
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 677–686, 2009.
© Springer-Verlag Berlin Heidelberg 2009

RUCID: Rapid Usable Consistent Interaction Design
Patterns-Based Mobile Phone UI Design Library,

Process and Tool

Avinash Raj1 and Vihari Komaragiri2

1 Toronto, Canada
avinash.raj@hotmail.com

2 Bangalore, India
vihari@gmail.com

Abstract. This paper is based on a research effort at Kyocera Wireless, India
that aimed to overcome the limitations in the mobile phone design process, by
giving designers an improved design and specification tool and helping them
deal routinely with some of the more rooted constraints of phone design. The
tool extends the idea of templates from simple visual elements, to more abstract
design components. It adds further value to this modularization of design, by
taking an approach of extensive and ever-growing library of patterns to define
and refine these components. The components cover most of the low- to
medium-level building blocks of design. They are specified in the library as a
tuple(patterns) of <design problem, design solution, context, constraints> each
at the different level of hierarchy. The components are visually represented
using standardized shapes with placeholder and help text and are made
available as part of the design work surface of a visual prototyping tool such as
MS Visio or Adobe Fireworks.

Keywords: Mobile phone UI design, patterns, architecture, design process, lib.

1 Introduction

Modern mobile phones give its Users many features: voice and data calls, text
messaging, personal information management (phonebook and calendar), WAP
browsing, games, etc. All these features are packaged into a handset with a small
screen and 12/16 key special purpose keypad. Each new release of the phone builds
additional features on top of the existing ones and there is a constant race among
phone vendors to put attractive phones out into the market faster and cheaper. Among
the newer mobile phones deluging the markets most have their own separate
interaction paradigms. It is important to find out a uniform set of interaction
paradigms to avoid a time-consuming and expensive approach, to avoid re-writing
each application for each mobile phone. The Users should not be forced to undergo
the grueling process of learning and unlearning these interaction styles when using a

678 A. Raj and V. Komaragiri

same set of application over multiple mobile phones of either the same vendor or, in
fact, even of different vendors.

1.1 Current Mobile Phone Interaction Design Process

Though design guideline documents deliver coherence among User Interfaces, they
cannot be used effectively to communicate how different components of the design
will work together and how Users will interact with them. In addition, guidelines can
get obsolete or ignored very soon in the fast developing world of mobile phones.
Furthermore, the interaction designer is limited to the task of specifying the design that a
software engineer then implements it in an embedded software development environment
that is notorious for its lack of sophisticated APIs for UI creation. This indirection and the
limitations inherent in the development environment, also mean that a lot of design intent
and time could be lost in translation. There needs to be a way to put design implementation
in the hands of interaction designers, and this needs to be done in a “backward” compatible
manner. Even when new technologies like FlashLite, uiOne become the platforms of UI
development, there will still be some phones that require UI development in native code. So
the solution will have to support both styles of interaction design and implementation.

While phone vendors have started adopting a platform approach to software
development, adding incremental features to existing code bases and builds, this has the
bug/feature of perpetuating design from older phones, whether good or bad. There is also no
easy way of upgrading a design element for greater usability because it is difficult to trace a
design element across various features where it is used. A solution to this problem could be
ensure that interaction design is modular to the extent possible and utilizes design
elements in a consistent, traceable manner.

1.2 Proposal to Solve Usability, Consistency and Time-to-Market Constraints

The aim of this research is to provide a tool where interaction designers can choose
from the pre-packaged design element library and use the appropriate element by
mapping the usability constraints and context of the pattern with the needs and
context of the feature being designed. Presented in the form of a Microsoft Visio
template-based prototype tool, these patterns can be easily used by the designers.

After the usual steps of analyzing the design problem, identifying the User goals
and then breaking them down into tasks, the paper proposes a change to the design
process. Instead of trying to sketch the design from scratch from that point onwards,
the designer simply uses the design tool and its template library to look for and use
design modules that already exist. For the part of the design that does not yet exists, the
designer then builds newer tasks and flows from existing building-block objects. The
designer then adds these newer creations as potential candidates to the pattern template
library to be verified for usability, to be incorporated and then used by other designers
in creating other features. The designer achieves speed and design consistency with
this approach. The modular pattern library allows for reuse across designers and
design teams, and for usability refinement, design evolution and for backward
compatibility with changes as the product evolves.

 RUCID: Rapid Usable Consistent Interaction Design 679

2 RUCID Basics

In this section, we present a novel formulation of mobile phone interaction design
architecture and build on this framework using the patterns based approach inspired
by Christopher Alexander [2]. Some samples of mobile phone interaction design
patterns are presented here to illustrate the concept.

We draw from the work of Alan Cooper [1] to derive interaction design
architecture for mobile phones. The mobile phone has many input Triggers (typically
the 12-key keypad, plus five-way navigation keys and so on). The context of use of
the mobile phone is much different from the mouse and hence its interaction design
structure is quite different from that of a computer mouse. There is a need for having
a Primitive action for example a key press achieve not just generic input/output or
application specific commands but directly address User goals. We address this in our
model as follows: The User’s goals in using an application can be broken down into
some generic tasks common across applications. These generic tasks precede and
succeed specific tasks called into existence by the needs catered to by the feature
being designed. For example, “starting an application or closing it” are typically
generic tasks; “playing a music track” or “composing an SMS message” are feature
specific tasks.

Generic tasks are made up of Flows of input interaction in conjunction with the
output – actions, symbols, graphics, and other feedback information – expressed on
the screen (and speakers, vibrations etc.) of a mobile phone. The Flows are
represented as Idioms to left hand side of the Alan Cooper inverted pyramid, while
the output is represented on the right hand side of the inverted pyramid. The output
shown on screen can be further divided into information, widgets and graphics.

A Flow can be thought of as a sub-task or a sequence of Primitive and/or
Compound actions that results in an application specific function to be executed. A
Compound action in turn constitutes a sequence of Primitive User actions and phone
reactions that achieve a User’s sub-objective. In a typical mobile phone design, a
Flow that achieves a User objective, or a Compound action that achieves a sub-
objective, may simply consist of one Primitive action for example; press and hold of
hash key can actually achieve a User goal of locking the phone. This User goal can
also be achieved by accessing settings from the menu, choosing the keypad lock menu
option and then enabling the keypad lock option. The architecture (Fig.1) of
interaction design in mobile phones is at the heart of our pattern exploration. It
anchors our search for interaction design patterns in mobile phones and also provides
means to organize, link and document them. Since this model also articulates the
typical top down process of design, it lends itself to very practical application as
evidenced by the prototype tool that we created.

In the following pages we look at sample patterns generated at the Widget,
Primitive, Compound and Flow level, one sample each. The Compound, Primitive
and Flow patterns that follow are tailored to the tool rather than the Alexandrian
pattern. There were altogether 23 Primitive patterns, 3 Compound patterns, 15 Flow
and 29 Widget patterns that were captured during the course of this research.

680 A. Raj and V. Komaragiri

Info Compounds

Primitives

Triggers

User Goal

Tasks

Flows

Widgets

Graphics

Screens

Fig. 1. “A New Mobile UI Design Architecture Model” that details out the hierarchy of design
levels, starting from “User goals” all the way to “ Action-Triggers”

Table 1. Sample Widget pattern (Soft key Window)

Problem User needs to access additional functions that can be performed on a
screen.

Context For a given Screen, a User has more number of actions possible than the
maximum number of Soft keys.

Solution One of the options that can be accessed through a softkey can provide
gateway to multiple options. The User can move to these options and
select a desired one.

Rationale A limited number of Softkeys can be displayed at any one time. A
dedicated key cannot be assigned to each option because:
1) The options and their number keep changing depending on the screen.
2) The surface area of mobile is small and limited.
Using a single key to access a variable sized list allows for any number
of items to be accommodated.

Examples

Sub Title
Slideshow
<Option 2>
<Option 3>
<Option 4>
<Option 5>
<Option 6>

Close
Press Right Soft

Sub Title

View Options

Related
Patterns

Softkey, List, Scroll

 RUCID: Rapid Usable Consistent Interaction Design 681

Table 2. Sample Primitive Pattern (Type a Digit)

Problem Solution Constraint
User wants to
type a digit

[1]Press a Number
key
[2]Press & Hold a
Number key until
the
digit appears on the
screen
[3]Speak the digit
[4]Press Navigation
key (up/down) to
change digits

[1]User is in Numbers only mode. There is a
clear mapping between what User presses on
the keypad and what appears on the screen.
[2]User is in Normal Alpha or Rapid Entry
mode. Typing a digit in this mode may not be
intuitive but it is easy to learn.
[3]In current Phones it’s only used as feedback.
[4]This can be used when input allows a small
Numeric range (date, year, month etc.),
otherwise its time consuming.

Examples •Press a Number key to type digit in the Numbers only mode
• Press & Hold a Number key until the digit appears on the screen in
Normal Alpha or Rapid Entry mode
• In Voice Dial the digits are typed as one speaks
• In Set Alarm Press Navigation key (up/down) to change hours,
minutes

Related
Patterns

c1. Type a string

Table 3. Sample Compound Pattern (Type a String)

Problem Solution Constraint Child Patterns Example
[1]User wants
to type a
Numeric
string

[1] Press Number
keys, Navigate,
Delete

[1]User is in
Numbers only
mode

p1.Type a
Digit, p3.Delete
Character to the left
of cursor, p10.
Navigate left/right

p1.1,p3.1,p
10.1

[2],[3]User
wants to type
a
Alphabetic
string

[2]Press a key (2-
9) once for the
first alphabet,
twice for the
second alphabet,
and so on,
Navigate, Delete;
[3]Press0Next
key

[2]User is in
Normal Alpha
mode;
[3]User is in
Rapid Entry
mode. Rapid
Entry mode
checks its
dictionary of
common words
and guesses at
the word User is
trying to spell.

p2. Type an
Alphabet,
p3.Delete
Character to the left
of cursor, p10.
Navigate left/right;
p2.Type an
Alphabet

p2.1, p3.1,
p10.1;
p2.2

[4]User wants
to type a
Alphanumeric
string

[4]Press &
Release keys for
alphabets & Press
& Hold keys for
Numbers,
Navigate, Delete

[4]User is in
Normal Alpha
mode.

p1. Type a Digit,
p2.Type an
Alphabet,
p3.Delete
Character to the left
of cursor, p10.
Navigate left/right

p1.2, p2.1,
p3.1, p10.1

682 A. Raj and V. Komaragiri

Table 4. Sample Flow Pattern (Initiate)

Problem User needs to start an Application
Solution Constraint Child Patterns Example
[1]Go through the
Menu hierarchy

[1]This is most simple &
generic, though most time
consuming way.

p24. Access additional
screen functionality/
Options, c2.Scroll &
Select/p7.2 Select menu
items by pressing digits
on Num keys

p24.2,
c2/P7.2

[2]Use Shortcuts [2]User is in the Standby
mode. Using keypad
Shortcuts is faster than
using Menus. But it’s not
possible to have shortcut for
every Application.

p18.Quick access
(in Standby)

p18.1

[3]Accept Alert [3]When the User accepts
an alert it takes her to the
respective Application. This
is applicable to very few
Applications & is not a
direct User action.

p24.Access additional
screen
functionality/
Options

p24.2

[4]Initiate an
Application through
another

[4]User is already in an
Application. Through
Softkey Window the User
initiates another
Application. Such
Applications generally
compliment each other.

p24.Access
additional screen
functionality/
Options, c2.Scroll
& Select

p24.1,
c2.1

[5]Type a Contact
num, then choose to
initiate Call or Send
message

[5]User is in standby. Only
applicable to Messaging and
Calling.

c1, (p12.Create
outgoing call)/
(p24.Access
additional screen
functionality/
Options, c2.Scroll
& Select)

c1,
(p12.1)
/(p24.1,
c2.1)

3 The Prototype

In this section, the part of the problem statement for this research paper is addressed -
the design and development of a tool that interaction designers can use to perform
rapid, usable, consistent interaction design.

The design, details and use of the tool for mobile phone feature design is outlined.
The tool is based on the pattern-based UI Design Library sampled in the previous
section. In order to make efficient use of the patterns library however a platform is
needed. Visio is a diagramming program that can help to create business and technical
diagrams that document and organize complex ideas, processes, and systems. Visio
seemed like a suitable platform for using the captured pattern for various reasons:

1. Shape libraries can be easily created with Visio tools.
2. New template can be created from a drawing file or from an existing template by

assembling diagrams by dragging predefined shapes.

 RUCID: Rapid Usable Consistent Interaction Design 683

3. Reviewers’ comments and changes to shapes can be tracked using the review
mode.

4. Visio can be integrated with Microsoft Office Excel, Microsoft Office Word,
Microsoft, and other formats.

Once we identified patterns at each level (Primitive, Compound, Flow, Widget),
Visio templates were created for each level of the mobile phone architecture. We built
a design vocabulary. Higher levels templates for example Screen could be constructed
from lower levels like Widgets. The application will facilitate in effective and
efficient designing of Screens and task flows of newer applications by just dragging
and dropping existing UIs and Interactions. Revision and iterations are also easier,
whenever a shape or a whole template is added to the tool.

The tool follows hierarchical method of design on which our research is based on.
If we take an application, application has some goals. Theses goals can be broken
down into tasks. Task can be broken down into UIs (Widgets, Screen) and
Interactions (Flows, Compound, and Primitives). Thus the whole application can be
constructed using this tool.

3.1 Sample Application (Slideshow) to Explain the Prototype

User Goal: View Camera Picture In slideshow
Tasks:

1. Launching Slideshow from image browser
2. Pausing/Continue the Slideshow
3. Skip to “Next/Previous Image”
4. Set Transition duration
5. Enable/Disable Looping
6. Exit Slideshow

We take 1st Task i.e. “Launching Slideshow from image browser” and try to construct
it through our prototype. This is an instance of Initiate Flow. If it was available we
would just need to drag the shape from Intimate template and put customized labels
for the Screens & Flows. However let’s assume that the Flow was not available and
therefore try to construct it from scratch from the available Widgets and Actions.

Fig. 2. Starting screen

Templates:
• Basic Flowchart Shapes
• Primitive action
• Compound action
• Widgets
• Screens
• Flows

Shapes under Templates folder

684 A. Raj and V. Komaragiri

Table 5. Task1 (Launching Slideshow from image browser)

1 2

3 4

5

6

7

 RUCID: Rapid Usable Consistent Interaction Design 685

Steps:

1. Drag Image browser shape from the Widget template
2. Put appropriate labels to the Image Browser
3. Drag the Access Additional Screen Functionality/Options shape from the Primitive

action Template
4. Choose the most appropriate action in the given Constraint
5. Drag the Softkey window from the Widget. The new component gets attached to

an appropriate place through the connectors
6. Put appropriate labels to the Softkey Window
7. Drag the Image shape from the Screen Template and make customization to the

labels and the layout

In the same way rest of the tasks can be constructed. Later this Flow can be added
as a shape to the Initiate template after getting it reviewed by the design team.

4 RUCID Testing, Analysis and Future Improvement

Peer reviews were conducted from time to time throughout the research and feedback
was fed into the next course of the research.

Finding people to test with were not difficult because the people going to use the
tool were the fellow interaction designers. However it was difficult to find time from
their busy schedules. Some basic usability testing was conducted. The Visio prototype
was very close to the actual envisioned tool.

The Scenario given to the User was same as in the prototype shown earlier in the
paper i.e. to Create the Slideshow application using the tool. Since they were already
acquainted with Visio they could easily operate it. They felt that the tool gave a lot of
control and freedom in the designer's hands. They recommended on adding some
more Microsoft Office Visio templates, such as Basic Flowchart Shapes, which will
be helpful in making flow diagrams and adding comments. They felt only the generic
design should be laid out through the Visio tool. When the task flows with the
Screens are made it will have references to particular chapter in the generic UI
specification, where the guideline is laid out. This way the patterns will complement
the design guidelines.

However a pattern based approach to UI design can go beyond the Visio templates
or even more customized specification tool. If the specification is actually done in
something like Flashlite, and the patterns are codified in FlashLite, the designer can
leverage a lot of the common elements of design and finally the specification output
actually becomes the UI for the phone and the Flashlite version of the design can just
be loaded upon a phone. There is no need for additional software development at least
on the UI side.

Individual patterns and the language as a whole can be refined by tapping into the
broad expertise of the Kyocera design staff by discussing and gathering their
collective wisdom. The library of patterns can be converted into a workable set of
standards by agreeing on an appropriate rating scale and by assembling a
representative group of reviewers who rate the content according to the same criteria.

686 A. Raj and V. Komaragiri

5 Conclusion

Ultimately, we expect the patterns-based UI Design library and the process and tool
that it facilitates, will result in a strengthened Kyocera User Interface design and
brand and a more efficient design staff.

A patterns-based approach has a better chance because of its inherent modularity
which the tool is able to take advantage of.

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the same
way twice” (Alexander et al., 1977. p.x).

The patterns created as part of this project have still some distance to cover in
terms of rigor and validation to justify Alexander’s description above. But we believe
they form a promising and important first step in that direction.

Future technologies like uiOne [11], Flashlite are a fertile field for the extension of
the patterns based approach. The UI design library makes is convenient to constantly
evolve the various elements of design and to seamlessly integrate innovative elements
into the future phone features as a normal part of the design process. In fact, it should
be possible to write parsers that would read a Visio file and produce Flashlite scripts
or uiOne triglets that could potentially be directly loaded onto a phone as its User
Interface. This removes the indirection involved in implementing a design. The
interaction designer is able to control the actual look, usability of a feature on a phone
directly. That would be a very good goal to achieve.

References

1. Cooper, A., Reimann, R.: Essentials of Interaction Design. About face 2.0
2. Alexander, C.: A Pattern Language
3. Implementing a Pattern Library in the Real World: A Yahoo! Case Study
4. van Welie, M., van der Veer, G.C.: Pattern Languages in Interaction Design: Structure and

Organization
5. Vora, P., Castillo, J.: Using Patterns to Design Usable Interfaces for Web Applications.

Alpha Cube, Inc. (June 29, 2005)
6. Todd, E., Kemp, E., Phillips, C.: What makes a good User Interface pattern language?
7. Tidwell, J.: COMMON GROUND: A Pattern Language for Human-Computer Interface

Design, http://www.mit.edu/~jtidwell/Interaction_patterns.html
8. van Welie, M.: Patterns in Interaction Design, http://www.welie.com/
9. Yahoo Design Pattern Library, http://developer.yahoo.com/ypatterns/

10. Forum NOKIA, http://forum.nokia.com/
11. uiOne, http://brew.qualcomm.com/brew/en/about/uione.html

	RUCID: Rapid Usable Consistent Interaction Design Patterns-Based Mobile Phone UI Design Library, Process and Tool
	Introduction
	Current Mobile Phone Interaction Design Process
	Proposal to Solve Usability, Consistency and Time-to-Market Constraints

	RUCID Basics
	The Prototype
	Sample Application (Slideshow) to Explain the Prototype

	RUCID Testing, Analysis and Future Improvement
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

