
Asynchronous Timed Web Service-Aware

Choreography Analysis

Nawal Guermouche and Claude Godart

LORIA-INRIA-UMR 7503
F-54506 Vandoeuvre-les-Nancy, France

{Nawal.Guermouche,Claude.Godart}@loria.fr

Abstract. Web services are the main pillar of the Service Oriented
Computing (SOC) paradigm which enables applications integration
within and across business organizations. One of the important features
of the Web services is the choreography aspect which allows to capture
collaborative processes involving multiple services. In this context, one of
the important investigations is the choreography compatibility analysis.
We mean by the choreography compatibility the capability of a set of
Web services of actually interacting by exchanging messages in a proper
manner. Whether a set of services are compatible depends not only on
their sequences of messages but also on quantitative properties such as
timed properties. In this paper, we investigate an approach that deals
with checking the timed compatibility of a choreography in which the
Web services support asynchronous timed communications.

Keywords: Web service, Timed properties, Asynchronous timed Com-
patibility analysis.

1 Introduction

The evolution of computer science technologies gives life to many paradigms
such as the Service Oriented Computing (SOC) paradigm. In this latter, Web
services are the main pillar. Based on standard interfaces, Web services facilitate
application-to-application interaction. This advantageous property gives rise to
several important concepts such as the choreography concept. This feature of-
fers the possibility to capture collaborative processes involving multiple services
where the interactions between these services are seen from a global perspective.
In this context, one of the important elements is the compatibility analysis. By
compatibility we mean the capability of a set of services of actually fulfilling
successful interactions by exchanging messages.

In the last few years, few works have investigated the compatibility problem
of a client and a provider service [4,2,13,9,7]. In all these works, the authors
deal with services that support synchronous communications. In that case, to
characterize the compatibility class of two services, the authors check if each
input (resp. output) message of a service corresponds to an output (resp. input)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 364–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Asynchronous Timed Web Service-Aware Choreography Analysis 365

message of the other service in the same order (i.e., the services are synchronized
over messages). However, the nature of distributed systems and particularly the
Web services could be asynchronous, hence the problem of the applicability of
these approaches in real application scenarios is still open. To overcome such
limitations, in this paper, we tackle the problem of analyzing the compatibility
of a choreography in which the Web services support asynchronous communica-
tions. In an asynchronous communication, when a message is sent, it is inserted
to a message queue, and the receiver can consume it later from the queue.

It is commonly agreed that in general the interaction of Web services and
in particular the compatibility of Web services depend not only on the sup-
ported sequences of messages but also on crucial quantitative properties such
as timed properties [2,11,10,13,9,7,8]. We mean by timed properties the neces-
sary delays to exchange messages (e.g., in an e-government system to manage
handicapped pension requests, a prefecture must send its final decision to grant
an handicapped pension to a requester after 168 hours and within 336 hours).
There are some works that tried to consider timed properties when analyzing the
compatibility of two synchronous services [2,13,9,7]. However, dealing only with
synchronous services decreases considerably the feasibility and the applicability
of these approaches.

In this paper, we propose a framework for analyzing the choreography compat-
ibility. This framework supports asynchronous communicating services. In our
framework we take into account data flow that can be involved when exchanging
messages. Furthermore, we consider timed properties that specify the necessary
delays to exchange messages. By studying the possible impacts of timed prop-
erties on a choreography, we remark that when the Web services are interacting
together, implicit timed dependencies could be built between the different timed
properties of the different services. Such dependencies could give rise to implicit
timed conflicts. To discover such timed conflicts, we first study the possibility to
apply the proposed compatibility approaches of synchronous services [2,13,9,7],
and we have remarked that the existing approaches are inadequate to discover all
the eventual timed conflicts since the authors rely on synchronizing the services
over messages. In order to catch all the possible timed conflicts, in this paper
we rely on the clock ordering process we have proposed in some earlier work on
Web service composition [8]. The clock ordering process aims at making explicit
the eventual implicit timed conflicts when services are interacting together.

To summarize, in this paper we make the following contributions: (1) we pro-
pose an asynchronous model of Web services that takes into account messages,
data types and timed requirements. (2) unlike existing compatibility frame-
works, we propose primitives for analyzing and characterizing the compatibil-
ity class of a choreography in which the services support asynchronous timed
communications.

The reminder of the paper is organized as follows. Section 2 presents the
e-government case study that we use to show the related issues of the pro-
posed approach. In Section 3 we present how we model the timed behavior of

366 N. Guermouche and C. Godart

Web services. For better understanding, in section 4, we discuss informally and
intuitively the timed compatibility problem of a choreography. Section 5 presents
the formal choreography compatibility investigation we propose. An illustrative
example using the e-government scenario is given in Section 6. In Section 7, we
discuss related work. Finally section 8 concludes.

2 Case Study: e-Government Application

Let us present a part of an e-government application that we use at the end to
illustrate our approach. The goal of the e-government application we consider
is to manage handicapped pension request. Such a request involves three Web
services: (1) requester service (RS), (2) health authority (HS) service, and (3)
prefecture service (PS). The high level choreography model of the process is
depicted on Fig. 1. To grant an handicapped pension to a requester, the process
can be briefly summarized as follows. (1) via a requester service, a citizen deposits
a file in the prefecture, (2) the citizen requests a medical file from the health
authority service. (3) The health authority negotiates a date for an appointment
to examine the citizen. (4) after the examination, the health authority service
sends a medical report to the prefecture. (5) after studying the received file and
the medical report, the prefecture sends the notification of the final decision to
the citizen.

The interaction between these partners is constrained by timed properties.
Below, we give some timed requirements.

– Once the health authority service proposes meeting dates to the citizen, the
health authority service must receive the filled form within 24 hours.

– The prefecture requires at least 168 hours and at most 336 hours since re-
ceiving the file from the requester to notify the citizen with the final decision.

– Via the requester service, once the citizen obtains the medical form, he must
send the filled form within 36 hours.

The Web services we consider could support asynchronous communications.
The first issue we deal with is how to analyze the compatibility of a choreogra-
phy in which the Web services are asynchronous? Moreover, the behavior of the
Web services might be constrained by timed requirements. In order to manage

Fig. 1. Global view of the e-government application

Asynchronous Timed Web Service-Aware Choreography Analysis 367

the global interaction between the Web services (i.e., to ensure that the chore-
ography is deadlock free), we need primitives that consider timed properties
when analyzing the compatibility of Web services. Thus, the second issue we
handle is how to consider timed properties when analyzing the compatibility of
asynchronous services in a choreography?

3 Modeling Timed Behavior of Web Services

One of the important ingredient in a compatibility framework is the timed con-
versational protocol of Web services. In our framework, the timed conversational
protocol specifies the sequences of messages a service supports, the involved data
flow and the associated timed properties to exchange messages. We adopt a finite
state machine based formalism to model the timed behavior of Web services (i.e.,
the timed conversational protocol). Intuitively, the states represent the different
phases a service may go through during its interaction. Transitions enable send-
ing or receiving a message. An output message is denoted by !m, whilst an input
one is denoted by ?m. A message involving a list of data types is denoted by
m(d1, . . . , dn), or m(d̄) for short. To capture the timed properties when modeling
Web services, we propose to use the standard timed automata clocks [1]. The
automata are equipped with a set of clocks. The values of these clocks increase
with the passing of time. Transitions are labeled by timed constraints, called
guards, and resets of clocks. The former represent simple conditions over clocks,
and the latter are used to reset values of certain clocks to zero. The guards
specify that a transition can be fired if the corresponding guards are satisfiable.

Let X be a set of clocks. The set of constraints over X , denoted Ψ(X), is
defined as follows:

true | x �� c | ψ1 ∧ ψ2, where ��∈ {≤, <,=, �=, >,≥}, x ∈ X , ψ1, ψ2 ∈ Ψ(X),
and c is a constant.

Definition 1. (Timed conversational protocol)
A timed conversational protocol of a Web service Q is a tuple (S, s0, F,M,X, T)
such that:
S is a set of states, s0 is the initial state (s0 ∈ S), F is the set of final states

(F ⊆ S), M is a set of messages, X is the set of clocks, T is a set of transitions
such that T ⊆ S×M ×Ψ(X)×2X×S, with an exchanged message that involves
data types (?m(d): input message, !m(d):output message), a guard over clocks,
and the clocks to be reset.

A transition (s, a, ψ, Y, s′) is denoted by s→a
ψ,Y s′.

A trace is a sequence of transitions leading to a final state, denoted as follows:
s0 →α0

ψ0,Y0
s1 →α1

ψ1,Y1
. . .→αn−1

ψn−1,Yn−1
sn where sn is a final state.

The semantic of the former is defined using a transition relation over configura-
tions made of a state and a clock valuation. The clock valuation is a mapping
u : X → T from a set of clocks to the domain of timed values. The mapping u0

368 N. Guermouche and C. Godart

denotes the (initial) clock valuation, such that ∀x ∈ X,u0(x) = 0. Initially, the
queue of the services are empty.

A service remains in the same state s without triggering a transition, when the
time increments, if there is no transition (s, α, ψX , Y, s′) such that the timed con-
straints ψX are satisfied, where ψX ⊆ Ψ(X) and α is either an output message
!m(d) or an input message ?m(d) which is available in the queue. In an asyn-
chronous communication, when a message is sent, it is inserted to a message
queue, and the receiver consumes (i.e. receives) the message while it is available
in the queue.

Definition 2. (Semantic of timed conversational protocol)
Let P = (S, s0, F,M,X, T) be a conversational protocol. The semantic is defined
as a labeled transition (Γ, γ0,→), where Γ ⊆ S ×VT is the set of configurations,
such that VT is a set of timed valuations, γ0 = (s0, u0) is the initial configuration,
and → is defined as follows:

– Elapse of time: (s, u) tick→ (s, u+ δ)
– Location switch: (s, u) α→ (s′, u′), if ∃t = (s, α, ψX , Y, s′) such that u ∧ ψX

are satisfiable and ∀y ∈ Y, u′(y) = 0, ∀x ∈ X\Y, u′(x) = u(x), where Y ⊆ X,
and
- If α =!m(d), Que := Que+m(d)
- If α =?m(d), and m(d) ∈ Que, Que := Que−m(d)

The timed conversational protocols of the three services introduced in Section 2
are depicted on Fig. 2. Next, we will present the intuition behind the choreog-
raphy compatibility problem.

Fig. 2. Web services

Asynchronous Timed Web Service-Aware Choreography Analysis 369

4 Timed Compatibility Problem

In this section, by using examples, we discuss informally and intuitively the
timed choreography compatibility problem and the related issues. Then, in the
next section, we present the formal investigation we propose.

Example 1. Let us first consider the two untimed conversational protocols of the
two services Q and Q′ depicted on Fig. 3. In spite that both services cannot pro-
duce and consume their messages in the same order, the two asynchronous ser-
vices are fully compatible. The serviceQ starts by sending the messagem0(d0, d1)
which becomes available in the queue of Q′. On the other side, Q′ sends the mes-
sage m2(d3). After that, Q′ consumes the message m0(d0, d1) then it sends the
message m1(d2). Once the message m1(d2) is sent, it is added to the queue of
Q. Therefore, Q can consume the message m1(d2) and then the message m2(d3).
By using the existing work, these two services are considered as incompatible
although they can succeed an execution. In fact, the proposed frameworks (e.g.,
see [4,2,13,9,7]) deal only with synchronous communicating services.

Fig. 3. Untimed asynchronous Web services

Augmenting the conversational protocol of asynchronous services by timed
properties lays important challenges. Particularly, the clocks used to define timed
properties are local and mutually independent. At the same time, in our work,
we do not assume that the timed properties are synchronized over messages.
Consequently, when services interact together, implicit timed conflicts can arise.
To illustrate this issue, in the following we present an illustrative example.

Example 2. Let us consider the two timed conversational protocols of the two
servicesQ andQ′ depicted on Fig. 4. The serviceQ starts by sending the message
m0(d0, d1). So this latter becomes available in the queue of Q′. On the other
hand, Q′ can send the message m2(d3) that can be stored in the queue of Q.
The service Q remains blocked, since the message m1(d2) is not yet available.
But Q′ can consume the message m0(d0, d1) which has been already sent by Q.
Once consumed, Q′ sends the message m1(d2) after 20 and within 40 units of
time from consuming the message m0(d0, d1) (i.e., 20 ≤ x ≤ 40). Consequently,
the message m1(d2) becomes available in the queue of Q after 20 units of time
from consuming the message m0(d0, d1). In that case, Q will be able to consume

370 N. Guermouche and C. Godart

the message m1(d2) after 20 units of time. Finally, Q must consume the message
m2(d3) within 10 units of time. However, this message can be consumed only
after consuming the message m1(d2), i.e., after 20 units of time. In fact, the
message m1(d2) can be sent (becomes available) by Q′ after 20 units of time.
So, the message m2(d2) must be consumed within 10 units of timed and at the
same time it is possible to consume it after 20 units of time which represents a
timed conflict.

Fig. 4. Incompatible timed asynchronous services

In order to catch the eventual timed conflicts in a choreography, we propose
the formal approach described in the following section.

5 Formal Compatibility Analysis

In the previous section, we have shown the need of formal primitives of analyzing
the timed choreography compatibility of asynchronous services. In general a
compatibility framework should be able to characterize the compatibility class
of Web services. But in addition, in case of compatibility, it is quite important to
characterize the deadlock free interaction schema of a choreography. When the
different services are interacting together, timed dependencies could be created
between their different timed properties. Therefore, we need mechanisms that
allow to catch the eventual implicit timed conflicts. In the following sections we
present respectively how we compute the interaction schema of a set of Web
services and how to discover the eventual timed conflicts when computing this
schema.

5.1 Building the Timed Choreography Interaction Schema

By having the set of conversational protocols of the involved services, our aim
is to build a global timed conversational protocol that specifies an executable
Timed Choreography Interaction Schema (TCIS). In order to build this TCIS,
we introduce the concept of configuration that represents the states of the TCIS
at a given time. A configuration defines the evolution of the services states when
they are interacting together. In the initial configuration, all the services are

Asynchronous Timed Web Service-Aware Choreography Analysis 371

in their initial states. Given a source configuration, the TCIS reaches a new
configuration when there exists one service that changes its state by exchanging
a message so that no timed conflicts arise. The process of discovering the eventual
implicit timed conflicts is presented in Section 5.2.

Definition 3. (Timed Choreography Interaction Schema (TCIS))
Let Qi(Si, s0i , Fi,Mi, Xi, Ti) to be a set of Web services for i = {1, . . . , n}.
The Timed Choreography Interaction Schema TCIS of Qi is defined as a tuple
(S, s0, F,M,X, T) such that
S = S1× . . .×Sn, s0 = s01 × . . .×s0n , F = F0× . . .×Fn, M = M0∪ . . .∪Mn,

X = X0 ∪ . . . ∪Xn, T ⊆ S ×M × Ψ(X) × 2X × S is defined as follows:
- (s1 . . . si . . . sn,m(d), ψ′

X , Y, s1 . . . s
′
i . . . sn) ∈ T if (si,m(d), ψX , Y, s′i) ∈ Ti

When we build a TCIS, we simulate the transactions of the queues of the services
by using one queue. By using the built TCIS, we can characterize each queue
transaction of each service. In order to build a TCIS, we propose the algorithm 1.

Algorithm 1: TCIS−Computing
Input: A set of Web services Qi = (Si, s0i , Fi, Mi, Xi, Ti), for i = {1, .., n}. Empty queue Que.
Output: TCIS = (S, s0, F, M, X, T)
begin

computedTr = T1 × . . . × Tn for i = {1, .., n}
while computedTr �= ∅ do

incompatibility=false
currentTr = {t1, . . . , tn} where ti ∈ Ti and {t1, . . . , tn} ∈ computedTr
computedTr = computedTr − currentTr
for each transition (si, m(d), ψi, Yi, s

′
i) of each trace ti ∈ currentTr do

if Cycle−Checked((si, m(d), ψi, Yi, s
′
i)) then

/*If the message m is an input message, then polarity(m) =? else polarity(m) =!*/
if (polarity(m) =′!′) or (polarity(m) =′?′ and m(d) ∈ Que) then

tcandidate = (s1 . . . si . . . sn, m(d), ψ, Y, s1 . . . s′i . . . sn)
if Clock−Order(tcandidate) then

T = T ∪ tcandidate

if polaritym(d) =! then

Que = Que + m(d)
else

Que = Que − m(d)

else
there is a timed conflict, tcandidate is not accepted,incompatibility=true

else

if polarity(m) =′?′ and m(d) /∈ Que then
The current message is not yet available. We choose another transition of another service.

else
The current message is not yet available. We choose another transition of another service.

if not incompatibility then
/*there are good traces*/
if Que �= ∅ then

There is an extra message. The current traces combination of the services are not compatible
else

The current traces combination of the services are compatible

else
The current traces combination of the services are not compatible

end

372 N. Guermouche and C. Godart

In the worse case, the algorithm 1 is exponential in time. In fact, in order to
check if a set of services are compatible, the cartesian product of the services
traces could be parsed.

The algorithm 1 considers cycles when analyzing the compatibility of a chore-
ography thanks to the algorithm 2.

Algorithm : Cycle−Checked

Input: a transition (s, m(d), ψ, Y, s′)
Output: boolean
begin

if s′ is already visited then
if polarity(m)=! then

/*The message could be sent infinitely*/
mark the message m(d)
return true

else

if m(d) ∈ Queue and m(d) is marked then
return true

else
return false

else
return true

end

2

5.2 Making Explicit the Implicit Timed Constraints Dependencies

In order to make explicit the dependencies between the timed properties when
building the TCIS, we use the clock ordering process we proposed in our previous
work on Web service composition directed by client data [8]. The clock ordering
process aims at defining an order between the different clocks of the different
services when they are interacting together. The idea behind the clock ordering
process is to define a total order between the different clocks of the services
for each new TCSA transition. To explain the idea behind the clock ordering
process, we use the following example.

Fig. 5. Making explicit the implicit timed conflicts

Asynchronous Timed Web Service-Aware Choreography Analysis 373

Example 3. Let us consider the two timed conversational protocols of the ser-
vices S and P depicted on Fig. 5. The service S can send the message m1(d1)
and resets the clock x. So we build the TCIS transition (s0q0, !m1(d1), x =
0, s1q0). Then, P sends the message m2(d1, d0). We build the TCIS transition
(s1q0, !m2(d1, d0), s1q1). After that, P sends the message m0(d0) and resets the
clock y. Since the clock x is reset before the clock y, hence we can define the order
y ≤ x. We build the corresponding TCIS transition (s1q1, !m0(d0), y = 0, y ≤
x, s1q2). As the message m1(d1) has been already sent by S, so P can consume
it so that 20 ≤ y ≤ 40. By propagating the order y ≤ x defined above, we built
the TCIS transition (s1q2, ?m1(d1), 20 ≤ y ≤ x, y ≤ 40, s1q3). Once the message
m1(d1) is consumed, P sends the messagem4(d4). On the other side, S consumes
the message m0(d0) that has been already sent by P . We build the TCIS tran-
sition (s1q4, ?m0(d0), s2q4). Then S consumes the message m2(d1, d0) that has
been already sent by P . We build the TCIS transition (s2q4, ?m2(d1, d0), s3q4).
Finally, S must consume the message m4(d4) within 10 units of time from send-
ing the message m1(d1). By propagating the order 20 ≤ y ≤ x we defined above,
we build the TCIS transition (s3q4, ?m4(d4), 20 ≤ y ≤ x ≤ 10, s4q4). The order
20 ≤ y ≤ x ≤ 10 presents a timed conflict, i.e., 20 ≤ 10 and it is not possible
to fire the transition (s3q4, ?m4(d4), 20 ≤ y ≤ x ≤ 10, s4q4) (i.e., the message
m2(d3) cannot be consumed). As remarked, without the timed propagation pro-
cess, the timed conflict could not be detected.

In order to define the clock ordering process, we are using the algorithm 3.

Algorithm : Clock−Order

Input: a transition (si, mi(d), ψi, Yi, s
′
i)

Output: boolean
begin

if si is the initial state then
return true

else
/*propagation of the constraints of the form x ≥ v (resp. x > v) of a predecessor transition over the
current transition*/
for each �i−1 ∈ ψi−1, such that �i−1 = x ≥ v or �i−1 = x > v of (si−1, mi−1(d), ψi−1, Yi−1, s

′
i−1) do

ψi = ψi ∪ �i−1

/*The value of the clocks reset in the current transition is smaller than the value of a clock reset in
the predecessor transition */
for each y = 0 ∈ Yi and z = 0 ∈ Yi−1 do

ψi = ψi ∪ y ≤ z

/*We propagate the order defined in the predecessor transition over the current transition*/
for each z1 ≤ z2 ∈ ψi−1 do

ψi = ψi ∪ z1 ≤ z2

if ∃ v ≤ y0 ≤ . . . ≤ yn ≤ v′ ∈ ψi where v′ < v then
return false

else
return true

end

3

374 N. Guermouche and C. Godart

5.3 Characterization of Compatibility Classes

Previously, we have shown how we can build a deadlock free TCIS. In this
section, we present how we can characterize the compatibility class of a set of
asynchronous Web services. Before that, let us present the subsumption and
crossing relations of protocols.

We say that a protocol Qi is subsumed by a given TCIS if each transition
of each trace of the protocol Qi belongs to the given TCIS. In the context
of our work, this means that for each transition (si, αi, ψi, Yi, s′i) of Qi, there
exists a transition (s1 . . . si . . . sn, α′

i, ψ
′
i, Yi, s1 . . . s

′
i . . . sn) of TCIS which can be

preceded by a sequence of messages.

Definition 4. (Protocol subsumption ⊆tcis)
Let TCIS=(S, s0, F,M,X, T) be a computed TCIS and Qi = (Si, s0i , Fi,Mi, Xi,
Ti) be a protocol of a Web service. We say that the TCIS subsumes Qi, denoted
Qi ⊆tcis TCIS if for each trace s0i →α0

ψ0,Y0
s1i →α1

ψ1,Y1
. . . sn−1i →αn−1

ψn−1,Yn−1
sni

in Qi, there exists a trace t: (s0 . . . sn)
ϑ0→ (s0, . . . s0i . . . sn) →α0

ψ′
0,Y0

(s0, . . . s1i

. . . sn) . . . → (s0, . . . sn)
ϑn−1→ (s0, . . . sn−1i . . . sn) →αn−1

ψ′
n−1,Yn−1

(s0, . . . sni . . . sn)
ϑn→ (s0, . . . sn) of TCIS such that for i = 0, . . . , n, (s0 . . . sn)

ϑi→ (s0 . . . sn) is a
(possibly empty) message sequence of TCIS.

We say that a protocol Qi crosses a given TCIS if there is at least one trace of
Qi which is subsumed by this TCIS. Next, we present the formal definition of
the crossing relation.

Definition 5. (Protocol crossing ∩tcis)
Let TCIS=(S, s0, F,M,X, T) be a computed TCIS and Qi = (Si, s0i , Fi,Mi, Xi,
Ti) be a protocol of a Web service. We say that Qi crosses the TCIS, denoted
Qi ∩tcis TCIS if ∃ s0i →α0

ψ0,Y0
s1i →α1

ψ1,Y1
. . . sn−1i →αn−1

ψn−1,Yn−1
sni in Qi, such

that there exists a trace t: (s0 . . . sn) ϑ0→(s0, . . . s0i . . . sn) →α0
ψ′

0,Y0
(s0, . . . s1i . . . sn)

. . . → (s0, . . . sn)
ϑn−1→ (s0, . . . sn−1i . . . sn) →αn−1

ψ′
n−1,Yn−1

(s0, . . . sni . . . sn)
ϑn→

(s0, . . . sn) of TCIS such that for i = 0, . . . , n, (s0 . . . sn)
ϑi→ (s0 . . . sn) is a

(possibly empty) message sequence of TCIS.

We say that a set of Web services constitutes a full compatible choreography if
each protocol of each service is subsumed by the TCIS. However, when there are
some traces that are subsumed by the TCIS and there are some traces that are
not subsumed by the TCIS, we say that the set of Web services constitutes a
partial compatible choreography. But, when the TCIS is an empty protocol, thus
we say that the set of Web services constitutes a full incompatible choreography.

Definition 6. (Choreography compatibility classes)
Let TCIS = (S, s0, F,M,X, T) be a computed TCIS of a set of Web services
Qi = (Si, s0i , Fi,Mi, Xi, Ti) for i ∈ {1, .., n}

Asynchronous Timed Web Service-Aware Choreography Analysis 375

– A set of Web services Qi for i = {1, .., n} are said to be fully compatible if
∀i ∈ {1, .., n}, Qi ⊆tcis TCIS

– A set of Web services Qi are said to be partially compatible if ∃i ∈ {1, .., n},
Qi �tcis Q and Qi ∩tcis TCIS

– A set of Web services Qi are said to be fully incompatible if TCIS = ∅.

6 Illustrative Example

By using the e-pension application we introduced in Section 2, let us now present
an illustrative example of how analyzing the compatibility of the correspond-
ing choreography. Initially, the three services client service (CS), prefecture ser-
vice (PS) and health authority service (HS) are in their initial states. That
means, the first TCIS configuration is (c0p0m0). From this configuration,CS en-
ables the transition (c0, !FileDeposite(file), c1). We build the TCIS transition
(c0p0m0, !FileDeposite(file), c1p0m0). From the configuration c1p0m0, CS en-
ables the transition (c1, !formClaim(sn, reason), c2). We build the TCIS tran-
sition (c1p0m0, !formClaim(sn, reason), c2p0m0).HS can consume the message
formClaim(sn, reason) which has been already sent by CS. Thus, we build the
TCIS transition (c2p0m0, ?formClaim(sn, reason), c2p0m1). The new configu-
ration becomes c2p0m1. From this latter, HS enables the transition (m1, !gett−
ingForm(form),m2). We can build the TCIS transition (c2p0m1, !gettingF−
orm(form), c2p0m2). After sending the message gettingForm(form),HS sends
the message meeting(proposeDates) and resets a clock z1. In that case, we
build the TCIS transition (c2p0m2, !meeting(proposeDates), z1 = 0, c2p0m3).
From the new configuration c2p0m3, CS can consume the available message
gettingForm(form) which is already sent by HS. Once consumed, the clock
x is reset. Since the clock z1 is reset before the clock x, hence we define the
clock order x ≤ z1. Then, we build the TCIS transition (c2p0m3, ?gettingForm

Fig. 6. TCIS of the e-pension application

376 N. Guermouche and C. Godart

(for− m), x = 0, x ≤ z1, c3p0m3). After that, CS can send the message
sendF illed− Form(filledForm) within 36 units of time (x ≤ 36). Regarding
the clock order x ≤ z1 we have defined above, we build the TCIS transition
(c3p0m3, !sendF ill− edForm(filledForm), 0 ≤ x ≤ z1, x ≤ 36, c4p0m3).

When the configuration c5p0m3 is reached, HS can consume the message
sendF illedForm(filledForm) which is already sent (regarding the built TCIS)
by CS. HS can consume the message sendF illedForm(filledForm) within 24
units of time (z1 ≤ 24). Regarding the order we have defined above, we de-
fine the order 0 ≤ x ≤ z1 ≤ 24 that we associate to the TCIS transition
(c5p0m3, ?sendF illedForm(filledForm), 0 ≤ x ≤ z1 ≤ 24, c5p0m4). By apply-
ing the same steps, we build the deadlock free TCIS depicted on Fig. 6.

According to this TCIS, the three services CS, PS, and HS are fully compat-
ible, since each protocol of each service is subsumed by the built TCIS. For ex-
ample, according to the trace p0 →?medicalReport(report,sn) p1 →?FileDeposite(file)

y1=0

p2 →!finalNotification(notif)
168≤y1≤336 p3 of PS, we can remark that each transition be-

longs to the trace of the TCIS. For example, if we consider the transition
(p0, ?medicalReport(report, sn), p1), we can see that from the TCIS initial con-
figuration c0p0m0, we can reach the configuration c6p0m7 that allows to fire the
transition (c6p0m7, ?medicalReport(report, sn), c6p1m7).

7 Related Work

Checking and analyzing in general the Web services features is an important
investigation [4,3,2,5,12,11,10]. Particularly, in this paper we are interested in
the compatibility analysis of a choreography in which the services support asyn-
chronous communicating services. In general, the compatibility problem is based
on analyzing message exchange sequences (conversations). In practice, other met-
rics affect the Web services compatibility, such as the kind of communication
(synchronous or asynchronous) the services support. Besides, quantitative prop-
erties such as timed constraints plays a crucial role in Web services interaction.

In [4,3], the authors consider the sequence of messages that can be exchanged
between two synchronous Web services. But, considering only message exchange
sequences is not sufficient. To succeed a conversation, other metrics can have
an impact such as timed properties which are not considered in [4,3]. Another
important remark is that in [4,3], the authors consider synchronous Web services.
Such assumption is very restrictive since the nature of Web services can be
asynchronous. To overcome this limitation, we propose a compatibility checking
approach for timed asynchronous services.

The compatibility framework presented in [12,13], that is an extension of the
framework presented in [2], considers a more expressive timed constraints model.
Although powerful, in some cases, the compatibility framework cannot detect
some timed conflicts due to non-cancellation1 constraints. In fact, the authors
1 In [13] the non-cancellation constraints are called C-Invoke. They specify a time win-

dow within which a given message can be fired. Outside the window, the transition
is disabled (exchanging the message results in an error).

Asynchronous Timed Web Service-Aware Choreography Analysis 377

deal only with synchronous communicating services. Thus, to discover timed
conflicts, the authors are based on synchronizing the corresponding timed prop-
erties over messages. Therefore, this framework cannot be applied to discover
the eventual timed conflicts in case of asynchronous Web services.

In [6], the authors handle the timed conformance problem which consists in
checking if a given timed orchestration satisfies a global timed choreography. In
this framework, the authors propose to deal with timed cost (i.e., the delay)
of operations. According to our work, our aim is to detect conflicts that can
arise when a set of Web services are interacting altogether. Whilst, [6] is not
interested in analyzing the compatibility of a choreography but in checking if
a given orchestration conforms to a choreography. So, one of the assumption is
that the choreography does not hold timed conflicts.

We would like to mention that we are not using the techniques that have
been proposed in the context of timed automata such as building region au-
tomata since the protocols of the services could be huge, consequently, building
the structures such as region automata could be very complex and very huge.
Moreover, in the context of our work such structure that gives rich information is
not required. Whilst, by using the clock ordering process we are just defining an
order between the different clocks in order to make explicit the eventual implicit
timed conflicts.

8 Conclusion

In this paper, we presented a formal framework for analyzing the compatibility
of a choreography. Unlike the proposed approaches, this framework caters for
timed properties of asynchronous Web services. We presented how to model the
timed behavior of Web services. To model timed properties, we propose to use
the standard clocks of standard timed automata. In a choreography, when the
services are interacting together, implicit timed dependencies can arise which
could give rise to timed conflicts. We used the clock ordering process to discover
such conflicts.

In a compatibility framework, it is important to characterize the executable
interaction schema. To do so, we proposed an algorithm that allows to compute the
timed choreography interaction schema of a set of Web services that can support
asynchronous communications. We presented the clock ordering process that aims
at discovering implicit timed conflict in a choreography. By using the mechanisms
we proposed, we presented classes of timed choreography compatibility.

In our future work, we are interested in analyzing the compatibility of a
choreography in which the instances of the involved services is not known in
advance. Our aim is to provide primitives for defining dynamically the required
instances for a successful choreography. Moreover, we plan to extend the pro-
posed approach to support more complex timed properties when analyzing the
compatibility of a set of Web services.

378 N. Guermouche and C. Godart

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of
web service protocols. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520. Springer, Heidelberg (2005)

3. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In: 23rd International Conference on Conceptual Modeling (November
2004)

4. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

5. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Verification of
web services with timed automata. In: Proceedings of the International Workshop
on Automated Specification and Verification of Web Sites (WWV 2005). ENTCS,
vol. 157, pp. 19–34 (2005)

6. Eder, J., Tahamtan, A.: Temporal conformance of federated choreographies. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp.
668–675. Springer, Heidelberg (2008)

7. Guermouche, N., Godart, C.: Timed model checking based approach for compati-
bility analysis of synchronous web services. Research report (2008)

8. Guermouche, N., Godart, C.: Timed properties-aware asynchronous web service
composition. In: Proceedings of the 16th International Conference on Cooperative
Information Systems (CoopIS 2008), Monterrey, Mexico, November 9-14, 2008, pp.
44–61 (2008)

9. Guermouche, N., Perrin, O., Ringeissen, C.: Timed specification for web services
compatibility analysis. In: International Workshop on Automated Specification and
Verification of Web Systems (WWV 2007), San Servolo island, Venice, Italy, De-
cember 14, 2007, pp. 155–170 (2007)

10. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and com-
putation of timed properties in web service compositions. In: Proceedings of the
IEEE International Conference on Web Services (ICWS), pp. 497–504 (2006)

11. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Timed modelling and analysis in web
service compositions. In: Proceedings of the The First International Conference on
Availability, Reliability and Security, ARES, pp. 840–846. IEEE Computer Society
Press, Los Alamitos (2006)

12. Ponge, J.: A new model for web services timed business protocols. In: Atelier
(Conception des systèmes d’information et services Web) SIWS-Inforsid) (2006)

13. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and
replaceability analysis of timed web service protocols. In: Parent, C., Schewe, K.-
D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 599–614.
Springer, Heidelberg (2007)

	Asynchronous Timed Web Service-Aware Choreography Analysis
	Introduction
	Case Study: e-Government Application
	Modeling Timed Behavior of Web Services
	Timed Compatibility Problem
	Formal Compatibility Analysis
	Building the Timed Choreography Interaction Schema
	Making Explicit the Implicit Timed Constraints Dependencies
	Characterization of Compatibility Classes

	Illustrative Example
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

