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Abstract. We present preimage attacks on the SHA-3 candidates Boole,
EnRUPT, Edon-R, and Sarmal, which are found to be vulnerable against
a meet-in-the-middle attack. The idea is to invert (or partially invert)
the compression function and to exploit its non-randomness. To launch
an attack on a large internal state we manipulate the message blocks to
be injected in order to fix some part of the internal state and to reduce
the complexity of the attack. To lower the memory complexity of the
attack we use the memoryless meet-in-the-middle approach proposed by
Morita-Ohta-Miyaguchi.

1 Introduction

Recent attacks on widely used hash functions standards [2,16] drew much at-
tention to the hash function design not only from cryptographers, but also from
the institutions responsible for the standardization. After several workshops and
discussions had been held, NIST started the so-called SHA-3 competition [7],
which called for new designs by the end of October 2008.

Since most attacks on hash functions have been differential-based collision
attacks, the majority of the designs we investigated so far claimed to be resistant
to differential cryptanalysis while to the resistance against other attacks were
given less attention. The subject of this paper is meet-in-the-middle attacks and
their application to preimage search.

A meet-in-the-middle attack on a cryptographic primitive is applicable if the
execution can be expressed as a sequence of transformations all of which have
at least one input that is independent of the other transformations. Providing
the invertibility of the last transformation, the full execution can be divided into
independent parts, which are connected using the birthday paradox.

One of the first such attack was the attack on Double-DES [3]. Double-DES,
being composed of two consecutive iterations of single DES with different keys,
was found to be vulnerable to the following meet-in-the-middle attack: given a
pair (plaintext, ciphertext) one can find a Double-DES key (a pair of single DES
keys), which is valid for this pair, with complexity of about 232 encryptions. A
full attack on Double-DES, which gives the real key, is based on this approach
as well and it is faster than the brute-force.

Meet-in-the-middle attacks on hash functions based on the Merkle-Damg̊ard
construction are hard to apply since the compression function is usually assumed
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to be non-invertible. The alternative sponge construction [1] allows invertible
transformations, but requires the internal state to be large so that the meet-in-
the-middle approach can not be applied.

Surprisingly, several SHA-3 proposals are vulnerable to this type of attack. In
this paper we describe meet-in-the-middle based preimage attacks on Boole, En-
RUPT, Edon-R, and Sarmal. Two ideas are common for all the attacks. First, all
the functions have invertible (or partially invertible) transformations, which al-
lows us to execute the meet-in-the-middle. Secondly, we reduce the intermediate
state space exploiting the non-random behavior of the round transformations.

This paper is composed as follows. First, we describe the meet-in-the-middle
preimage attack in general and remind how it can be maintained with little
memory. Then we show how preimages for Boole, EnRUPT, Edon-R, and Sarmal
can be found. We also discuss possible computation-memory tradeoffs.

2 Meet-in-the-Middle Attacks on Hash Functions

Hash functions with invertible compression functions become susceptible to preim-
age attacks if the size of the internal state is too small. Preimages can be obtained
by performing a meet-in-the-middle attack on the compression function. In this
section we will describe this generic scenario in more details.

Let F : D → D and G : D → D be two random permutations and H = G ◦F
the composition of these permutations. In our setting, the function H is the
hash function, F is defined as the compression function with a fixed IV and G
is the inverse of the compression function for a fixed target value. Furthermore,
we define auxilliary functions π1,2 : D ×D → D that map tuples to their first,
respectively second component.

Assume we want to perform a meet-in-the-middle attack on h. The standard
technique is to compute two sets

S1 = {(F (x), x) : x ∈R D} and S2 =
{(

G−1(y), y
)

: y ∈R D
}

such that |S1|·|S2| = |D|. Either sorting these two sets in their first component or
computing them in such a way that they are already ordered in this component
allows us to easily find colliding values

π1 ((F (x), x)) = π1

(
(G−1(y), y)

)

by comparing the elements of the two sets in linear time. Each collision gives us
a pair (x, y) such that H(x) = y. How to balance the size of the sets S1 and S2

depends on the relative cost of the function G−1 compared to an evaluation of
the function F . It may for instance be that G is easily invertible, meaning an
evaluation of G−1 costs about the same number of operations as an evaluation
of the function F . In this case we choose the sets S1 and S2 to be of equal size⌈√|D|

⌉
. However, if the evaluation of G−1 is k times more expensive than the

evaluation of F , we should choose the set |S1| to be of size
√

k · |D| and S2 of
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size
√

k−1 · |D| to obtain a minimum number of overall operations. The memory
complexity of this naive approach is non-neglible however: We need to store a
total of 2·

(√|D|(√k +
√

k−1
)

elements of the domain D to carry it out. Storing
both sets is not really necessary: Only the smaller should be stored, the values
of the larger can be computed on the fly and compared against the elements of
the smaller set.

In some cases the memory requirement can be completely eliminated by a tech-
nique based on Floyd cycle finding first described in an article by Morita, Ohta
and Miyaguchi [6]. Although several works on hash functions refer to memoryless
variants of meet-in-the-middle attacks [10,5], all of them cite either one or both
papers by Quisquater and Delescaille on collision search for DES [12,11]. These
two papers however do not directly deal with meet-in-the-middle attacks, but
describe the technique of using distinguished points for collision search. Oorschot
and Wiener describe the same technique for memoryless meet-in-the-middle later
in [14].

2.1 Eliminating the Memory Requirement

Assume we are given another function r : D → {0, 1} which maps elements of
the domain D to a single bit in a random fashion. Using this switching function
we can define a step function s that evaluates x either to F (x) or to G(x),
depending on the value of x:

s : D → D, x �→
{

F (x) if r(x) = 0
G(x) if r(x) = 1

This function s can then be used in a Floyd cycle finding algorithm: We start
from a random value x ∈ D and use just two elements a = s(x) and b = s2(x).
In each step we then update a by applying s to it and b by applying s2 to
it. Upon finding a cycle, we must check whether we really have found a pair
F (x) = G−1(y) or whether we have found a cycle in F or in G. If the output of
r is equidistributed, for each cycle we find Pr(F (x) = G−1(y)) = 0.5. In case of
encountering a cycle in F or G we restart the algorithm with another random
element x ∈ D.

Significant problems can arise if the output of r is not equidistributed, for
instance if G is very costly to compute relative to F and we want to simulate
the case of |S1| = k · |S2| with k large.

For the hash functions that we attack we define two functions F and G that
are used in the memoryless approach. The F function is used for the forward
direction and the G function is used for the backward one. The switching function
r is defined as the parity of x.

2.2 Reduced State Principle

The meet-in-the-middle (MITM) attack needs a collision in the intermediate
state. However, the state may be so large that a straightforward application of
the MITM approach would require more than 2n computations for a n-bit hash



Meet-in-the-Middle Attacks on SHA-3 Candidates 231

digest. Thus the generic principle we use further is to generate intermediate
states only from a smaller subspace (where some bits are fixed to zero) thus
reducing the birthday dimension and the complexity of the attack.

The generic framework is defined as follows. A hash function with an n-bit
digest has an internal state of size k bits. We manage to get intermediate states
with t bits fixed to 0. Then to get a MITM connection we need to get two states
that collide in (k−t) bits so that the birthday space D has size 2k−t. This implies
that we must get two sets S1 and S2 such that |S1| · |S2| = 2k−t. The exact ratio
between S1 and S2 is defined by the complexity of inverting the compression
(round) function.

For the memoryless version of the MITM attack, we need to tweak the attack
slightly such that we can define the functions F and G. Each of the functions
is a composition of two functions, first projecting the birthday space into the
state space, the second mapping the state space into the birthday space again
(fixing some bits to zero). In other words, let F = f ◦ μ and G = g ◦ ν. When
memoryless meet-in-the-middle is possible in our attacks we will define these
functions accordingly.

3 Boole

Boole is a family of hash functions [13] based on a stream design. Internally, Boole
has a large state σt = (Rt[0], Rt[1], . . . , Rt[15]) of 16 words plus 3 additional word
accumulators denoted by lt, xt, and rt (t is the time). The words are 64 bits each.
Hashing a message in Boole is done in three phases: 1)Input phase, where the
whole message is processed word by word, and for each input word the state and
the accumulators are updated, 2)mixing phase, where only the state is updated
depending on the values of the accumulators, 3)output phase, where the output
is produced.

The update of the state, referred to as a cycle, is defined as:

Rt+1[i]← Rt[i + 1], for i = 1 . . . 14
Rt+1[15]← f1(Rt[12]⊕Rt[13])⊕ (Rt[0] ≪ 1)
Rt+1[0]← Rt+1[0]⊕ f2(Rt+1[2]⊕Rt+1[15]),

where f1 and f2 are some non-linear functions, intended to simulate random
functions.

Let wt be a message word. The update of the accumulators is defined as:

temp← f1(lt)⊕ wt

lt+1 ← temp ≪ 1
xt+1 ← xt ⊕ wt

rt+1 ← (rt ⊕ temp) ≫ 1

The whole message is absorbed in the input phase. Sequentially, for each message
word wt the following is done:
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1. update the accumulators
2. Rt[3]← Rt[3]⊕ lt+1

3. Rt[13]← Rt[13]⊕ rt+1

4. update the state (cycle)

The mixing phase is invertible and its description is irrelevant in our attack.
Each iteration of the output phase produces one output word. One iteration

is defined as:

1. cycle
2. Output the word v = R[0]⊕R[8]⊕R[12]

For example, the output for Boole-256 is produced in 8 iterations.
Let us present two observations about the invertibility of the update functions

of the state and the accumulators.
Observation 1. The state update (cycle) is an invertible function. If a new

state σt+1 is given, then the state σt that produced σt+1 in a single cycle can be
found from the following equations:

Rt[0] = (Rt+1[15]⊕ f1(Rt+1[11]⊕Rt+1[12])) ≫ 1
Rt[1] = Rt+1[0]⊕ f2(Rt+1[2]⊕ Rt+1[15])
Rt[i] = Rt+1[i− 1], i = 2, . . . 15

Observation 2. The update of the accumulators can be inverted with proba-
bility 1−1/e. If the values of the new accumulators lt+1, xt+1, rt+1 and the input
message word wt are fixed, the values of the previous accumulators lt, xt, rt are
determined as:

lt = f−1
1 ((lt+1 ≫ 1)⊕ wt)

xt = xt+1 ⊕ wt

rt = rt+1 ≪ 1⊕ f1(lt ⊕ wt)

Moreover, if the values of lt, lt+1 (or rt, rt+1) are fixed, the value of the message
word wt can be found uniquelly:

wt = (lt + 1 ≫ 1)⊕ f1(lt)
( wt = (rt+1 ≪ 1)⊕ rt ⊕ f1(lt))

In order to invert the function f1 we will use a look-up table (x, f1(x)) with
all 264 values for x, sorted by the second entry. Then, a inversion of f1(x) is
equivalent to a look-up in this table.

3.1 Preimage Attack on Boole-384 and Boole-512

The intermediate state of Boole has 16 state words and 3 accumulators, hence
19 words in total. Further, we will show how to fix the values of the state words
R[3], . . . , R[12] (10 words in total) to zero in forward and backward directions.
This will mean that k = 19 · 64 = 1216 and t = 10 · 64 = 640, and the birthday
space D has only 9 words (576 bits). We will also define f(x) and g(x) for the
memoryless MITM attack.
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Defining μ - fixing R[3], R[4], . . . , R[12] forwards. From the description
of the input phase it follows that:

R10[3] = R9[4] = . . . = R1[12] = R0[13]⊕ r1

Note that the value of r1 can be controlled with w0 (Observation 2). Hence, if
we take r1 = R0[13], we will get R10[3] = 0. Similarly, for R10[4] we have:

R10[4] = R9[5] = . . . = R2[12] = R1[13]⊕ r2

We can change the value of r2 with w1 such that R1[13] ⊕ r2 = 0 holds.
Then R10[4] = 0. The same technique can be applied for fixing the values of
R10[5], . . . , R10[12].

Note that we can not fix the values of more than these 10 words. When we
control the value of rt with the input word wt−1, it means that we also change
the value of lt (which is added to Rt[3]). Since we can not control the value of
both accumulators with a single message word, and both of them are xor-ed into
the registers R[3] and R[13], it means that we can not control the values of more
than 10 words.

Defining f(y) for the memoryless MITM attack. The birthday space D
has 9 words. Let y = y1||y2|| . . . ||y9, then f(y) can be defined as compression
of the input words yi with 1 ≤ i ≤ 9 in the first 9 cycles. Thus when fixing
R[3], . . . , R[12] in forward direction, we first compress y, and then we start with
our technique for fixing these words to zero (function μ).

Defining ν - fixing R[3], R[4], . . . , R[12] backwards. Our backwards strat-
egy is the following: first we invert the output and the mixing phase and ob-
tain one valid intermediate state. Then, by changing the input words, we fix
R[3], R[4], . . . , R[12].

First, let us deal with the inversion of the output phase. In each cycle of this
phase one output word is produced. Hence, the digest is produced in 8 cycles1.
The output word vt is defined as vt = Rt[0]⊕Rt[8]⊕Rt[12]. Let H∗ = (h0, . . . , h7)
be the target hash value. We have to construct a state σt = (Rt[0], . . . , Rt[15])
such that h0 = vt, h1 = vt+1, . . . , h7 = vt+7. First, we put any values in
Rt[0], Rt[9], Rt[10], . . . , Rt[15]. The rest of the words are undefined. Then, we
find Rt[8] from the equation Rt[8] = Rt[0]⊕Rt[12]⊕ h0. Obviously we get that
vt = h0. After the cycle update we obtain a new state σt+1. Then, we determine
the value of Rt[1] from the equation Rt[1] = Rt+1[0] = Rt+1[8]⊕Rt+1[12]⊕ h1,
and therefore h1 = vt+1. The values for Rt[2], . . . , Rt[7] are determined simi-
larly. This way we can define the rest of the words in the state σt, which in the
7 sequential cycle updates produces the target hash value.

Let us fix the accumulators to any values. Then, inverting the mixing phase
is trivial because the length of the preimage, as shown further, is known and the
values of the accumulators are also known.
1 In Boole-384, the output is produced in 6 cycles.
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Now that we have inverted the output and mixing phase, we have the freedom
of choosing the input message words. The technique for fixing is rather similar
to the one used for fixing this set in forward direction. But in the backward
direction, we control the values of the lt accumulators (rather then the values of
rt as in the forward direction) with the input words wt (Observation 2). From
the description of the input phase we get:

R10[12] = R11[11] = . . . = R18[4] = R19[3]⊕ l20

Therefore if we take l20 = R19[3] we will get R10[12] = 0. Similarly, for R10[11]
we have:

R10[11] = R11[10] = . . . = R17[4] = R18[3]⊕ l19

If we take l19 = R18[3] we obtain R10[11] = 0. The same technique can be used
to fix the variables R10[10], . . . , R10[3].

One may argue that for controlling the values of the lt registers when going
backwards we have to pay an additional cost because f1 is not always invert-
ible. But we have to keep in mind that there are values for which f1 has many
inversions. Hence, if we start with a set of N different values, we can expect to
find N different inversions for these values and thus we do not have to repeat
the inversion.

Defining g(y) for the memoryless MITM attack. The function g(y), where
y = y1||y2|| . . . ||y9, is defined as 9 consecutive backward rounds of the input
phase with inputs yi. The starting state of these 9 rounds is the state obtained
after the inversion of the output and mixing phases (as described above). Note
that after the application of the function g(y) a new state is obtained. Then,
to this state, we apply our technique for fixing R[3], . . . , R[12] in 10 backwards
rounds (function ν).

3.2 Complexity of the Attack

The preimage that we obtained has a length of at least 9 + 9 + 10 + 10 = 38
words. The memoryless MITM attack requires about 2

9·64
2 = 2288 computations2

and 264 memory (for inverting f1).

4 Edon-R

The hash family Edon-R [4] uses the well known Merkle-Damg̊ard design prin-
ciple. The intermediate hash value is rather large, two times the digest length3.
For an n-bit digest the chaining value Hi of Edon-R is composed of two block
of n bits each, i.e. Hi = (H1

i , H2
i ). The message input Mi for the compression

2 One computation is equivalent to one round of the input phase or one round of the
mixing phase.

3 Edon-224 and Edon-384 have 512 and 1024 bits chaining values, respectively.
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function is also composed of two blocks, i.e. Mi = (M1
i , M2

i ). Let Edon be the
compression function. Then the new chaining value is produced as follows:

Hi+1 = (H1
i+1, H

2
i+1) = Edon(M1

i , M2
i , H1

i , H2
i )

The hash value of a message is the value of second block of the last chaining
value.

Internally, the state of Edon-R has two n-bit blocks, A and B. The compres-
sion function of Edon-R consists of eight updates, each being an application of
the quasigroup operation Q(x, y)4, to one of these blocks. With Ai and Bi we
will denote the values of these blocks after the i-th update in the compression
function (please refer to Fig. 1). Hence, each input pair (Hi, Mi) generates in-
ternal state blocks (A1, B1), (A2, B2), . . . , (A8, B8). The new chaining value (the
output of the compression function) Hi+1 is the value of the blocks (A8, B8).

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

A7

B7

Q

Q

Q

Q

Q

Q

Q

M1M2

A8

B8Q

H2 H1

Input message

Input chain value

Output

chain value

Fig. 1. Outline of the Edon-R compression function

Let us present a simple observation that is used in the attack.
Observation. The quasigroup operation Q(x, y) of Edon-R is easily invert-

ible, i.e. if A and C (B and C) are fixed then one can easily find B (C) such
that Q(A, B) = C.

4.1 Preimage Attack on Edon-R-n

The internal state of Edon-R-n (the chaining value H = H1||H2) has 2n bits.
We will show how to fix H1 = 0. Then the preimage attack can be mounted
using the MITM approach (Section 2), where k = 2n and t = n. The backward
step is time-consuming so we will use the memory MITM attack.
4 The exact definition of the quasigroup operation can be found in [4].
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Fixing H1 in forward direction. We need only one message block to get
the desired Hnew

1 = 0. Both initial value blocks are fixed as well. We claim that
for each M1 we can find M2 such that this message input and the initial value
blocks will produced a zero value in Hnew

1 .
Indeed, let M1 be set to some random value. Then we obtain the value of A6

since A7 = Hnew
1 = 0 and the function Q is invertible. We consecutively obtain

the values of A5, A4, A3, A2, and A1 (keep in mind that the initial chaining value
is fixed). Given A1 and M1, we derive M2 by inverting the first application of
Q. Finally we obtain all B’s and thus a pair (Hnew

1 = 0, Hnew
2 ).

Fixing H1 in backward direction. We need only one step (one message
block) to get a pair of the form (0, H2) from a given hash value H = Hnew

2 .
First, we set M1 to some predefined value m. Then we assign to A8 some ran-

dom value and consecutively obtain the values of the following internal variables
(in this order): A7, B7, B6, A6 (using M1), A5, B5, B4, A4, A3, B3. We repeat
this step 2k times for different values of A8 and store 2k different pairs (A3, B3).

Now we set M2 to some random value5 and obtain the values of A1, A2, and
B2 using the value of M1. If we repeat this step 2n−k+s times then we will find 2s

different values of B2 that coincide with some values of B3 from the stored set.
For each of these values we define H2 such that Q(A2, H2) = A3. The complexity
requirements for this part are: 2n−k+s computations6, where s − k < 65, and
2s + 2k memory.

These 2s pairs can be obtained using the memoryless MITM as well, where
the MITM space is the value of B2. Because of the message padding we should
take any n−65 bits of B2 so that the input and the output of the MITM function
F and G would have the same size. The (n− 65)-bit input to the function F is
padded with the message padding, and the input to the function G is padded,
for example, with zeros. Then, if a (n − 65)-bit collision between F and G is
obtained, the probability that they coincide in the rest of the 65 bits is 2−65.
Hence, for constructing 2s pseudo preimages with the memoryless MITM, one
needs 2s · 2 n−65

2 +65 = 2
n
2 +s+32.5.

4.2 Complexity of the Attack

Starting from the initial value, we generate 2n−s different chaining values with
H1 = 0. Note that we do not store these values. Then, with high probability, we
can expect that one of these values will be in the set of the 2s pseudo preimages
generated in the backward direction. Under the condition s − k < 65 the total
complexity of the attack when memory is used in the backward step is 2n−s +
2n−k+s computations and 2s + 2k memory. If only negligible memory in the
backward step is used the computational complexity is 2n−s + 2

n
2 +s+32.5 at the

same time needing 2s memory.
5 The value is not truly random: 65 bits of the last message block are reserved for

padding.
6 Here and below, one computation is not more than one compression function call.
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5 EnRUPT

The family of hash functions EnRUPT [9] is a member of a set of cryptographic
primitives first presented at SASC 2008 [8].

The pseudocode of 512-bit version of EnRUPT, called ı̈rRUPT-512, is pre-
sented below. For details we refer the interested reader to [9].

Algorithm 1. ı̈rRUPT-512
Require: p0, . . . , pn { message blocks}

(d0, d1, r)← (0, 0, 0)
(x0, . . . , x47)← (0, . . . , 0)
for i = 0 to n do

(d0, d1, r, (x0, . . . , x47))← ı̈r8(pi, d0, d1, r, (x0, . . . , x47)) {squeezing}
end for
(d0, d1, r, (x0, . . . , x47))← ı̈r8(512, d0, d1, r, (x0, . . . , x47))
for i = 0 to 199 do

(d0, d1, r, (x0, . . . , x47))← ı̈r8(0, d0, d1, r, (x0, . . . , x47)) {blank rounds}
end for
for i = 0 to 7 do

(d0, d1, r, (x0, . . . , x47))← ı̈r8(0, d0, d1, r, (x0, . . . , x47))
zi ← d1 {output}

end for
return (z0, . . . , z7)

Algorithm 2. ı̈r8
Require: p, d0, d1, r, (x0, . . . , x47)

for k = 0 to 7 do
t← (9 · ((2 · x(r⊕1) mod 48 ⊕ x(r+4 mod 48) ⊕ dr&1 ⊕ r) ≫ 16)
x(r+2) mod 48 ← x(r+2) mod 48 ⊕ t
dr&1 ← dr&1 ⊕ t⊕ xr mod 48

r ← r + 1
d1 ← d1 ⊕ p

end for
return (d0, d1, r, x0, . . . , (x0, . . . , x47))

In the pseudo-code all indices are taken modulo 16, all multiplications are
performed modulo 264, ≫ stands for cyclic rotation to the right, and ⊕ denotes
XOR. Now let us define and explain some points that are further used in the
attack on ı̈rRUPT-512.

Equation invertibility. The accumulators di are updated by a non-invertible
function, which can be expressed as x ⊕ g(x ⊕ y) (see pseudo-code). Given the
output of the function and the value of x a solution does not always exist. How-
ever, if we assume that the output and y are independent then the probability
that the function can be inverted can be estimated by 1−1/e. We did statistical
tests that support this estimate.
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Furthermore, while there is no solution for some input there are two (or more)
solutions for other inputs (one solution on average). Thus when we perform
backtracking we actually do not lose in quantity of solutions.

Look-up tables. We use look-up tables in order to find a solution for the equations
arising from the round functions. All the tables used below refer to functions that
have space of arguments smaller than the complexity of the attack, e.g., when we
try to solve an equation f(x⊕C) = x (where C is one of 264 possible constants)
we use 264 precomputed tables that contain values of f(x ⊕ C) ⊕ x for all C
and x.

Solving a system of equations is more complicated. Below we solve systems of
form

⎧
⎪⎨

⎪⎩

x = f(x, y, z, C1);
y = g(x, y, z, C2);
z = h(x, y, z, C3),

where Ci are constants. We precompute for all possible x, y, z, Ci (2384 tuples)
the sums x⊕ f(x, y, z, C1), y⊕ g(x, y, z, C2), and z⊕ h(x, y, z, C3) and then sort
them so that it is easy to find a solution (or many) given Ci.

We also estimate that the time needed to find a solution is given by the
complexity of the binary search which is negligible compared to the table size.

Inverting the updates in ı̈r8(pi). The compression function of ı̈rRUPT-512 con-
sists of the update of the state words x0, x1, . . . , x15, and the update of the
accumulators d0 and d1. Inverting the update of the state words x0, x1, . . . , x15

is trivial:
xold

r+2 = xnew
r+2 ⊕ f.

The accumulator d0 (similar formula holds for d1) is updated by the following
scheme:

dnew
0 = f(xr⊕1, xr+4, d

old
0 , r)⊕ dold

0 ⊕ xr

Instead of solving this equation for dold
0 , we simply use a table look-up (see

above). Since the arguments of f are xored, we solve an equation of form f(x⊕
C1)⊕ x = C2. We spend (264)2 = 2128 memory and effort to build this table for
all x and C1.

5.1 Preimage Attack on ı̈rRUPT-512

The preimage attack is mounted using the MITM approach (Section 2). The
internal state of ı̈rRUPT-512 has 18 words, hence 1152 bits. We will show how
to fix x3 and x11 in forward and backward directions. Also, since EnRUPT does
not have a message schedule and just adds the message block, we can reduce
the birthday space D for an additional one word. Hence, the parameters for
MITM are k = 1152 and t = 192. Getting states in both directions in not time-
consuming. Therefore we will define the functions f(x) and g(x) and launch a
memoryless MITM attack.
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Defining μ - fixing x3 and x11 in forward direction. We will fix the values
of these two words in two consecutive application of the compression function.
We will fix the value of x3 to zero by changing the previous input message word
p0. In the following compression function iteration this value is not changed. In
this iteration, we fix the value of x11 by setting the value of p1.

From the definition of x3 (notice that x3 is updated second in the iteration
but does not depend on x2 and d0, which has been updated before) we have:

xnew
3 = 9[(2x0 ⊕ x7 ⊕ d1) ≫ 16]⊕ xold

3

We want to fix the value of x3 to zero. Hence we require:

0 = 9[(2x0 ⊕ x7 ⊕ d1) ≫ 16]⊕ xold
3

In this equation the value of d1 can be chosen freely. Simply, in the previous
iteration of the compression function, the message word p, which is added to d1

(dnew
1 = dold

1 ⊕ p) can be changed without affecting the values of the state words
and d0.

Therefore, by using a predefined table for this equation, we can find the nec-
essary value of d1 so that the equation holds. To build this table we spend
(264)4 = 2256 memory and computations. Notice that after the value of x3 is
fixed then, in iteration that follows, this value is not changed. In this iteration,
we fix the value of x11 using exactly the same method. Hence, in two sequential
rounds, we can fix the value of exactly two state words: x3 and x11.

Defining f(y) for the memoryless MITM attack. The birthday space
D has 15 words. We denote y = y1||y2|| . . . ||y15. Then f(y) can be defined as
compression of the input words yi, i = 1, . . . , 15 in the first 15 applications of
the compression function. Thus when fixing x3 and x11 in forward direction, we
first compress y, and then we start with our technique for fixing these two words
to zero.

Defining ν - fixing x3 and x11 in backward direction. When going back-
wards we have to take into account two things: 1)the output hash value is pro-
duced in 8 iterations, and 2)the input message words in the last 17 iterations
are fixed. Let us first address 1). When the hash value is given (as in a preimage
attack), it is still hard to reconstruct the whole state of ı̈rRUPT-512. This is
made more difficult by outputting only a small chunk of the state (the value of
d1) in each of the 8 final iterations (and not at once). So, not only we have to
guess the value of the rest of the state, but we have to guess it so that in the
following iterations the required values of d1 will be output. Yet, this is possible
to overcome.

Let the hash value be H = (dt
1, d

t+1
1 , . . . , dt+7

1 ). Consider a state where d1 = dt
1

and all of the other words of the state are left undefined. Then, we take 2448

different values for the rest of the state and iterate forward for 7 rounds, while
producing an output word at each round. With overwhelming probability, one
of these outputs will coincide with (dt+1

1 , . . . , dt+7
1 ). After we find the state that
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produces the required output, we go backwards through the blank iterations
and the message length iteration. In total there are 17 iterations which is 136
rounds. The accumulators are updated non-bijectively. Therefore one may argue
that the cost of inverting the accumulators through these rounds should be
(1 − 1/e)136. Yet, if in some cases solution for the accumulator doesn’t exist in
other cases there is more then one solution. Hence, if we start with two internal
states, we can pass these iterations with a cost of two times hashing in forward
direction.

Now after we have passed the output, blank rounds and message length itera-
tions, and obtained one state, we can fix x3 and x11 in two backward applications
of the compression function. The following lemma holds:

Lemma 1. Given a state S = (xnew
0 , . . . , xnew

15 , dnew
0 , dnew

1 ) one can build a state
S′ = (x0, . . . , x15, d0, d1) and a message p such that x3 = 0 and ir8(S′, pi) = S.

The proof is given in Appendix. The same proposition can be applied to x11.
Since the compression function in one application changes either x3 or x11, then
in two consecutive backward applications of the compression function we can fix
the values of these two words.

Defining g(y) for the memoryless MITM attack. The function g(y), where
y = y1||y2|| . . . ||y15, is defined as 15 consecutive backward rounds of the input
phase with inputs yi. The starting state of these 9 rounds is the state obtained
after the inversion of the output, blank rounds and message length iterations (as
described above).

5.2 Complexity of the Attack

We spend at most 2384 computations to build the pre-computation tables so it is
not a bottleneck. To compose a valid state after the blank rounds that gives the
desired hash we need about 2448 trials. We also pass the blank rounds for free
since the absence of solutions for some states is compensated by many of them
for other ones. Thus the most computations-consuming part is the memoryless
MITM attack. It requires 2

960
2 = 2480 computations. The memory requirement

is determined by the precomputed tables, hence it is 2384.

6 Sarmal

Sarmal-n [15] is a hash family based on the HAIFA design. After the standard
padding procedure, the padded message is divided into blocks of 1024 bits each,
i.e. M = M1||M2|| . . . ||Mk, |Mi| = 1024, i = 1, . . . , k. Each block is processed by
the compression functions. HAIFA design implies that the compression function
f has four input arguments: the previous chain value hi−1, the message block Mi,
the salt s, and the block index ti. Hence, hi is defined as hi = f(hi−1, Mi, s, ti).
The final chaining value hk is the hash value of the whole message M . For Sarmal-
n the chaining value hi has 512 bits. Let us denote the left and the right half of
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hi as Li and Ri respectively, i.e. hi = Li||Ri. The salt s has 256 bits (similarly let
s = s1||s2), and the block index ti has 64 bits. Then, the compression function
of Sarmal-n can be defined as:

f(hi−1, Mi, s, ti) = μ(Li−1||sl||c1||ti, Mi)⊕ ν(Ri−1||sr||c2||ti, Mi)⊕ hi−1, (1)

where μ and ν are functions that output 512 bit values, and c1, c2 are some
constants. The exact definition of these functions is irrelevant for our attack.

6.1 Preimage Attack on Sarmal-512

We will show how to invert the compression function of Sarmal-512. Note that
the intermediate chaining value of Sarmal has 512 bits. Then the preimage attack
can be launched using the MITM approach (Section 2), where k = 512 and t = 0.
The inversion of the compression function is time-consuming so we will use the
memory MITM attack.

Going forward from the IV. Since we do not fix anything (t = 0), going
forward from the IV is trivial. We simply generate a number of intermediate
chaining values, by taking different random messages as an input for the first
compression function.

Going backward from the target hash value. Let us explain how the
compression function can be inverted.

From (1) we get:

f ( hi−1, Mi, s, ti) =
= μ (Li−1||sl||c1||ti, Mi)⊕ ν(Ri−1||sr||c2||ti, Mi)⊕ hi−1 =
= μ (Li−1||sl||c1||ti, Mi)⊕ ν(Ri−1||sr||c2||ti, Mi)⊕ Li−1||Ri−1 =
= μ (Li−1||sl||c1||ti, Mi)⊕ ν(Ri−1||sr||c2||ti, Mi)⊕ Li−1||0⊕ 0||Ri−1 =
= (μ (Li−1||sl||c1||ti, Mi)⊕ Li−1||0)⊕ (ν(Ri−1||sr||c2||ti, Mi)⊕ 0||Ri−1)

Let us fix the values of Mi, s, and ti. Then, we can introduce the functions
F (Li−1) = μ(Li−1||sl||c1||ti) ⊕ Li−1||0, and G(Ri−1) = ν(Ri−1||sr||c2||ti) ⊕
0||Ri−1. Let H∗ be the target hash value. Then we get the equation:

F (L)⊕G(R) = H∗

If we generate 2256 different values for F (L) and the same amount for G(R),
then, by the birthday paradox, with high probability we can expect to get at
least one pair (F (Ll), G(Rm) that will satisfy the above equation and therefore
obtain that h = Ll||Rm is a preimage of H∗.

A memoryless version of this pseudo-preimage attack can be obtained by
introducing the function F̃ (L) = F (L) ⊕ H∗, and launching the memoryless
MITM attack on F̃ and G. This would require 2256 computations and negligible
memory.
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Table 1. Complexity of the preimage attacks described in this paper

Computations Memory

Boole-384/512 2288 264

Edon-R-n 2n−s + 2n−k+s 2s + 2k

2n−s + 2
n
2 +s+32.5 2s

EnRUPT-512 2480 2384

Sarmal-512 2512−s + 2256+s 2s

6.2 Complexity of the Attack

Since the backward direction, i.e. inverting the compression function, is time
consuming we will use the memory version of MITM attack. Going backwards
from the target hash value we create a set S2 of 2s different chaining values. To
create this set we need 2256 · 2s = 2256+s computations. Then, starting from the
initial value, we generate 2512−s different chaining values. Note, we do not store
these values, we store only the smaller set S2. Then, with a high probability, we
can expect that these two sets coincide. The total complexity of the attack is
2512−s + 2256+s computations and 2s memory.

7 Conclusions

We have presented meet-in-the-middle attacks on four SHA-3 candidates. These
attacks became possible because we managed to invert (or partially invert) the
compression functions and to reduce the birthday space so that collisions in this
space can be found faster than 2n and give a preimage.

We have also applied, when it was possible, the memoryless version of the
MITM attack and thus significantly reduced the memory requirements for the at-
tacks. For these cases we provided estimates on the computation-memory trade-
offs.

The complexity of our attacks on the hash functions are summarized in the
following table.
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to obtain the previous state (xnew
0 , xnew

1 , xold
2 , xold

3 , . . . , xnew
15 , dold

0 , dold
1 ) where

xold
3 = 0. From the description of ı̈rRUPT-512 we get:

xnew
2 = f(xnew

1 , xold
6 , d0

0, r)⊕ xold
2 (2)

xnew
3 = f(xnew

0 , xold
7 , d1

1, r + 1)
︸ ︷︷ ︸

f3

⊕xold
3 , d3

1 = f3 ⊕ d1
1 ⊕ xnew

1 (3)

xnew
4 = f(xnew

3 , xold
8 , d2

0, r + 2)⊕ xold
4 (4)

xnew
5 = f(xnew

2 , xold
9 , d3

1, r + 3)
︸ ︷︷ ︸

f5

⊕xold
5 , d5

1 = f5 ⊕ d3
1 ⊕ xnew

3 (5)

xnew
6 = f(xnew

5 , xnew
10 , d4

0, r + 4)⊕ xold
6 (6)

xnew
7 = f(xnew

4 , xnew
11 , d5

1, r + 5)
︸ ︷︷ ︸

f7

⊕xold
7 , d7

1 = f7 ⊕ d5
1 ⊕ xnew

5 (7)

xnew
8 = f(xnew

7 , xnew
12 , d6

0, r + 6)⊕ xold
8 (8)

xnew
9 = f(xnew

6 , xnew
13 , d7

1, r + 7)
︸ ︷︷ ︸

f9

⊕xold
9 , dnew

1 = f9 ⊕ d7
1 ⊕ xnew

7 ⊕ p (9)

With di
1 we denote the value of the accumulator d1 used in the update of the

state word xi. We need to fix xold
3 to zero. Hence, from (3), we get the equation:

xnew
3 =f3 = f(xnew

0 , xold
7 , d1

1, r + 1) =

=9 · ((2xnew
0 ⊕ r ⊕ (xold

7 ⊕ d1
1)) ≫ 16).

In the upper equation we can denote by X = xold
7 ⊕ d1

1. Since, all the other
variables are already known, a table can be built for this equation, and solution
for X can be found. Let C1 = X = xold

7 ⊕d1
1. If we express the value of xold

7 from
(7) then we get the following equation:

xnew
7 ⊕ f7 ⊕ d1

1 = C1. (10)

Further, from (3), (5), (7), and (9), this equation can be rewritten as:

xnew
7 ⊕ f7 ⊕ f3 ⊕ f5 ⊕ f7 ⊕ f9 ⊕ xnew

1 ⊕ xnew
3 ⊕ xnew

5 ⊕ xnew
7 ⊕ p = C1.

Since, xnew
1 , xnew

3 , xnew
5 , xnew

7 , and f3 are all constant (the value of f3 is equal to
xnew

3 ), the upper equation can be rewritten as:

f5 + f9 + p = K, (11)

where K = xnew
3 ⊕xnew

5 ⊕ f3⊕C1. So given the values of f5 and f9 from (11) we
can easily find the value for the message word p such that xold

3 = 0 holds. Let
us try to find the values of f5 and f9.

The value of f5 (from (5)) depends, in particular, on xold
9 and d3

1. From (9)
we get that xold

9 = f9 ⊕ xnew
9 . From (3) and (10) we get:

d3
1 = f3 ⊕ xnew

1 ⊕ d1
1 = f3 ⊕ xnew

1 ⊕ xnew
7 ⊕ f7 ⊕ C1. (12)
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Therefore, for the value of f5 we get:

f5 = 9 · ((2xnew
2 ⊕ (r + 3)⊕ xold

9 ⊕ d3
1) ≫ 16) =

= 9 · ((K1 ⊕ f7 ⊕ f9) ≫ 16), (13)

where K1 = 2xnew
2 ⊕ (r + 3)⊕ xnew

9 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ C1.
Similarly, for f7 from (7), we can see that depends on d5

1. For this variable,
from (12) and (5), we get:

d5
1 = f5 ⊕ xnew

3 ⊕ d3
1 = f5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ f7 ⊕ C1. (14)

Hence, for f7 we get:

f7 = 9 · ((2xnew
4 ⊕ (r + 5)⊕ xnew

11 ⊕ d5
1) ≫ 16) =

= 9 · ((K2 ⊕ f5 ⊕ f7) ≫ 16), (15)

where K2 = 2xnew
4 ⊕ (r + 5)⊕ xnew

11 ⊕ xnew
3 ⊕ f3 ⊕ xnew

1 ⊕ xnew
7 .

Finally, for f9 from (7)), we get that it depends on d7
1. From (14) and (7), for

the value of d7
1 we get the following:

d7
1 = f7 ⊕ xnew

5 ⊕ d5
1 =

= f7 ⊕ xnew
5 ⊕ f5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ f7 ⊕ C1 =
= xnew

5 ⊕ f5 ⊕ xnew
3 ⊕ f3 ⊕ xnew

1 ⊕ xnew
7 ⊕ C1.

For the value of f9 we get:

f9 = 9 · ((2xnew
6 ⊕ (r + 7)⊕ xnew

13 ⊕ d7
1) ≫ 16) = 9 · ((K3 ⊕ f5) ≫ 16), (16)

where K3 = 2xnew
6 ⊕ (r + 7)⊕ xnew

13 ⊕ xnew
5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ C1.
As a result, we get a system of three equations ((13),(15), and (16)) with three

unknowns f5, f7, and f9:
⎧
⎪⎨

⎪⎩

f5 = 9 · ((K1 ⊕ f7 ⊕ f9) ≫ 16);
f7 = 9 · ((K2 ⊕ f5 ⊕ f7) ≫ 16);
f9 = 9 · ((K3 ⊕ f5) ≫ 16).

We can build a table that solves this system. There are six columns in the table:
three unknowns and three constants: K1, K2, and K3.

After we find the exact values of f5 and f9 we can easily compute the value
of p from (11).
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