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Abstract. As the demand for domain- and formalism-specific visual
modelling environments grows, the need to rapidly construct complex
User Interfaces (UIs) increases. In this paper, we propose a Multi-
Paradigm Modelling (MPM) approach whereby structure, visual appear-
ance and above all reactive behaviour of a UI are explicitly modelled.
These models are constructed at the most appropriate level of abstrac-
tion, using the most appropriate modelling formalisms. This allows for
rapid application synthesis, easy adaptation to changing requirements,
and simplified maintenance. In this paper, we introduce Scoped User
Interfaces, and illustrate how one may model them using Hierarchically-
linked Statecharts (HlS). The use of HlS is demonstrated through the
rapid development of a DChart formalism-specific modelling environ-
ment.

1 Introduction

There are many challenges developers face during the development of a complex
User Interface. Desired behaviour may be autonomous or reactive, and possibly
real-time. Each UI component may be required to exhibit a radically different be-
haviour from that of any other component and the behaviour of components may
be inter-related. These complex behavioural relationships between components
are often difficult to express, and are even more difficult to encode and main-
tain. There are also difficulties related to the development process: the developer
must be able to rapidly adapt the structure and behaviour of the UI to changing
system requirements. Unfortunately, conventional code-centric approaches fall
short. Hence, a developer needs to capture the structure and behaviour of a UI
such that “accidental complexity” [3] is minimized. We claim that an elegant
solution to these problems may be found in Multi-Paradigm Modelling [15]. By
modelling every aspect of the system-to-be-built, at the most appropriate level
of abstraction, using the most appropriate formalisms, it becomes possible to
completely capture the structure, behaviour and visual appearance of a UI, to
rapidly generate prototype implementations, to easily adapt the UI as project
requirements change, and, finally, to synthesize a UI and maintain it.

The modelling of UIs is an active field of research. Navarre et.al. for example
developed an architecture capable of handling failures of input and output de-
vices [16]. The goal of their research is to facilitate specification, validation and
implementation, and testing of User Interfaces, and to achieve plasticity, or dy-
namic reconfiguration of user interfaces, not just for visual appearance, but also
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for behaviour. In this approach, the behaviour of each UI component is explic-
itly modelled in the ICO formalism, a variant of Petri Nets [2]. The Presentation
Framework of VMTS, the Visual Modeling and Transformation System [13] on
the other hand, provides a flexible environment for model visualization and pro-
vides a declarative solution for appearance description. The project leverages
XAML, an XML-based user interface descriptor language, to describe not only
the static appearance of the UI, but the dynamic behavior of an element as well.

There is a lot of similarity between our approach and the cited projects: we
believe in facilitating rapid, domain-specific modelling of the UI, and that this
may best be achieved by explicitly modelling the behaviour of each individual
UI component. Our approach distinguishes itself in several important ways from
related research. First, we attempt to solve the problems of UI development by
casting it as a pure “language engineering” problem. Second, we are primarily
concerned with modelling the reactive behaviour of the class of user interfaces
that are made up of hierarchically-nested entities.

The following section introduces the notion of Scoped User Interface and
its uses. Section 3 presents Hierarchically-linked Statecharts (HlS) and section
4 demonstrates the use of HlS to model a visual modelling environment for
DCharts, and extension of the Statecharts formalism [11]. Finally, we conclude
and give some directions for future work.

2 Scoped User Interfaces

A Scoped User Interface is one in which reactive visual components (widgets)
such as buttons and windows, but also domain-specific entities, are hierarchically
nested. At the highest level of the hierarchy, widgets exhibit general behaviour.
Deeper in the hierarchy, widgets have more specific behaviour.

The notion of scope as it pertains to a UI is analogous to that in high-level
programming languages which provide a syntactic means of specifying the hier-
archical scope of a variable. The latter is used by the compiler to bind a variable
use to its declaration by searching successively higher levels in the scope hierar-
chy until reaching the global variable space.

The variable becomes an event and the bounding boxes of graphical entities
become scope delimiters. A Scoped UI, then, is one which has a notion of hier-
archical scope, and can bind an event to the most tightly-binding component in
a hierarchy, based upon event coordinates.

There are many real-world examples in which Scoped UIs are implicitly used.
Hereafter, we focus on domain/formalism-specific modelling environments.

Domain- and formalism-specific modelling have the potential to greatly im-
prove productivity as they [12].

– match the user’s mental model of the problem domain;
– maximally constrain the user (to the problem at hand, through the checking

of domain constraints) making the language easier to learn and avoiding
modelling errors “by construction”;
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– separate the domain-expert’s work from analysis and transformation expert’s
work;

– are able to exploit features inherent to a specific domain or formalism. This
will for example enable specific analysis techniques or the synthesis of effi-
cient code exploiting features of the specific domain.

While editing in multiple formalismswithin a single environment is highly desir-
able, it is important to be able to delimit each formalism’s scope. This is achieved
by assigning formalism-specific behaviour based on graphically-delimited regions.

The primary challenge faced when developing Scoped UIs is to describe the
interaction between the user on the one hand and the various entities in the UI
on the other hand. As those entities may exhibit reactive as well as autonomous,
timed behaviour, it makes sense to consider them as “actors” [1,8].

The second challenge is to avoid creating an entirely new specification of UI
behaviour for each formalism, but rather modifying it to suit special require-
ments. Hence, it makes sense to have at the root level a single, generic spec-
ification. Scope-specific modifications to this generic specification can then be
made. That is, for each entity of the scope that has specific user-interface re-
quirements, a specific UI specification is created specializing or complementing
the more generic one.

3 Hierarchically-Linked Statecharts

Hierarchically-linked Statecharts (HlS) is a formalism for visually describing the
structure and behaviour of Scoped UIs based on a combination of UML Class
Diagram and Statecharts [11]. UML Class Diagrams are used to describe permis-
sible relationships such as containment and connectivity between UI components.
Statecharts are used to encode reactive behaviour of individual visual entities
and their interactions.

As will be demonstrated in section 4, HlS make it easier to develop applications
with complex UI behaviour faster and more reliably. This is possible, as HlS
allow the developer to see UI development as a language engineering problem.
Specifically, HlS entails the following work-flow:

1. One uses an appropriate formalism, such as UML Class Diagrams, to specify
the Abstract Syntax of the visual language. This entails specifying all ele-
ments in the domain one wishes to model, and qualifying their relationships
with other elements. This Class Diagram, together with constraints over its
elements is commonly known as a meta-model.

2. Subsequently, one models the Concrete Visual Syntax by associating a visual
entity (such as an iconic shape [4]) of the application being developed,

3. One finally specifies UI behaviour using Statecharts, such that each State-
chart is associated with a class and specifies the reactive behaviour of each
instance of that class. The Statechart “glues” together
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– reaction to user events such as mouse clicks and key-presses;
– interaction with the non-visual part of the language. In particular, check-

ing of well-formedness of constructs against the Abstract Syntax specifi-
cation as well as reflecting the Semantics of the language which is often
encoded as transformation rules;

– layout operations which act exclusively on the Concrete Visual Syntax.

The Abstract Syntax, Concrete Syntax, and Behaviour models are sufficient
to specify the structure, behaviour and appearance of a visual language, each
sentence of which is a valid application instance. This visual language specifica-
tion is sufficient to allow the automatic synthesis of a language-specific modelling
environment.

4 Example

To demonstrate the usefulness and feasibility of explicitly modelling UI be-
haviour using HlS, a visual modelling environment for the DCharts formalism
was created. DCharts, a formalism created by Thomas Feng [9] is an extension
of Statecharts. For the implementation, we will use our own tool AToM3 [5,6]
(A Tool for Multi-Formalism and Meta-Modelling).

4.1 Specifying DCharts Abstract and Concrete Syntax

The Abstract Syntax of the DCharts visual language is shown in Fig. 1, modelled
as a variant of UML the Class Diagram formalism. It has classes with attributes,
associations with multiplicities, and inheritance.

The rectangular boxes in the class diagram describe the nodes/vertices in the
visual language. The meaning of the nodes is as follows:

– DC DChart is a representation of the entire model. All other entities will be
contained by this entity.

– DC Basic corresponds to a simple state that does not hierarchically contain
others.

– DC Composite is nearly identical to DC Basic. A major structural difference
is that it can contain other states.

– DC History is the history (pseudo-)state.
– DC Orthogonal is an orthogonal block that allows for concurrently active

states.

The entities whose icons have a hexagonal shape at the top describe relation-
ships/edges in the visual language. The first type is the hierarchical contain-
ment topological constraint relationship. The following entities are of this type:
DC ChartContains, DC Contains, and DC Orthogonality. The second type of re-
lationship are the visible arrows. DC Hyperedge, is a simple directed transition
between states. It consists of common Statechart attributes such as a trigger,
guard (condition), and action code. It also has DCharts specific attributes: pri-
ority, broadcast code and broadcast to field.
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Fig. 1. DCharts Meta-model in the Class Diagram formalism

4.2 Specifying Formalism-Specific Behaviour Using DCharts

Although the above models describe both Abstract and Concrete Syntax of the
visual language, we still need to model the behaviour of a language-specific visual
modelling environment. This will be done in the form of Hierarchically linked
Statecharts.

In the following, the labels on the states and transitions of the UI behaviour
Statecharts use a custom notation. This notation does not change the expressive-
ness of the formalism, but does make the communication between Hierarchically
linked Statecharts which is encoded in explicitly in transition, enter, and exit
actions, more intuitive to the modeller. A star, x*, indicates that action code
is present. A plus, x+, indicates that a different Statechart handles the ac-
tion. Parenthesis, <x>, indicate that the trigger event is generated by another
Statechart. Regular brackets, (x), indicate the event was generated by the ini-
tialization routine for the entity when it is first instantiated. Square brackets1

[x] indicate that the event was generated by the Statechart itself, usually within
the action code of a state.

Note that while the following behaviour Statecharts were designed to ac-
commodate layout behaviour, and include events specifically targeting layout, a
detailed presentation of this behaviour is beyond the scope of this paper.

Button Behaviour Model. Code for Buttons is automatically synthesized for
each of the classes in the meta-model. They allow for the instantiation of DChart
entities. The button behaviour model shown in Fig. 2 is simple. When the button
to create entity X is pushed, the events “<Reset>” and “<X Button>” are sent

1 This should not be confused with the UML Statechart notation for transition guard.
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DChartActions

Default Idle

Composite Mode

Orthogonal Mode

State Mode

History Mode

<Create>*

<History Button>

<Composite Button>

(create)*

<State Button>

<Create>*

<Reset>

<Orthogonal Button>

<Create>*

<Create>*

Fig. 2. Button behaviour Statechart

to this Statechart. If not already there, the Statechart moves to an Idle state
upon receipt of the first event. The second event then moves it to a state whereby
entity X can get instantiated. It then waits for an event requesting the creation
of that entity. The “<Create>” event is generated by the DC DChart specific
behaviour Statechart when it intercepts and handles the “Model Action” event.

DChart Entity-Specific Behaviour Models. All visual entities of the
DCharts formalism require their own behaviour models. The most important
are the root entity that contains all other entities of the DCharts formalism
and the composite state. Referring to the class diagram in figure 1, these cor-
respond to DC DChart and DC Composite respectively. At the other extreme,
the behaviour Statechart for the transition edge, DC Hyperedge, is trivial. All
the remaining entities, excluding the non-visual containment relationships, use
behaviour Statecharts that are specializations of that of the composite state.

DC DChart behaviour Statechart. The behaviour of the DC DChart entity be-
gins with initialization when the entity is first created. This initialization in-
cludes a “(create)*” trigger that sets the active state to “Idle”. From then on,
the following five events trigger interesting behaviour:

1. The “<Control-Button-Press-3>” event indicates that a new DCharts for-
malism entity should be added to the canvas. Note that the same event is
generated if one uses the AToM3 menu system or a keyboard/mouse short-
cut. The actual creation of an entity is of course handled by the button
behaviour Statechart described previously in 4.2.

2. The “<Control-Button-Press-1>*” event triggers a “modal” lock, forcing all
events to be routed only to this Statechart. The lock is only released when
either an arrow is finally created or the process is aborted, via the “<Arrow
Created>*” and “Reset*” events respectively.

It is necessary to refine the behaviour found in this generic UI behaviour
Statechart for two reasons. The first is merely for the convenience of the
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New Arrow

Default

Idle

serviceLayoutRequest+

Create DChart Entity+

Snap Points*

No Snap*

Drop Point*

Drop Point2*

[Done]

Rollback*

[Done]
<Any-Motion>*

<layoutRequest>

<Arrow Created>*

<DChartSelect>*

<Control-ButtonPress-3>

Drop Point

[Done]

<Control-ButtonPress-1>*

Rollback*

<Edit>*

Reset*

Toggle Snap*

<layoutRequest>

[Done]

Drop Point

Toggle Snap*

<Any-Motion>*

(create)*

Fig. 3. DC DChart behaviour Statechart

user. Instead of allowing the user to draw arrows to indicate containment
relationships, only transitions may be drawn. This saves time, and a drag-
and-drop behaviour model exists for creating and destroying containment
relationships as shall be shown later. The second reason is simply to know
when transitions are actually created so that their UI behaviour Statecharts
may be initialized.

DC Composite behaviour Statechart. The behaviour of DC Composite, the com-
posite state, is the most complex of all. Fortunately, it is also re-usable by many
other entities. The initialization phase is rather involved, with two main pos-
sibilities. The first is that an interactive session with the user is in effect, in
which case the “(create)” trigger signals the creation of a new DC DChart. Im-
mediately, the user is presented with a dialog asking to which of the entities in
the region of the newly created DC Composite, they would like to contain the
new composite state. If the composite state is successfully connected to either a
DC DChart or another DC Composite, then the “[didConnect]” trigger is gen-
erated, followed by a “<layoutRequest>” event to the container, and finally a
“[Done]” event to set the state to “HasParent”. If the composite state is not suc-
cessfully connected, then a “[didNotConnect]” event is generated and the active
state is set to “NoParent”.

Finally, the second of the two possibilities is that the model is being loaded
rather than interactively edited. In this case, a “(loadModelCreate)” event is
first sent when the DC Composite is first instantiated, setting the active state
to “NoParent”. Then, a second “(loadModelCreate)” event is sent if a containing
relationship is instantiated with this DC Composite as its parent, thus setting
the active state to “HasParent”. The following is a list of all the events that
occur after the initialization phase.
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Idle

Default* hierarchicalConnect*

requestLayoutOnParent*

NoParent HasParent

hierarchicalDisconnect*

requestLayoutOnOldParent*

serviceLayoutRequest+ Request Drop* finalLayoutRequest*

Edit*

H

History

[drop]

[Done]

[Request drop]

<layoutRequest>

[stayedConnected]

<DChartDelete>

[drop](loadModelCreate)

(loadModelConnect)

<Edit>

[notDropRoot]

[Done]

(create)

<DChartDrop>

[Done]

[Done]

[didNotConnect]

<DChartSelect>*

[didConnect]

[disconnected]

Fig. 4. DC Composite behaviour Statechart

1. The ”<DChartSelect>*” event is dealt with in the same manner as the
DC DChart UI behaviour Statechart. All hierarchical children are selected.

2. The “<Edit>” event indicates that the user has opened an edit dialog on
the DC Composite attributes. This allows the user to modify the visual
appearance of the node, which may trigger requests for layout.

3. The ”<DChart Drop>” event indicates that this composite state, among
potentially many other entities, has just been dragged and then dropped. The
transition with this trigger promptly generates two events: “[Done]”, which
restores the active state to either “NoParent” or “HasParent”, followed by
“[drop]”, which causes hierarchical connection or hierarchical disconnection,
respectively, to be attempted. The latter occurs only if the entity has been
dropped outside of its parent container and the user has explicitly agreed to
disconnect it. This triggers a “<layoutRequest>” followed by an attempt to
hierarchically connect the disconnected composite state in its new location.

4. The “<DChartDelete>” event indicates that this composite state is to be
deleted.

DC Hyperedge behaviour Statechart. The behaviour of the DC Hyperedge or
transition, is trivially simple, as Fig. 5 shows. As noted earlier, the transition is
a hyper-edge only in the meta-model, in the generated DCharts formalism itself
it is a simple directed edge with one source and one target. The transition is
first initialized with a “(create)” event. Afterwards, it simply awaits “<Edit>*”
events in order to apply changes made in its edit dialog. These changes affect
the information content of the label associated with the transition.

For a full description of all behaviour Statecharts we refer to M.Sc. thesis of
the first author [7].

It is finally possible to synthesize a visual DChart modelling environment from
the Class Diagram meta-model and the Hierarchically linked Statechart models
as shown in Fig. 6. Note how this demonstrates support for multi-formalism
modelling, with specific behaviour for Buttons and DChart entities.
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Default* Idle

<Edit>*

(create)

Fig. 5. DC Hyperedge behaviour Statechart

Fig. 6. Synthesized DCharts modelling environment with model instance

4.3 Conclusion

We have shown how it is possible to model complex, scoped, formalism-specific
UI behaviour using HlS. This was possible by modelling abstract syntax and
concrete syntax of a visual language explicitly as well by attaching models of
behaviour to all entities in the language. It was possible to develop an exam-
ple application quickly. The result has proven to be both robust and easy to
maintain. Our contribution is most closely related to the work by Minas on Di-
aGen and DiaMeta [14]. Our focus is however mostly on the explicit modelling
of behaviour. We believe HlS can be used as the “assembly language” for UI
behaviour modelling. As such, we will explore other notations such as task mod-
els [10] and map them onto HlS. Our current work implements the above idea
in the form of UIs running entirely within a web-browser, using only SVG and
ECMAScript (JavaScript).
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