, our attack recovers its internal state, which is an equivalent
subkey. For MT-MAC-AES, the attack turns out to be a subkey recovery
attack directly. The complexity of the two attacks is 285.5 chosen mes-
sages and 285.5 queries. For PC-MAC-AES, we recover its 256-bit key
with 285.5 chosen messages and 2128 queries.

Keywords: MAC, Birthday attack, Distinguishing attack, Forgery
attack, Impossible differential cryptanalysis, AES.

� Supported by the National Natural Science Foundation of China (NSFC Grant
No. 60525201 and No.90604036) and 973 Project (No.2007CB807902).

�� Supported by China Postdoctoral Science Foundation Funded Project (No.
20080430423).

� � � To whom correspondence should be addressed.

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 209–230, 2009.
c© International Association for Cryptologic Research 2009

210 Z. Yuan et al.

Part I Distinguishing and Forgery Attacks on Alred and
Its AES-Based Instance Alpha-MAC1

1 Introduction to Part I

Message Authentication Code (MAC) is a fixed length information used to en-
sure data integrity and authenticity, and is widely used in network and security
protocols, such as IPsec, SNMP, and SSL/TLS. A MAC algorithm takes a se-
cret key and a message of arbitrary length as input, and outputs a short digest.
MAC algorithms have been constructed using various approaches, for example,
CBC-MAC [11], OMAC [12], TMAC [14], HMAC/NMAC [2], etc.

The MAC construction Alred was introduced by Daemen and Rijmen [8].
Alred is an iterative MAC construction using reduced block ciphers as iter-
ation functions. The secret key, which is used as the key of the block cipher,
is applied in the initialization and the finalization, respectively. The internal
state is updated by consecutive injections of message blocks. Alpha-MAC is
an efficient instance of Alred based on AES [7]. Since AES has been widely
used in practice, Alpha-MAC can be easily implemented. For the performance,
Alpha-MAC is 2.5 times faster than the popular CBC-MAC with AES.

It was proved that the Alred construction is as strong as the underlying block
cipher with respect to key recovery attacks and any forgery attacks not involving
inner collisions [8]. Moreover, for Alpha-MAC, any colliding messages of the
same size have to be at least 5 blocks long. Recently, Huang et al. exploited the
algebraic properties of the AES, constructed internal collisions, and found second
preimages for Alpha-MAC, under the assumption that a key or an internal
state is known [10]. Biryukov et al. proposed a side-channel collision attack on
Alpha-MAC which recovered its internal state, and mounted a selective forgery
attack [5].

The main contribution of this part is to present novel distinguishing attacks
on the Alred construction and Alpha-MAC, which lead to forgery attacks
directly. More importantly, the distinguishing attack on Alpha-MAC can be
applied to recover the internal state, and results in a second preimage attack.

There are two kinds of distinguishing attacks on MACs. Preneel and van
Oorschot introduced a general distinguishing attack to identify iterated MACs
from a random function [17]. Using the birthday paradox, the adversary can
detect the internal collision by appending the same one-block message. Another
kind of attacks was suggested by Kim et al., which distinguishes the crypto-
graphic primitive embedded in a MAC construction from a random function [13].
Recently, new techniques to identify the underlying hash functions of MACs were
proposed [19,20]. For example, distinguishing attacks on HMAC/NMAC-MD5
and MD5-MAC were proposed in [20]. The inner near-collisions are used in the
distinguisher which reveals more information than inner collisions. In the same
work, they were able to recover partial subkey of the MD5-MAC as well.

1 By Zheng Yuan, Keting Jia, Wei Wang, and Xiaoyun Wang. See [21] for more details.

New Birthday Attacks on Some MACs Based on Block Ciphers 211

Inspired by Wang et al.’s work [19,20], we propose a new idea to detect the
inner near-collision with some specific differences, which can be used to iden-
tify the cryptographic primitives embedded in MACs. Build upon this idea, two
distinguishing attacks on Alred construction and Alpha-MAC are presented
in this part. We first describe a distinguishing attack on the Alred construc-
tion. This attack is based on the birthday attack [22] which asserts that there
exists a collision differential path with some specific differences. This is an inner
near-collision which can be recognized with probability 1 by appending another
message pair with the same difference. Next, we present a new distinguisher for
Alpha-MAC based on a 2-round collision differential path. By combining with
the specific differences in the 2-round collision differential path, we then explore
a series of tricks to recover the internal state, which is an equivalent subkey.
With the recovered subkey, we can obtain the second preimage of Alpha-MAC
for any given message M and its MAC value. The complexity of all the attacks
of Alpha-MAC is 265.5 MAC queries and 265.5 chosen messages with a success
rate of 0.63. Moreover, the distinguishing attack on the Alred construction can
be applied to the MACs based on CBC and CFB encryption modes.

2 Backgrounds and Notations

In this section, we define some notations, and give brief descriptions of the Alred
construction and Alpha-MAC.

2.1 Notations

xi : the i-th message word
yi : the state after the i-th iteration
C : the output of MAC algorithm

ΔA : the XOR difference of A and A′

n : the length of the state
lw : the length of the message word
lm : the length of the MAC output

M‖N : the concatenation of M and N
|x| : the length of a bit string x
�x� : the smallest integer not less than x
10j : the (j + 1)-bit sequence (1 00 · · · 0

︸ ︷︷ ︸

j

)

2.2 Alred Construction

The MAC construction Alred [8] is based on a reduced block cipher. The length
of the secret key equals to that of the underlying block cipher, and the message
length is a multiple of lw bits.

Given a message M = (x1, x2, . . . , xt), the Alred construction is as follows.

1. Apply the full block cipher to the state of all-zero block, i. e., y0 = EncK(0).

212 Z. Yuan et al.

2. Perform the following iteration function f for each message word: (a) Injec-
tion Layout : Map the bits of the message word to an injection input that has
the same dimensions as a sequence of r-round subkeys of the block cipher.
(b) Apply a sequence of r-round block cipher function to the state, and re-
place the round subkeys with the injection input, i. e., yi = f(yi−1, xi), for
i = 1, 2, . . . , t.

3. Apply the full block cipher to the state yt, and truncate the first lm bits of
the state as the output. The final output C = Trunc(EncK(yt)).

2.3 Alpha-MAC Algorithm

Alpha-MAC [8] is a specific instance of the Alred construction with 1-round
AES as its iteration function, where lw = 32. Similar to AES, the Alpha-MAC
supports key length of 128, 192 or 256 bits.

The message padding method is to append a single bit ‘1’ followed by the
minimum bits of ‘0’ such that the length of the result is a multiple of 32. For
AES-128, the Injection Layout places the 4 bytes of each message word xi =
(xi,0, xi,1, xi,2, xi,3) into a 4 × 4 array with the form:

⎛

⎜

⎜

⎝

xi,0 0 xi,1 0
0 0 0 0

xi,2 0 xi,3 0
0 0 0 0

⎞

⎟

⎟

⎠
,

which acts as the corresponding 128-bit round subkey. The Alpha-MAC round
function consists of the four basic transformations of AES in sequence: Ad-
dRoundKey (AK), SubBytes (SB), ShiftRows (SR), and MixColumns (MC) [7].

2.4 Related Works

Our work is related to two types of attacks in the literature. They are the
general distinguishing-R attack on all iterated MACs proposed by Preneel and
van Oorschot [17], and the distinguishing-H attack on HMAC/NMAC-MD5 and
MD5-MAC introduced by Wang et al. [20].

Preneel et al. proposed a general forgery attack on iterated MACs by the
birthday paradox, which is applicable to all iterated MACs, such as CBC-MAC.
Their technique detects all the colliding pairs among 2(n+1)/2 known text-MAC
pairs by the birthday paradox, where n is the bit length of the chaining variable.
For each searched collision, i. e., MAC(K, M) = MAC(K, M ′), a one-block
message N is appended to identify whether it is an internal collision by com-
paring MAC(K, M ||N) and MAC(K, M ′||N). If an internal collision is found,
then a forgery is created since the MACs of M‖N ′ and M ′‖N ′ are the same.
However, this method cannot be used to distinguish the cryptographic primitives
embedded in the MAC.

Wang et al. introduced another interesting idea which can distinguish HMAC/
NMAC-MD5 without the related-key setting. They also implemented a partial

New Birthday Attacks on Some MACs Based on Block Ciphers 213

key recovery attack on MD5-MAC. The main strategy of the distinguishing at-
tack is as follows: The adversary first collects enough two-block message pairs
(M‖N, M ′‖N) to guarantee the appearance of an expected internal near-collision
in the first iteration, then detects such a near-collision by changing the second
block with enough messages N ′. Once the expected inner near-collision is identi-
fied, the MAC is known to be based on MD5. The core of the attack is to detect
an inner near-collision instead of a collision.

3 Distinguishing and Forgery Attacks on MAC
Construction Alred

This section presents distinguishing and forgery attacks on Alred construction.
Enlightened by the idea of Wang et al., we can detect a proper output difference
as an inner near-collision by the birthday paradox. When the MAC construction
is Alred rather than a random function, this kind of inner near-collision can be
detected with probability 1 by substituting the last different message pair with
another message pair having the same difference. Based on this detected inner
near-collision, a forgery attack can be constructed immediately.

3.1 Distinguishing Attack on Alred Construction

The iteration part of Alred construction is based on the r-round block cipher,
where the r-round subkeys are substituted by the injection input. The core of
our distinguisher is to detect Δyj−1, which is the output difference of (j − 1)-
th iteration. According to the operation between the injection input and the
state involved in the iteration function f , the message word difference Δxj may
extinguish Δyj−1, and lead to a collision at the final output. The form of the
difference depends on the operation between the injection input and the state;
e. g., for Alred based on IDEA or RC6, the operation is modular addition,
while for some others, it is XOR. Without loss of generality, we neglect Injection
Layout map, and only consider the round number r = 1 and the XOR operation
between the message word and the state.

As shown in Fig. 1, there is an inner near-collision after round (j − 1). When
Δxj = Δyj−1, there will be an internal collision xj ⊕ yj−1 = x′

j ⊕ y′
j−1, which

can be propagated to the output. If the construction is Alred, we replace the
(xj , x

′
j) with a different (xj , x′

j), where Δxj = Δxj , the collision still occurs.
According to this property, the distinguisher is constructed as follows:

1. Randomly choose a structure T = {M i|M i = (xi
1, x

i
2, . . . , x

i
t)} composed of

2(n+1)/2 different messages, and query their corresponding MAC values Ci.
2. By the birthday paradox, search a collision Ca = Cb, the corresponding

messages are Ma and M b.
3. Counting backwards, suppose that (xa

j , xb
j) is the first unmatched pairs of

words in (Ma, M b), i. e., xa
j �= xb

j , Ma = (xa
1 , . . . , xa

j , xj+1, . . . , xt), and

M b = (xb
1, . . . , x

b
j , , xj+1, . . . , xt). Replace (xa

j , xb
j) with another (xa

j , xb
j),

214 Z. Yuan et al.

j −1

x1

. . .

. . .

Injection Layout

Injection Layout

Injection Layout Injection Layout

Injection Layout

Injection Layout

Injection Layout

j −1

j +1

Round

. . .

y’−1

x’

x’1

x’

Round

Round

y −1

collision

Round’

Round

collision

x

x

Round

j j

xj j

y0

Fig. 1. The Distinguisher with XOR Operation

where xa
j ⊕ xb

j = xa
j ⊕ xb

j . Query the MACs with (Ma, M b), where Ma =

(xa
1 , . . . , xa

j−1, x
a
j) and M b = (xb

1, . . . , x
b
j−1, x

b
j).

– If Ca = Cb, we conclude that the MAC is Alred construction.
– Otherwise, it is a random function.

Note that t should be large enough to guarantee the existence of an inner near-
collision at round (j − 1), where t ≥ 6.

This attack requires about 2(n+1)/2 chosen messages, and works with proba-
bility 0.63 by the birthday paradox.

Remark 1. For MACs based on the block ciphers with r ≥ 2, such as CBC-MAC,
OMAC, TMAC, etc., the iteration function is Hi = f(Hi−1, xi) = EK(Hi−1 ⊕
xi). Therefore, with a little modification, the above attack is applied to these
situations. Besides, our method also works for the MACs based on CFB mode,
i.e., Hi = f(Hi−1, xi) = EK(Hi−1) ⊕ xi.

3.2 Forgery Attack on Alred Construction

Once the inner near-collision is identified, we can replace message words by
another pair with the same difference to achieve a new collision pair. Hence, the
forgery attack is easily realized with the same complexity and success rate as
the distinguishing attack. To be more specific, let (Ma, M b) be the colliding pair

New Birthday Attacks on Some MACs Based on Block Ciphers 215

detected in the above distinguishing attack. We query the MAC oracle with ˜Ma,
where ˜Ma = (xa

1 , . . . , xa
j−1, ˜xa

j , s), and s is an arbitrary message string. We can

get a MAC forgery of the message ˜M b = (xb
1, . . . , x

b
j−1, ˜xa

j ⊕ Δxj , s).

4 Recovering the Equivalent Subkey of Alpha-MAC

It is remarked that the above distinguisher can be utilized to distinguish the
Alpha-MAC from a random function. However, we introduce a new distin-
guisher in this section, where the expected collision implies an inner near-collision
with some specific differences. With this distinguisher, we can recover an internal
state, which is an equivalent subkey, i. e., the state y0 (See Fig. 1).

4.1 Some Important Properties of Alpha-MAC

This section introduces a 2-round collision differential path of Alpha-MAC, and
summarizes some useful facts based on it. The 2-round differential path will be
used to recover the internal state in Section 4.3.

For i = 1, . . . , t, denote
⎛

⎜

⎜

⎝

yi−1,0 yi−1,1 yi−1,2 yi−1,3

yi−1,4 yi−1,5 yi−1,6 yi−1,7

yi−1,8 yi−1,9 yi−1,10 yi−1,11

yi−1,12 yi−1,13 yi−1,14 yi−1,15

⎞

⎟

⎟

⎠
⊕

⎛

⎜

⎜

⎝

xi,0 0 xi,1 0
0 0 0 0

xi,2 0 xi,3 0
0 0 0 0

⎞

⎟

⎟

⎠

SB−−→

⎛

⎜

⎜

⎝

zi,0 zi,1 zi,2 zi,3

zi,4 zi,5 zi,6 zi,7

zi,8 zi,9 zi,10 zi,11

zi,12 zi,13 zi,14 zi,15

⎞

⎟

⎟

⎠
,

where yi−1 is the output of round (i−1), and (xi,0, 0, xi,1, 0, 0, 0, 0, 0, xi,2, 0, xi,3, 0,
0, 0, 0, 0) is the injection input to round i which acts as the round subkeys. As-
sume that M=(x1, x2, . . . , xt−1, xt) and M ′ =(x′

1, x′
2, . . ., x′

t−1, x′
t) follow the

2-round collision differential path as depicted in Fig. 2.

��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

������������������
����������

�
�
�
�

��
����

��
��
��
��
��

��
����

����

��

��

��

MC

MCAK SB

AK SB

SR

SR

nonzero byte

Δyt

(t− 1)-th round

t-th round

Δyt−1

Δyt−1

Δxt−1

Δxt

Δyt−2 Δzt−1

Δzt

Fig. 2. 2-Round Collision Differential Path

216 Z. Yuan et al.

From the differential path, we can see that there is only one nonzero byte in
Δyt−1, which equals to Δxt,0. Because MC is a linear transformation, and SR
has no impact on the value of difference, we can compute the output differences
of four S-boxes in the (t − 1)-th round from Δxt,0:

(Δzt−1,0, Δzt−1,5, Δzt−1,10, Δzt−1,15)T = MC−1(Δxt,0, 0, 0, 0)T . (1)

Since the branch number of MC transformation in AES is 5 [7], there are four
nonzero bytes in Δzt−1, they satisfy the difference structure in Fig. 2. Given the
2-round collision differential path in Fig. 2, we have the following facts:

Fact 1. Given two messages M=(x1, x2, . . . , xt−1, xt) and M ′ = (x′
1, x

′
2, . . . ,

x′
t−1, x

′
t) that follow the 2-round collision differential path, where Δxt=(Δxt,0, 0,

0, 0), and Δxt−1=(Δxt−1,0, 0, 0, Δxt−1,3), there exists an Algorithm A1 to find
another different message pair M =(x1, x2, . . ., xt−1, xt) and M ′ =(x′

1, x′
2, . . .,

x′
t−1, x′

t) satisfying the 2-round collision differential path. Here (xt−1, x′
t−1) is

obtained by only replacing (xt−1,0, x
′
t−1,0) with different (xt−1,0, x′

t−1,0). The
complexity of the algorithm is about 29 queries and 29 chosen messages.

Proof. Since only (xt−1,0, x
′
t−1,0) changes, all bytes in Δzt−1 remain the same

except Δzt−1,0, where Δzt−1,0 = S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′
t−2,0 ⊕ x′

t−1,0). Thus,
M and M ′ collide if and only if S(yt−2,0⊕xt−1,0)⊕S(y′

t−2,0⊕x′
t−1,0) = Δzt−1,0.

From the distribution table of the S-box in AES, we observe that, there are 27

pairs corresponding to each output difference on average. Hence, each randomly
chosen pair (xt−1,0, x

′
t−1,0) leads to the expected output difference Δzt−1,0 with

probability 27/215 = 2−8. So Algorithm A1 needs about 28 chosen message pairs
(M, M ′) and 29 corresponding MACs to find the message pair (M, M ′) which
follows the 2-round collision differential path. 	

Fact 1 will be used in the new distinguishing attack to identify the Alpha-MAC
from a random function. And the following Fact can recover two bytes of the
unknown internal state yt−2 corresponding to the nonzero bytes of Δxt−1.

Fact 2. Given two messages M=(x1, x2, . . . , xt−1, xt) and M ′ = (x′
1, x

′
2, . . . ,

x′
t−1, x

′
t) that follow the 2-round collision differential path, where Δxt=(Δxt,0, 0,

0, 0), and Δxt−1=(Δxt−1,0, 0, 0, Δxt−1,3), there exists an Algorithm A2 to re-
cover (yt−2,0, y

′
t−2,0) with about 216 XOR operations and 29 chosen messages.

Proof. Algorithm A2 is described as follows.

1. Call Algorithm A1 to find another message pair M =(x1, x2, . . . , xt−1, xt)
and M ′ =(x′

1, x′
2, . . . , x′

t−1, x′
t) which produce a 2-round collision differential

path in Fig. 3. Here (xt−1, x′
t−1) are only different at byte position 0 from

(xt−1, x
′
t−1).

2. Compute zt−1,0 from Eq. (1), guess all 216 possibilities of (yt−2,0, y
′
t−2,0),

and check if the following two equations hold.

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′
t−2,0 ⊕ x′

t−1,0) = Δzt−1,0, (2)

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′
t−2,0 ⊕ x′

t−1,0) = Δzt−1,0. (3)

New Birthday Attacks on Some MACs Based on Block Ciphers 217

3. If there is only one solution (yt−2,0, y
′
t−2,0) satisfying Eq. (2) and (3) among

216 guesses, outputs (yt−2,0, y
′
t−2,0).

Otherwise, repeat steps 1 and 2 until only one solution is left.

It is obvious that, the time complexity of Algorithm A2 is about 216 XOR
operations and 29 chosen messages. 	

Fact 3. Given two messages M=(x1, x2, . . . , xt−1, xt) and M ′ = (x′
1, x

′
2, . . . ,

x′
t−1, x

′
t) that follow the 2-round collision differential path, where Δxt=(Δxt,0, 0,

0, 0), and Δxt−1=(Δxt−1,0, 0, 0, Δxt−1,3), there exists an Algorithm A3 to re-
cover (yt−2,10, y

′
t−2,10) with about 216 XOR operations and 29 queries.

Proof. The proof of Fact 3 is similar to that of Fact 2. We only need to replace
(xt−1,10, x

′
t−1,10) by different (xt−1,10, x′

t−1,10). 	

4.2 Distinguishing Attack on Alpha-MAC

Similar to the distinguisher for Alred construction, the new distinguisher on
Alpha-MAC is based on the identification of an inner near-collision Δyt−1 as
shown in Fig. 2. By the birthday paradox, such an inner near-collision exists,
and can be detected by the new distinguisher. From Algorithms A2 and A3, we
can recover two bytes of the internal state yt−2. Moreover, we explore a series of
tricks to recover more bytes of the internal state yt−3, and further recover y0. It
is noted that y0 = EncK(0) equals to a subkey used in the secret prefix method.

It is claimed that an extinguishing differential in Alpha-MAC spans at least
5 message words, and given the state value yi−1, the map from the sequence of
four message words (xi, xi+1, xi+2, xi+3) to the state value before the (i + 4)-
th iteration is a bijection [8]. Hence, we choose a structure composed of 264.5

messages with t-word length, where t is required to be bigger than or equal to 6
in order to guarantee the map from (x1, . . . , xt−1) to yt−1 is a random function,
and to ensure the existence of an inner near-collision. It is recommended to
choose t = 9.

Given a fixed word difference (η, 0, 0, 0), construct two structures as follows:

T1 = {Ma = (xa
1 , xa

2 , . . . , xa
t−1, xt)},

T2 = {M b = (xb
1, x

b
2, . . . , x

b
t−1, xt ⊕ (η, 0, 0, 0))},

where the message words (xa
i , xb

i) (i = 1, 2, . . . , t − 2), (xa
t−1,0, x

a
t−1,3) of xa

t−1,
and (xb

t−1,0, x
b
t−1,3) of xb

t−1 are randomly chosen, and other bytes of (xa
t−1, x

b
t−1)

are fixed, i. e., we choose Δxt−1 and Δxt as shown in Fig. 2. The distinguisher
works in the following manner:

1. Query the MAC with all the 265.5 messages in structure T1 and T2, and
obtain the corresponding MACs.

2. Search for (Ma, M b) such that Ca = Cb by the birthday attack, where
Ma ∈ T1, M b ∈ T2. Randomly choose another different pair (Ma, M b),
where Ma = (xa

1 , . . . , xa
t−1, x

a
t), M b = (xb

1, . . . , x
b
t−1, x

b
t), Δxt = Δxt. Query

218 Z. Yuan et al.

the MAC with the new message pair (Ma, M b). If (Ma, M b) is a collision,
we conclude that the MAC is Alred-MAC, and go to step 3. Otherwise, the
MAC is a random function.

3. Randomly choose 28 different (xa
t−1,0, x

b
t−1,0) to replace (xa

t−1,0, x
b
t−1,0). Query

the MACs of the new messages. Check whether there is at least one collision
among them. If a collision appears, the Alred construction is claimed as
the Alpha-MAC. Otherwise, it is other Alred MAC instance.

Complexity Evaluation. Step 1 takes 265.5 MAC queries. There are only 2
queries and 265.5 table look-ups with 265.5 entries in step 2, and 28 MAC queries
in step 3. Thus, the total complexity is dominated by step 1, which is about 265.5

MAC queries and 265.5 chosen messages.

Success Rate. A collision between the two structures occurs with probability
0.63 from the birthday paradox, which is also the success rate of our attack.

4.3 Internal State Recovery of Alpha-MAC

In this section, we recover the internal state y0 combining the new distinguisher
discussed above with some new tricks. Once the Alred construction is identified
as the Alpha-MAC, we obtain a message pair (Ma, M b), which follows the 2-
round collision differential path (See Fig. 2).

Denote Ma = (xa
1 , xa

2 , . . . , xa
t−1, x

a
t) and M b = (xb

1, x
b
2, . . . , x

b
t−1, x

b
t). The pro-

cess of the internal state recovery attack is depicted in Fig. 3, where ‘∗’ denotes
the difference that can be computed, ‘?’ stands for the unknown difference, and
‘0’ means zero difference. The details of the recovery attack are as follows:

1. Recovering (ya
t−2,0, y

b
t−2,0, y

a
t−2,10, y

b
t−2,10).

By Algorithms A2 and A3, the corresponding bytes (ya
t−2,0, y

b
t−2,0, y

a
t−2,10,

yb
t−2,10) can be recovered directly.

Next, let us explore more techniques to recover more bytes of the internal
states yt−2 and yt−3.

Δyt−3 =

⎛

⎜

⎜

⎝

∗ ? ∗ ?
? ∗ ? ∗
∗ ? ∗ ?
? ∗ ? ∗

⎞

⎟

⎟

⎠

AK−1 SB−1←−−−−−−−−− Δzt−2 =

⎛

⎜

⎜

⎝

∗ ? ∗ ?
? ∗ ? ∗
∗ ? ∗ ?
? ∗ ? ∗

⎞

⎟

⎟

⎠

SR−1 MC−1←−−−−−−−−− Δyt−2 =

⎛

⎜

⎜

⎝

∗ 0 0 0
0 ? 0 0
0 0 ∗ 0
0 0 0 ?

⎞

⎟

⎟

⎠

AK−1 SB−1←−−−−−−−−− Δzt−1 =

⎛

⎜

⎜

⎝

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

⎞

⎟

⎟

⎠

SR−1 MC−1←−−−−−−−−− Δyt−1 =

⎛

⎜

⎜

⎝

Δxt,0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

Fig. 3. Recovering the Internal State

New Birthday Attacks on Some MACs Based on Block Ciphers 219

2. Recovering (ya
t−3,0, y

b
t−3,0, y

a
t−3,2, y

b
t−3,2, y

a
t−3,8, y

b
t−3,8, y

a
t−3,10, y

b
t−3,10).

Applying MC−1 and SR−1 to the state yt−2, we obtain the values (Δzt−2,0,
Δzt−2,5, Δzt−2,10, Δzt−2,15, Δzt−2,2, Δzt−2,7, Δzt−2,8, Δzt−2,13) from the fol-
lowing two equations:

(Δzt−2,0, Δzt−2,5, Δzt−2,10, Δzt−2,15)T = MC−1(Δyt−2,0, 0, 0, 0)T , (4)
(Δzt−2,2, Δzt−2,7, Δzt−2,8, Δzt−2,13)T = MC−1(0, 0, Δyt−2,10, 0)T . (5)

(a) Recovering (ya
t−3,0, y

b
t−3,0).

i. Look up the differential distribution table of AES S-box, and obtain
about 28 possible values (yt−3,0, y

′
t−3,0) satisfying

S(yt−3,0 ⊕ xa
t−2,0) ⊕ S(y′

t−3,0 ⊕ xb
t−2,0) = Δzt−2,0, (6)

The correct (ya
t−3,0, y

b
t−3,0) must be among the 28 possible

(yt−3,0, y
′
t−3,0).

ii. Detect the correct (ya
t−3,0, y

b
t−3,0) from the following fact.

Fact 4. For each possible (yt−3,0, y
′
t−3,0), set xt−2=(xt−2,0, x

a
t−2,1, x

a
t−2,2,

xa
t−2,3) and x′

t−2 = (x′
t−2,0, x

b
t−2,1, x

b
t−2,2, x

b
t−2,3), where

xt−2,0 = xb
t−2,0 ⊕ yt−3,0 ⊕ y′

t−3,0,

x′
t−2,0 = xa

t−2,0 ⊕ yt−3,0 ⊕ y′
t−3,0.

Suppose Δxt−1 = xt−1 ⊕ x′
t−1 and Δxt−1 = xa

t−1 ⊕ xb
t−1.

Select 28 different word pairs (xt−1, x′
t−1) such that

Δxt−1,0 �= Δxt−1,0 and Δxt−1,i = Δxt−1,i (i = 1, 2, 3).

Query the MAC with 28 message pairs (M, M ′), where

M={xa
1 , . . . , x

a
t−3, xt−2, xt−1, x

a
t } and M ′={xb

1, . . . , x
b
t−3, x

′
t−2, x

′
t−1, x

b
t}.

– If one collision is found among 28 message pairs (M, M ′), the correct
(ya

t−3,0, y
b
t−3,0) = (yt−3,0, y

′
t−3,0).

– Otherwise, the (yt−3,0, y
′
t−3,0) is not correct.

Proof. If (yt−3,0, y
′
t−3,0) = (ya

t−3,0, y
b
t−3,0), the two inputs to S-boxes are

xt−2,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ ya
t−3,0 ⊕ yb

t−3,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ yb
t−3,0,

x′
t−2,0 ⊕ yb

t−3,0 = xa
t−2,0 ⊕ ya

t−3,0 ⊕ yb
t−3,0 ⊕ yb

t−3,0 = xa
t−2,0 ⊕ ya

t−3,0,

respectively, and the corresponding outputs are

S(xt−2,0 ⊕ yt−3,0) = zt−2,0 = zb
t−2,0, S(x′

t−2,0 ⊕ y′
t−3,0) = z′t−2,0 = za

t−2,0,

i. e., Δzt−2,0 = Δzt−2,0, which implies that Δzt−2 = Δzt−2.

220 Z. Yuan et al.

It is noted that, the byte zt−2,0 only affects four bytes (yt−2,0, yt−2,4,
yt−2,8, yt−2,12), which means that the 2nd to 4th columns of Δyt−1 are
the same as Δyt−1. Therefore, yt = y′

t if and only if

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′
t−2,0 ⊕ x′

t−1,0) = Δzt−1,0. (7)

There exists one collision among 28 different pair (M, M ′) on average.
If (yt−3,0, y

′
t−3,0) �= (ya

t−3,0, y
b
t−3,0), the two inputs to the S-box are

xt−2,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ yt−3,0 ⊕ y′
t−3,0 ⊕ ya

t−3,0,

x′
t−2,0 ⊕ yb

t−3,0 = xa
t−2,0 ⊕ yt−3,0 ⊕ y′

t−3,0 ⊕ yb
t−3,0.

The equation Δzt−2,0 = Δzt−2,0 holds with probability 2−8.
Thus, to guarantee a collision occur, it is required that (i) Δyt−2,4 = 0,

Δyt−2,8 = 0 and Δyt−2,12 = 0 when Δzt−2 �= Δzt−2, or (ii) Eq. (6) holds
when Δzt−2 = Δzt−2. Among 28 different message pairs (M, M ′), there
is a collision with probability 2−24 ×28 = 2−16 for the first case, and the
probability is at most 2−8 for the second. 	

(b) In a similar manner, the values (ya
t−3,2, y

b
t−3,2), (ya

t−3,8, y
b
t−3,8) and

(ya
t−3,10, yb

t−3,10) can be each filtered by 28 message pairs.
3. Recovering (ya

t−3,5, y
b
t−3,5, y

a
t−3,7, y

b
t−3,7, y

a
t−3,13, y

b
t−3,13, y

a
t−3,15, y

b
t−3,15).

Compute the correct (ya
t−3,5, y

a
t−3,15, y

b
t−3,5, y

a
t−3,15) by

Δzt−2,5 = S(ya
t−3,5)⊕ S(yb

t−3,5),

Δzt−2,15 = S(ya
t−3,15)⊕ S(yb

t−3,15),

ya
t−2,0 = 3S(ya

t−3,0 ⊕ xa
t−2,0)⊕ 2S(ya

t−3,5)⊕ S(ya
t−3,10 ⊕ xa

t−2,3)⊕ S(ya
t−3,15),

yb
t−2,0 = 3S(yb

t−3,0 ⊕ xb
t−2,0)⊕ 2S(yb

t−3,5)⊕ S(yb
t−3,10 ⊕ xb

t−2,3)⊕ S(yb
t−3,15).

Similarly, obtain the correct (ya
t−3,7, y

a
t−3,13, y

b
t−3,7, y

a
t−3,13) from

Δzt−2,7 = S(ya
t−3,7)⊕ S(yb

t−3,7),

Δzt−2,13 = S(ya
t−3,13)⊕ S(yb

t−3,13),

ya
t−2,10 = S(ya

t−3,2 ⊕ xa
t−2,1)⊕ S(ya

t−3,7)⊕ 3S(ya
t−3,8 ⊕ xa

t−2,2)⊕ 2S(ya
t−3,13),

yb
t−2,10 = S(yb

t−3,2 ⊕ xb
t−2,1)⊕ S(yb

t−3,7)⊕ 3S(yb
t−3,8 ⊕ xb

t−2,2)⊕ 2S(yb
t−3,13).

4. Recovering the internal state y0.
Guess all the 264 possibilities of the rest 8 bytes of ya

t−3. Take (xa
t−3, . . . , x

a
1)

as the decryption subkey, and obtain 264 y0. For each y0, compute the cor-
responding yb

t−3 with (xb
1, . . . , x

b
t−3) to filter out the wrong guesses.

If there are more than one y0 left, using the distinguisher to get another
colliding pair, and repeat the whole recovery attack until there is only one
value left. Two colliding pairs are enough to sieve the right y0.

Until now, the recovery attack on the internal state y0 is completed.

New Birthday Attacks on Some MACs Based on Block Ciphers 221

Complexity Evaluation. The complexity of this attack is dominated by the
distinguishing attack and the final exhaustive search, which is about 265.5 queries
and 265.5 chosen messages.
Second Preimages for Alpha-MAC. Once the internal state y0 is recovered,
the second preimages can be found by Huang et al.’s attack [10], and a selective
forgery attack can be performed as in [5].

5 Conclusion

In this part, the distinguishing and forgery attacks on the Alred construction
and its specific instance Alpha-MAC are presented. The complexity of the at-
tacks is dominated by the birthday attack, far less than the exhaustive search.
Our contribution is to detect inner near-collisions with specific differences rather
than collisions, from which more information can be obtained. Especially for Al-
pha-MAC, combining with the distinguishing attack, we explore a series of tricks
to recover the internal state, which equals to an equivalent subkey. This leads
to the second preimage attack on Alpha-MAC. It is remarked that the distin-
guishing and forgery attacks on Alred construction are also applicable to the
MACs based on CBC and CFB encryption modes.

Part II Impossible Differential Cryptanalysis of Pelican,
MT-MAC-AES and PC-MAC-AES2

6 Introduction to Part II

Besides the MACs introduced in Part I, there are several others based on reduced
block ciphers, such as Pelican [9], MT-MAC-AES and PC-MAC-AES [15], and
all of them take the 4-round AES 3 as the iteration function.

Pelican is an optimized version of Alpha-MAC, which was proposed by
Daemen and Rijmen. It generates the MAC value in a CBC-like manner. The
side-channel collision attack on Alpha-MAC works for Pelican, too [5]. Mine-
matsu and Tsunoo also proposed two provably secure MAC constructions, MT-
MAC and PC-MAC, which make use of the provably secure almost universal
hash functions (AU2). The MT-MAC uses differentially uniform permutations
such as 4-round AES with independent keys in a Wegman-Carter binary tree.
However, it is not memory efficient. A modified version PC-MAC, which is based
on a CBC-like AU2 hash PCH (Periodic CBC Hash), was suggested.

Inspired by recent MAC cryptanalysis techniques of Wang et al. [19,20] and
the methods introduced in Part I [21], we observe that the impossible differential
attack can be extended to MACs provided that enough inner near-collisions with
specific differences are detected.
2 By Wei Wang, Xiaoyun Wang, and Guangwu Xu. See [18] for the full version.
3 The MT-MAC-AES and PC-MAC-AES take the simplified 4-round AES described

in Section 7.2.

222 Z. Yuan et al.

Impossible differential attack [3] is one of the widely used cryptanalytic tech-
niques on block ciphers. It is a sieving attack which focuses on a differential
path with probability 0. If a pair of messages is encrypted or decrypted to an
impossible difference under some trial key, one can filter out this trial key from
the key space. Thus, the correct key is found by eliminating all the wrong keys
which lead to a contradiction. For MAC algorithms, the secret key is usually
replaced by the internal state. It seems that, the impossible differential attack is
hard to work with MAC algorithms, due to the fact that the internal state values
as well as their differences, are concealed by the final full encryption or complex
keyed iterations. However, the recent techniques based on the birthday attack
overcome this obstacle. One can recognize the inner near-collisions with some
specific differences, hence the impossible differential attack can be performed
with the detected inner near-collisions.

Taking 4-round AES as a building block, we are able to recover its secret state
utilizing a 3-round impossible differential characteristic. For Pelican, the secret
subkey is replaced by the internal state, thus we can recover its internal state
with 285.5 chosen messages and 285.5 queries. This attack can be further extended
to a subkey recovery attack on MT-MAC-AES with the same complexities. For
PC-MAC-AES, we recover its two secret keys separately once the internal state
is sieved, with 285.5 chosen messages and 2128 queries. We emphasis that our
results do not contradict to any security proof associated with the designs. Due
to space limitations, we only present attacks on Pelican and PC-MAC-AES,
while the attack on MT-MAC-AES appears in [18].

7 Backgrounds

Beside the notations defined in Part I, we will use the following notations in this
part: let zI

i denote the input of the i-th AES round, while zB
i , zR

i , zM
i and zO

i

denote the intermediate values after the application of SB, SR, MC and AK of
the i-th AES round, respectively. zi is exhibited as a 4×4 two dimensional array
of bytes indexed as:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Next, we give brief descriptions of Pelican and PC-MAC-AES.

7.1 Pelican Algorithm

Pelican is a specific instance of Alred construction taking 4-round AES as a
building block [9]. It supports 128-bit block and 128/160/192/224/256-bit key.
Pelican takes a message of arbitrary length as input, and outputs a MAC value
with length up to 128-bit.

New Birthday Attacks on Some MACs Based on Block Ciphers 223

To construct the MAC, let us pad a message M of any length to a multiple
of 128-bit by appending a single bit ‘1’ followed by the minimum bits of ‘0’, and
split the padded message into 128-bit words (x1, x2, . . . , xb). The Pelican MAC
function works as follows:

1. Initialization: Fill the 128-bit state with zeros, and encrypt the zero state
with AES encryption, i. e., y0 = EK(0), where E is the AES, and K is the
secret key.

2. Chaining: XOR the first message word x1 to the state, i. e., y1 = y0 ⊕ x1.
For each message word xi (i = 2, . . . , b), perform an iteration operation:
yi = f(yi−1) ⊕ xi, where f consists of 4-round AES with the round subkeys
set to 0.

3. Finalization: Apply the full AES to the state, and take the first lm bits of
the state as the MAC value of M . The final output C is C = Trunc(EK(ym)).

7.2 PC-MAC-AES

PC-MAC is a provably secure MAC construction proposed in [15]. It is composed
of an n-bit block cipher EK , and an n-bit auxiliary keyed permutation GU . Two
secret keys are required, one for the block cipher and the other for making the
block cipher tweakable.

For i = 1, 2, . . . , s, let Fi be an n-bit random function. Suppose x = (x1, x2, . . . ,
xs+1), we first define the chaining function:

Ch[F1, . . . , Fs](x) = xs+1 ⊕ Fs(xs ⊕ Fs−1(· · ·F2(x2 ⊕ F1(x1)) · · ·)),

which is used iteratively when the input is longer than (s+1) blocks, and termi-
nates as soon as the last input block is XORed. The PCH is defined as follows:

Definition 1 (Periodic CBC Hash (PCH) [15]).
Let EK be an n-bit block cipher. For d ≥ 0, let G = (G1, . . . , Gd) be the sequence
of keyed auxiliary permutation, where for Gi (i = 1, . . . , d), the subkey involved
in G is Ui. We assume that (KXOR

1 , . . . , KXOR
d−1) are (d-1) n-bit subkeys. The

Periodic CBC Hash is defined as:

PCHd[EK , G] = Ch[EK , G1, G
⊕KXOR

1
2 , . . . , G

⊕KXOR
d−1

d].

Here, G
⊕KXOR

i−1
i (α) = Gi(α ⊕ KXOR

i−1) (i = 2, . . . , d), where α is an n-bit variable.
PCHd[EK , G] terminates as soon as the last input block is XORed.

The next is the description of the PC-MACd[EK |GU] construction.

– Preprocessing:
• Compute U = (U1, . . . , Ud), which is the first dl bits of EK(0 ⊕ L), . . . ,

EK(â ⊕ L). Here, K, L are the secret keys, and â = �dl/n�.
• Compute KXOR

j−â+1 = EK(j ⊕ L), for j = â, . . . , â + d − 2.

224 Z. Yuan et al.

– MAC Computation: For a message M with arbitrary length,

C =
{

EK(PCHd[EK , G](M) ⊕ L · u) if |M | mod n = 0,
EK(PCHd[EK , G](M‖10t) ⊕ L · u2) if |M | mod n = n − t − 1,

where u is an element of GF (2n) that is not 0 or 1, and L · u is the multi-
plication of L and u on GF (2n).

The authors of [15] recommended to implement block cipher EK with the AES-
128, and the permutation GU with the simplified 4-round AES, where the trans-
formations of each round perform in the order of AK, SB, SR and MC, and the
addition of the first round key and the last diffusion layer are omitted. We call
this AES-based instance PC-MAC-AES.

8 Main Idea of the Impossible Differential Cryptanalysis

Similar to the cryptanalysis of block ciphers, to implement an impossible differ-
ential attack on MACs, we need to find an impossible differential path first. Then
collect many structures of chosen messages, query MACs with them, and sieve
the message pairs with the required intermediate differences. For each sieved
pair, discard the wrong subkeys (or internal states) which cause the partial en-
cryption and decryption to match the impossible differential path. Finally, after
enough pairs are analyzed, only the correct subkey (or internal state) is left.

8.1 Three-Round Impossible Differential Property of AES

For AES, several 4-round impossible differential paths have been found in litera-
ture, e. g. [1,4,16]. However, we note that, among the MAC algorithms presented
in the previous section, the 4-round AES is taken as a building block. Thus, we
focus on the reduced AES and only need a 3-round impossible differential path.

The 3-round impossible differential path is stated as follows.

Property 1 (Impossible Differential Path of 3-round AES). For 3-round AES,
given an input pair (zI

2 , zI′
2) whose components equal in all except six bytes in-

dexed by (0, 1, 5, 8, 12, 13) (or (0, 1, 4, 5, 9, 12), (0, 4, 5, 8, 9, 13), (1, 4, 8, 9, 12, 13)),
the difference of the output pair (zO

4 , zO′
4) can not have exactly one nonzero byte.

The correctness of Property 1 can be easily proved, and Fig. 4 illustrates the
impossible differential path for the case of (0, 1, 5, 8, 12, 13).

8.2 Message Pairs Collection Phase

In the cryptanalysis of block ciphers, we can collect the message pairs available
to the impossible differential attack directly according to the output differences
and chosen message differences. While for MACs mentioned above, we have to
explore new techniques to collect such message pairs since the 4-round AES is

New Birthday Attacks on Some MACs Based on Block Ciphers 225

SB AKSR

MCSRSB AK−1 −1 −1 −1

MC

MCSRSB AK−1 −1 −1 −1

nonzero byte

Contradiction

ΔzI
2 ΔzO

2

Fig. 4. 3-Round Impossible Differential Path of AES

used as a chaining or auxiliary permutation function, whose output is concealed
by the final full AES encryption, as well as the output difference.

To get over this obstacle, we take advantage of the idea described in [19,20,21].
First, randomly choose two structures of messages, with the message differences
of some specific forms. One example is that there is only one nonzero byte in
the difference of the last word. The concrete structures are constructed based on
the concrete MAC constructions. Second, utilize the birthday attack to search
collisions between the two structures. Finally, once enough message collisions
are collected, we can sieved the correct subkeys in the similar manner as the
impossible differential cryptanalysis of block ciphers. The details of collecting
collision pairs will be given in the next section.

9 Impossible Differential Cryptanalysis of Pelican and
PC-MAC-AES

In this section, we present the impossible differential attacks based on the 3-
round impossible differential path proposed in Section 8.

9.1 Internal State Recovery of Pelican

This subsection describes the internal state recovery attack on Pelican with
one additional round at the beginning of the 3-round impossible differential
path. The recovery of the internal state results in the derivation of an equivalent
subkey, i. e., the state y0 = EK(0). We depict the Pelican algorithm with two
message words in Fig. 5 for simplicity.

We first consider the situation that there is no truncation at the final output,
i. e., lm = 128. From Fig. 5, we can see that a collision at C indicates a collision

226 Z. Yuan et al.

rounds
4 AES AESy0

x1 x2

Cy2y1

Fig. 5. Pelican (b = 2)

at y2 since the final AES encryption is a permutation. Because

y2 = AES4r(y1) ⊕ x2,

where AES4r stands for the 4-round AES, the inner collision at y2 happens if
and only if

AES4r(y1) ⊕ x2 = AES4r(y′
1) ⊕ x′

2,

which yields the output difference of 4-round AES

AES4r(y1) ⊕ AES4r(y′
1) = x2 ⊕ x′

2. (8)

If there is truncation at the final output, i. e., lm < 128, then we need to
distinguish the collision caused by inner collision, which means to detect the
message pairs leading to y2 = y′

2. Suppose (x1‖x2, x
′
1‖x′

2) is a collision. Query
the MAC with (x1‖x′

2, x
′
1‖x2). If they still collide, we conclude that the pair

(x1‖x2, x
′
1‖x′

2) satisfies y2 = y′
2, i. e., Eq. (8).

It is clear that, once an inner collision is detected, we can deduce the informa-
tion of the output difference of the inner 4-round AES from Δx2, and apply the
impossible differential cryptanalysis. Therefore, it is essential to collect enough
message pairs which cause inner collisions at y2.

Message Pairs Collection Phase
We sieve the message pairs resulting in the inner collisions as follows.

1. Construct two structures, each has 264 two-word messages. Randomly choose
(x1,2, . . . , x1,14), which are the bytes of the first word x1 indexed by (2, 3, 4, 7,
8, 9, 13, 14), and set the corresponding bytes of x′

1 with the same values;
randomly choose two 128-bit message words x2 and x′

2, with only one nonzero
byte in Δx2 = x2 ⊕ x′

2. The two structures are

S1 = {(x1, x2)|(x1,0, x1,1, x1,5, x1,6, x1,10, x1,11, x1,12, x1,15) ∈ {0, 1}64},
S2 = {(x′

1, x
′
2)|(x′

1,0, x
′
1,1, x

′
1,5, x

′
1,6, x

′
1,10, x

′
1,11, x

′
1,12, x

′
1,15) ∈ {0, 1}64}.

It is noted that the difference Δx1 is zero at bytes indexed by (2, 3, 4, 7, 8, 9, 13,
14), where Δx1 = x1 ⊕ x′

1.
2. Query MAC on the two structures, and search collisions between the

corresponding MAC values of the two structures by the birthday attack.
– If there is no truncation at the final output, the corresponding colliding

message pairs cause inner collisions at y2.

New Birthday Attacks on Some MACs Based on Block Ciphers 227

– Else, for all collected colliding pairs (x1‖x2, x
′
1‖x′

2), query the MAC on
(x1‖x′

2, x
′
1‖x2). If still collide, (x1‖x2, x

′
1‖x′

2) must be an inner collision.

Since there are 264 elements in each structure, and the internal state is 128-bit,
one inner collision is expected to be found with probability 2−1. Repeat the mes-
sage pairs collection phase by choosing different (x1,2, x1,3, x1,4, x1,7, x1,8, x1,9,
x1,13, x1,14), one inner collision pair is expected to be obtained. This means
that, we can get one useful pair with about 2 × 2 × 264 = 266 chosen messages.
To obtain 2a colliding pairs, 2a × 266 = 2a+66 chosen messages are required.
Thus, the time complexity is 2a+66 queries.

For each collected pair, there is only one nonzero byte in ΔzO
4 since there

is only one nonzero byte in Δx2, where zO
4 = AES4r(y1). The input to the 4-

round AES, y1, equals to x1 ⊕ y0, and the round subkeys are set to zero, so y0

can be regarded as the subkey XORed before the first round, and is recovered
in a similar manner as the impossible differential cryptanalysis of AES.

Internal State Recovery Phase
We can recover 8 bytes of y0 at position (0, 1, 5, 6, 10, 11, 12, 15) by exhaustive
search directly (See Fig. 6).

MCSRSB 1st round

4th round

3−round impossible differential property

(y1, y
′
1)

ΔzI
1 ΔzB

1 ΔzR
1 ΔzM

1

Fig. 6. Internal State Recovery of Pelican

1. Initialize a list L to store the 264 possible values (y0,0, y0,1, y0,5, y0,6, y0,10,
y0,11, y0,12, y0,15).

2. For each of the 2a valid pairs, perform partial encryption with each element
in L, and obtain the first two columns of zM

1 and zM′
1 , respectively. From

the fact that Δx1 is zero at bytes (2, 3, 4, 7, 8, 9, 13, 14), we can deduce that
the last two columns of ΔzM

1 are zero. Thus, if ΔzM
1 is in the form of ΔzI

2

as described in Property 1, the corresponding 8 bytes of y0 must be wrong,
because of Property 1. We delete it from the list L.

After all pairs are processed, we expect that there is only one element in
the list L, which is the correct one.

For random (y0,0, y0,1, y0,5, y0,6, y0,10, y0,11, y0,12, y0,15), the probability that ΔzM
1

has the impossible form is 4 ·2−16 = 2−14, since for the two zero bytes in the first

228 Z. Yuan et al.

two columns, there are 4 possible positions. Therefore, for each collected pair, we
can filter out 264 · 2−14 = 250 wrong (y0,0, y0,1, y0,5, y0,6, y0,10, y0,11, y0,12, y0,15),
and one wrong value remains in list L with probability 1 − 250

264 . After analyzing
all 2a pairs, the expected number of wrong elements left in L should satisfy

264 · (1 − 250

264
)2

a

< 1.

This relation holds if we take a = 219.5.
In this manner, we can recover 8 bytes of the internal state y0, and the other

8 bytes can be recovered in a similar way.

Complexity Estimation. For the message pairs collection phase, the data
complexity is 2a+66 = 285.5 chosen messages, and the time complexity is 285.5

queries. For the internal state recovery phase, the time complexity is at most
219.5 · 264 = 283.5 one-round encryptions since there are 219.5 collected pairs.
Therefore, the total complexity is dominated by the message pairs collection
phase, which is about 285.5 queries and 285.5 messages.

Selective Forgery Attack. Once the attacker obtains the value of the internal
state y0, he has full control of the internal state, and can create arbitrary colliding
messages by calculating a proper 128-bit injection at the end.

9.2 Key Recovery Attack on PC-MAC-AES

The situation becomes a little different when it comes to PC-MAC-AES, where
the simplified 4-round AES is applied after the second block, and there are two
secret keys (K, L) involved in the MAC computation. We can use the divide-
and-conquer technique to recover the two secret keys. The PC-MAC-AES with
three message words is illustrated in Fig. 7.

AES
rounds
4 AES AESK

x2 x3

C

L · ux1

y1

Fig. 7. PC-MAC-AES with Three Message Words

We proceed the key recovery attack according to the following procedure.

1. Construct two structures by prepending a fixed x1 to each message of struc-
tures S1 and S2 given in Section 9.1. Randomly choose x1, set the bytes at
(2, 3, 4, 7, 8, 9, 13, 14) of x2 and x′

2 to the same values, and choose two 128-bit
message blocks x3 and x′

3 with only one nonzero byte in Δx3. The following
are the two structures, each has 264 elements:

S′
1 = {(x1, x2, x3) | (x2,0, x2,1, x2,5, x2,6, x2,10, x2,11, x2,12, x2,15) ∈ {0, 1}64 },

S′
2 = {(x1, x

′
2, x

′
3) | (x′

2,0, x
′
2,1, x

′
2,5, x

′
2,6, x

′
2,10, x

′
2,11, x

′
2,12, x

′
2,15) ∈ {0, 1}64 }.

New Birthday Attacks on Some MACs Based on Block Ciphers 229

2. Recover the value y1 using the internal state recovery attack presented in
Section 9.1. It is noted that, x1 is unchanged when we choose different struc-
tures to collect enough colliding pairs.

3. Since y1 = EK(x1), K is recovered by exhaustive search directly.
4. When K is recovered, exhaustively search 2128 possibilities of L, and only

the correct one is suggested by the MAC value C.

Complexity Estimation. The data complexity is the same as the internal state
recovery attack on Pelican, which is about 285.5 chosen messages, and the time
complexity is dominated by the exhaustive search of the secret key, which is
about 2128 queries, much lower than the 2256 security bound.

We note that even two keys are involved in PC-MAC-AES, the security of the
algorithm does not get enhanced.

10 Conclusion

In this part, we adopt the techniques of detecting the inner near-collisions with
some specific differences [19,20,21] to implement impossible differential crypt-
analysis on Pelican, MT-MAC-AES and PC-MAC-AES, and all of them take
the 4-round AES as the iteration function. Based on a 3-round impossible dif-
ferential path of AES, we can recover the internal state of Pelican, which is an
equivalent subkey, and the recovery leads to a selective forgery attack. The data
complexity is 285.5 chosen messages, and the time complexity is 285.5 queries.
This attack is applicable to MT-MAC-AES and PC-MAC-AES directly. For
MT-MAC-AES, it turns to be a subkey recovery attack with the same complex-
ity. For PC-MAC-AES, we can deduce the two secret keys separately with 2128

queries and 285.5 chosen messages. Our attacks have a complexity greater than
the birthday paradox, so they are not covered by the designers proofs.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments on the two parts.

References

1. Bahrak, B., Aref, M.R.: Impossible Differential Attack on Seven-Round AES-128.
IET Information Security 2(2), 28–32 (2008)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael. In: 3rd AES
Conference (2000)

230 Z. Yuan et al.

5. Biryukov, A., Bogdanov, A., Khovratovich, D., Kasper, T.: Collision Attacks on
AES-Based MAC: Alpha-MAC. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 166–180. Springer, Heidelberg (2007)

6. Boesgaard, M., Christensen, T., Zenner, E.: Badger - A Fast and Provably Secure
MAC. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 176–191. Springer, Heidelberg (2005)

7. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. In: The First Advanced Encryp-
tion Standard Candidate Conference. NIST AES Proposal (1998)

8. Daemen, J., Rijmen, V.: A New MAC Construction Alred and A Specific Instance
Alpha-MAC. In: Gilber, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp.
1–17. Springer, Heidelberg (2005)

9. Daemen, J., Rijmen, V.: The PELICAN MAC Function. IACR ePrint Archive
(2005), http://eprint.iacr.org/2005/088

10. Huang, J., Seberry, J., Susilo, W.: On the Internal Structure of Alpha-MAC. In:
Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 271–285. Springer,
Heidelberg (2006)

11. ISO/IEC 9797-1, Information technology - Security Techniques - Message Authen-
tication Codes (MACs) - Part 1: Mechanisms using A Block Cipher, ISO (1999)

12. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

13. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0, and SHA-1. In: Prisco, R.D., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

14. Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

15. Minematsu, K., Tsunoom, Y.: Provably Secure MACs from Differentially-Uniform
Permutations and AES-Based Implementations. In: Robshaw, M.J.B. (ed.) FSE
2006. LNCS, vol. 4047, pp. 226–241. Springer, Heidelberg (2006)

16. Phan, R.C.-W.: Impossible Differential Cryptanalysis of 7-round Advanced En-
cryption Standard (AES). Information Processing Letters 91(1), 33–38 (2004)

17. Preneel, B., van Oorschot, P.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

18. Wang, W., Wang, X., Xu, G.: Impossible Differential Cryptanalysis of Pelican,
MT-MAC-AES and PC-MAC-AES, Cryptology ePrint Archive, Report 2009/005
(2009), http://eprint.iacr.org/2009/005

19. Wang, X., Wang, W., Jia, K., Wang, M.: New Distinguishing Attack on MAC using
Secret-Prefix Method. In: FSE 2009 (to appear, 2009)

20. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 121–133. Springer, Heidelberg (2009)

21. Yuan, Z., Jia, K., Wang, W., Wang, X.: Distinguishing and Forgery Attacks on
Alred and Its AES-based Instance Alpha-MAC. Cryptology ePrint Archive, Re-
port 2008/516 (2008), http://eprint.iacr.org/2008/516

22. Yuval, G.: How to Swindle Rabin. Cryptologia 3, 187–189 (1979)

http://eprint.iacr.org/2005/088
http://eprint.iacr.org/2009/005
http://eprint.iacr.org/2008/516

	New Birthday Attacks on Some MACs Based on Block Ciphers
	Introduction to Part I
	Backgrounds and Notations
	Notations
	Alred Construction
	Alpha-MAC Algorithm
	Related Works

	Distinguishing and Forgery Attacks on MAC Construction Alred
	Distinguishing Attack on Alred Construction
	Forgery Attack on Alred Construction

	Recovering the Equivalent Subkey of Alpha-MAC
	Some Important Properties of Alpha-MAC
	Distinguishing Attack on Alpha-MAC
	Internal State Recovery of Alpha-MAC

	Conclusion
	Introduction to Part II
	Backgrounds
	Pelican Algorithm
	PC-MAC-AES

	Main Idea of the Impossible Differential Cryptanalysis
	Three-Round Impossible Differential Property of AES
	Message Pairs Collection Phase

	Impossible Differential Cryptanalysis of Pelican and PC-MAC-AES
	Internal State Recovery of Pelican
	Key Recovery Attack on PC-MAC-AES

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

