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Abstract. Many ubiquitous computing systems and applications, including mo-
bile learning ones, can make use of personalization procedures in order to sup-
port and improve universal usability. In our previous work, we have created a 
GUI menu model for mobile device applications, where personalization capa-
bilities are primarily derived from the use of adaptable and adaptive techniques. 
In this paper we analyze from a theoretical point of view the efficiency of the 
two adaptation approaches and related algorithms. A task simulation framework 
has been developed for comparison of static and automatically adapted menus 
in the mobile application environment. Algorithm functionality is evaluated ac-
cording to adaptivity effects provided in various menu configurations and 
within several classes of randomly generated navigation tasks. Simulation re-
sults thus obtained support the usage of adaptivity, which provides a valuable 
improvement in navigation efficiency within menu-based mobile interfaces. 
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1   Introduction 

Mobile learning (m-Learning), the intersection of online learning and mobile comput-
ing, promises the access to applications supporting learning anywhere and anytime, 
implementing the concepts of universal access [10]. Personal mobile devices and 
wearable gadgets are presently becoming increasingly accessible and pervasive, while 
their improved capabilities make them ideal clients for the implementation of many 
various mobile applications [8], among which m-Learning represents one of the most 
important and attractive ones. 

However, the acceptance of new m-Learning systems is highly dependent on us-
ability challenges, the most important of them being technology variety, gaps in user 
knowledge and user diversity [9]. The potentiality for including the widest possible 
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parts of the population in the interactive mobile learning process implies particular 
emphasis on the user interface design and the quality of interaction [5]. These HCI 
issues become even more considerable within present day mobile device applications 
(MDAs), which have a firm tendency for increased complexity, sophisticated inter-
faces and enriched graphics. Hence, the development process for such MDAs must 
involve personalization procedures that are essential for tailoring them to individual 
users' needs and interaction skills. As the general framework of mobile interaction 
heavily bases on two interaction styles – menu-based and direct manipulation, we 
have focused our interest on personalization of MDAs through a transformable and 
moveable menu component with adaptable and adaptive features, introduced in [6] – 
see Fig. 1. 
 

 

Fig. 1. Adaptation algorithm usage in the general menu personalization process 

In this paper we analyze from a theoretical point of view the respective menu navi-
gation efficiency, in the case where automatic interaction personalization is provided 
by the usage of two different adaptation algorithms. 

2   Transformable Menu Component 

In general, menus represent a core control structure of complex software systems, and 
therefore provide an interesting object for personalization research [2], especially in 
the mobile devices' environment. Here the focus is primarily on the speed of interac-
tion between user and menu-based MDA, since this is considered to be one of the 
main factors in producing a truly usable system. Minimization of the interaction bur-
den for the user, what is an important aspect of speed [1], can be accomplished both 
by avoiding a multi-screen menu hierarchy and by reducing the number of keystrokes. 
For that reason, our menu component has the usual well-known form, with size and 
shape adequately reduced according to mobile device display limitations (Fig. 2). 

Because of the user diversity and high probability that different users will use dif-
ferent navigation patterns, even when working on very similar tasks, adaptation algo-
rithms can generate various menu configurations [6]. A particular configuration thus 
personalized can be retrieved (at MDA startup) from and stored (at MDA shutdown) 
to the Record Management System (RMS) of the local device, or to a remote server by 
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Fig. 2. Menu componet running on different device emulators 

the respective Servlet application. RMS represents both an implementation and API 
for persistent storage on Java ME devices. It provides associated applications (of the 
Java MIDlets class) the ability to access a non-volatile place for storing the object 
states [7]. Since the RMS implementation is platform-dependent, it makes a good 
sense to guarantee redundancy by additionally storing menu configurations to the 
remote server and subsequently retrieving them from the server. 

A personalized menu must furthermore provide an easy access to all of the existing 
menu functions, including adaptable ones. For that reason, our menu component is 
thoroughly modeled using state diagrams (cf. [11]) where all available state transi-
tions are initiated through exactly one keystroke on the mobile device input, thus 
providing a platform for optimal interaction efficiency (Fig. 3). 
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Fig. 3. Menu state diagram. The black node represents the spot where automatic adaptation is 
performed. 

Regarding the implemented adaptable (i.e. user-controlled) options (see Fig. 1), the 
user is provided with the ability (i) to easily control the visibility mode, (ii) to adjust 
menu orientation and respective docking position, (iii) to toggle the menu appearance  
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both between character-oriented and iconic-based styles and (iv) to manually customize 
both the menu header and item positions within its hierarchical scheme. On the other 
hand, the use of adaptive techniques means that MDA user interface changes will  
be partially controlled by the system itself, providing usability enhancement through 
increased interaction speed while getting m-Learning tasks done. 

3   Adaptation Algorithms 

First of all, it should be noted that automatic adaptation is based on algorithms both 
monitoring a user's prior navigation behavior and rearranging menu item positions 
within a particular popup/pulldown menu frame. 

In the following two adaptation approaches are compared with the original (static) 
menu configuration. While a frequency-based (FB) algorithm simply changes item 
positions according to their selection frequencies, a frequency-and-recency-based 
(FRB) algorithm refines the same idea by additionally promoting the most recently 
selected item [3]. The difference in related adaptation effects is visualized in Fig. 4.  
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Fig. 4. The difference between frequency-based and frequency-and-recency-based adaptation: 
while the former promotes the most frequently used (TMFU) item only, the latter additionally 
promotes the most recently used (TMRU) one 

As shown in the figure above, after a certain period of time and a related menu 
navigation pattern, the initial item positions are rearranged according to a sorted item 
frequency list. Denoting this as a current state of the adapted menu configuration, two 
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outcomes are possible upon Item X-5 selection. If FB adaptation is used, new reposi-
tioning is expected, based on the updated item frequency list. However, if automatic 
adaptation is ensured by the FRB algorithm, the currently selected item (Item X-5) 
will be replaced to the TMRU position, updating the frequency list and reordering its 
items. Using recency criteria, every menu item has a "fair chance" to quickly appear 
and be retained in the promoted part of the item set, regardless of its current  
frequency value. 

The core of the automatic adaptation algorithm can be specified through the fol-
lowing pseudocode, with the framed part referring to the case when the recency  
condition is active (can be omitted if the FB approach is used): 

if (keyPressed=FIRE_BUTTON) then
  Update_Frequency_List(selected_item, item_freq++); 
if NOT position(selected_item, TMFU) then

    Update_ItemPositions(itemSet, freqList, noRecency); 

if NOT position(selected_item, TMRU) then
      Move(selected_item, TMRU_position); 
      Update_ItemPositions(itemSet, freqList, recency); 

end if 
end if

  Application_Response(selected_header, selected_item); 
end if  

The abovementioned algorithm's usage is inspired by the work carried out in [2], 
where a similar approach was applied on adaptive split menus. In that particular 
research, the idea of using frequency and recency characteristics emerged from ex-
periences gained working with the Microsoft Office 2000 suite with dynamic menus, 
which adapt to an individual user's behavior. Whilst the related work is based in the 
desktop application environment (with the mouse as exclusive input device), we are 
dealing with an MDA setting and the corresponding mobile device navigation key-
pad. We believe that efficiency enhancement in mobile interfaces navigation, pro-
vided by automatic adaptation, exceeds the debatable benefits reached in desktop 
menu navigation. 

4   Task Simulation Framework  

As there is still a lack of evaluation studies capable of distinguishing adaptivity  
from general usability [4], we have developed a task simulation framework able to 
compare static and adaptive menu configurations and their respective navigation 
options. 

Since the time required for the completion of menu navigation tasks directly de-
pends both on the time to locate a target menu header in a root menu bar, as well as 
on the time to select an item from a single popup/pulldown menu frame, it is quite 
straightforward to specify the navigation performance level by determining the exact 
number of keystrokes needed for task fulfillment, within the input set of four naviga-
tion keys and a fire button (Fig. 5). 
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Fig. 5. If the general navigation keypad is used, it is a simple task to calculate the "keypad 
distance" from the starting position to destination. If Header 3 is considered as the current 
menu position, selecting Item 5-4 would require 7 keypad strokes: 2 RIGHT arrows, 4 DOWN 
arrows, and the FIRE button. 

Various static and adapted menu configurations can be compared, based on the 
aforesaid calculation method and several simulation parameters which are introduced 
and thoroughly explained in Table 1. 

Table 1. Parameters (and structures) used in the task simulation framework 

Configuration Parameter / Structure Type Characteristic 

Headers User-defined 
Number of first-order menu options 
(number of menu headers) 

Items_MIN User-defined 
Minimal number of items within each 
menu frame 

Items_MAX User-defined Maximal number of items within each 
menu frame 

Menu con-
figuration 

Config Random 

Randomly generated menu configuration 
with #Headers, each of them containing 
between #Items_MIN and #Items_MAX 
items 

Picks User-defined Number of randomly chosen menu 
selections 

Repetition User-defined Repetitive selections percentage (within 
set of #Picks selections) 

Pools User-defined Number of task subsets (for repetitive 
selections distribution) 

Task configu-
ration 

Task Random 

Randomly generated navigation and 
selection task, with a given number of 
randomly chosen menu selections and 
defined repetitive selections distribution 

 
Simulations can be performed with different menu configurations, which are ran-

domly generated according to a given number of menu headers (Headers) and an 
allowed number of items within each menu frame (Items_MIN and Items_MAX being 
the limitations). This way we are confronted with the option to analyze many various 
configurations that can afterwards be classified basing on menu sizes. 

The basis of the simulation process is a randomly generated navigation and selec-
tion task, which consists of an explicit number of random selections (Picks), some of 
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which are repetitive in accordance with a defined percentage (Repetition) and distri-
bution (Pools). It is highly unlikely that the user will make the most of her/his repeti-
tive selections at once, therefore these selections are evenly dispersed throughout the 
whole task, thus generating the desired distribution (Fig. 6). 
 

 

Fig. 6. Distribution of repetitive selections within a randomly generated task. Parameter values 
for task configuration: Picks = 50, Repetition = 30%, Pools = 5. 

Obviously, if items change their initial positions within a particular menu frame 
(according to algorithm instructions), a variation in keypad distance for selecting a 
particular item in both the original and the modified menu configuration will result. 
The overall difference between static and adaptive configuration in the total count of 
keystrokes (for completing the given task) represents the interaction speed enhance-
ment provided by (automatic) adaptivity. In the task simulation framework, this crite-
rion will be used to evaluate the usefulness of menu adaptation and to quantify effi-
ciency of the used adaptation algorithms.  

5   Simulation Results 

The measure of interaction speed improvement derived from automatic adaptation is 
given by (X-Y), where X stands for the number of keystrokes required for completion 
of the generated task using the original menu configuration, while Y stands for the 
number of keystrokes using the adaptive one. Fig. 7 shows a sample result of an FRB 
adaptation simulation session. 

Menu configurations that are used within the simulation process are categorized 
according to structure complexity, so we basically distinguish small, medium and 
large scale menus. It is easy to realize that wading through large scale menus requires 
increased user attention, because related headers can extend on several display 
screens. Because of the random characteristic of the task generation process, we used 
exactly 100 different instances of the generated task for every particular set of simula-
tion parameters. Consequently, 100 simulation sessions are performed for a distinct 
menu configuration and specified task class, while the final simulation results are 
presented as a mean value of data thus collected. 

Altogether 4500 simulation runs have been carried out for 9 menu configurations 
and 5 classes of randomly generated tasks. The mean values show an observable level 
of navigation efficiency enhancement for both FB and FRB approaches. The obtained 
simulation results are structured and presented in Table 2.  
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Fig. 7. Sample result derived from task simulation framework. In this particular case, FRB 
adaptation decreases overall keypad distance for 81 keystrokes, thus decreasing the input inter-
action burden for approximately 10%. 

Task classes with small designated number of Picks represent the user's interaction 
with the menu-based MDA in short interactive cycle. Conversely, tasks which include 
very large number of selections (e.g. Class #5 with 10000 Picks) correspond to longer 
usage of the application with menu component navigation options. Related to that, we 
can see that adaptivity effects considerably grow with task duration, so users can 
improve their navigation efficiency with the duration of adaptive menu usage. 

Table 2. Simulation results. For every task class, we set a Repetition parameter value to 15%. 

Menu configuration Task classes and simulation results 

Class #1
100 Picks 
5 Pools 

Class #2
200 Picks 
5 Pools 

Class #3 
500 Picks 
10 Pools 

Class #4 
1000 Picks 
30 Pools 

Class #5 
10000 Picks 
300 Pools Scale Headers

Items 
[min-max] 

FB / FRB FB / FRB FB / FRB FB / FRB FB / FRB 

3 2-5 5 / 9 14 / 19 42 / 70 40 / 105 102 / 652 

4 2-5 5 / 8 17 / 23 43 / 67 71 / 152 98 / 584 small 
menu 

5 2-5 4 / 6 17 / 19 32 / 41 44 / 79 118 / 770 

6 3-8 14 / 18 25 / 31 50 / 71 133 / 255 330 / 1957 

7 3-8 13 / 16 37 / 43 99 / 132 116 / 217 257 / 1348 medium 
menu 

8 3-8 16 / 19 52 / 59 100 / 123 142 / 241 503 / 2240 

9 4-11 30 / 34 57 / 64 128 / 160 187 / 318 785 / 3027 

10 4-11 29 / 32 65 / 71 150 / 178 185 / 298 692 / 2767 
large 
menu 

10 8-12 34 / 38 85 / 94 212 / 247 255 / 417 1081 / 4263 

 
According to simulation results, the benefit of adaptivity implementation is on  

the other hand questionable in small scale menu configurations, especially within 
infrequently used applications. In such menus all popout/pulldown frames can be 
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expanded on a single display screen, resulting in no need for navigation to hidden 
item subsets, hence rearranging items according to prior user's navigation patterns has 
no manifest significance. 

Regarding the recency criterion, in most cases FRB adaptation resulted with better 
enhancement with respect to the FB approach, regardless of menu configuration scale. 
However, this difference in adaptivity effects becomes more prominent within tasks 
formed by a larger number of menu selections (e.g. within task class #5, FRB adapta-
tion outperforms several times the FB approach). Hence, promotion of the most re-
cently used items within a particular menu frame is preferable in MDAs requiring a 
frequent usage of a navigation-and-selection interaction style (as is the case in e.g. m-
learning applications).  

Generally speaking, simulation outcomes support the concept and confirm the use-
fulness of adaptive techniques implementation for menu navigation in the mobile 
application environment. Nevertheless, it should be noted that the abovementioned 
conclusions emerge from theoretically based results. Let us note that it is quite hard to 
model real application tasks by using random generators because actual navigation 
patterns contain to some extent more predictive sequences of menu selections, which 
is not the case in our task simulation framework. This is the reason we can expect 
even more enhanced results in real application adaptation scenarios. Users' possible 
mistakes in navigation, impressions and levels of satisfaction while working with 
adaptive interfaces are excluded from this analysis, as the groundwork for these indi-
cators (e.g. usability testing) is yet not implemented. 

6   Conclusion and Future Work 

M-learning systems, one of our main research interests, will certainly become an 
additional advantage in the wide-ranging process of lifetime learning. When develop-
ing related m-learning MDAs, there arises a strong aspiration to completely utilize 
mobile device technology upgrowth, and to make these applications very powerful, 
graphically rich and usable. Hence, following the concept of universal usability, our 
efforts are focused on the quality of mobile user interaction. We make use of person-
alization procedures in order to enable users to work with MDA interfaces that are 
adjusted according to their preferred individual interaction patterns, thus making the 
users faster and more satisfied in performing assigned (m-learning) tasks. 

In our previous work, we introduced a transformable menu model for MDAs, with 
personalization capabilities derived from the use of both adaptable and adaptive tech-
niques. The model is implemented as a Java ME API extension, and can easily be 
reused in all likewise applications (not necessarily m-learning ones). In this paper we 
are dealing with system-driven personalization of the presented menu model and 
efficiency of adaptation algorithms. Various static and adaptive menu configurations 
are compared within a task simulation framework, and the results thus obtained con-
firm that the usage of adaptivity makes a difference, providing a valuable improve-
ment in navigation efficiency within menu-based mobile interfaces. 

Directions for future work include further improvements of our cognition on mu-
tual influence between user diversity and automatic interaction adaptation. We would 
like to identify the conditions with respect to which the benefit of adaptation is more 
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valuable than the eventual loss of control due to unexpected changes of the menu 
configuration. Results derived from the described task simulation framework will be 
substantiated with new research outcomes which base on running adequate usability 
tests. Moreover, for every presented and completed user task, appropriate time meas-
urements will be carried out, within both static and adaptive menu-based applications. 
With results thus collected, we expect to get a better insight into the correlation be-
tween theoretical and empirical adaptation effects. 
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