
Composing Time-Aware Web Service Orchestrations

Horst Pichler, Michaela Wenger, and Johann Eder

University of Klagenfurt, Department of Informatics-Systems, Austria�

Abstract. Workflow time management deals with the calculation of temporal
thresholds for process activities, which allows forecasts about looming deadline
violations. We present a novel approach to transform a web service orchestra-
tion into a time-aware orchestration, that contains temporal assessment and in-
tervention logic. During process execution intervention strategies are triggered
pro-actively to speed up a late process and to avoid upcoming violations of tem-
poral constraints.

1 Introduction

Web service orchestrations are used to assemble processes from external processes and
web-services to implement business processes. Expected process execution times and
compliance to agreed upon deadlines rank among the most important quality measures
[5,1]. To speed up processes and decrease the number of deadline violations should
therefore be among the major objectives of business process management. This can be
achieved by the application of workflow time management [17]. It deals with temporal
aspects of time-constrained processes and aims at optimized, timely, and violation-free
process execution. Based on explicit knowledge about process structure, activity dura-
tions, and deadlines it is possible to calculate temporal thresholds (internal deadlines)
for each activity of a process. During run time, these thresholds are utilized to monitor
the progress, forecast looming deadline violations, and to pro-actively trigger interven-
tion strategies which speed up the remainder of the process, like skipping of optional
activities, choosing alternative shorter paths, substituting activities, etc.

Time management approaches have mainly dealt with modelling of temporal aspects,
checking satisfiability of temporal constraints, scheduling, and so on. The basic con-
cepts of intervention strategies have been described (see Section 2), but how to model,
implement, and apply them on process definitions and within process instances is still
open. Suggested realization of time management functionality requires new process
definition elements and additional logic within the process engine.

Our main goal is to close the gap between build and run-time concepts and enable
time management for long-running web service orchestrations. The novel contribution
of our approach is that we do not propose an extension of the process enactment service
but make the process itself time aware and capable of triggering pro-active measures. So
time-aware information systems can be realized without waiting for vendors to comple-
ment their process enactment services with up-to-date time management capabilities.

� Part of this work has been supported by EU Commission within the FET-STREP Project WS-
Diamond.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 349–363, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

350 H. Pichler, M. Wenger, and J. Eder

BPEL Process
Definition

Temporal
Information

Intervention
Information

Process Graph

Timed Process
Graph

Time-aware BPEL
Process Definition

1
2

3

3 Process Engine

Time-aware Process

deploy

A CB
3

1

Fig. 1. Generation of a Time-aware Process Definition

The architecture of our approach is shown in Figure 1. Inputs to the process are
a process model (in our realization a BPEL process definition), a representation of
explicit temporal information (durations and deadlines) and a representation of inter-
vention strategies. From the process model, augmented with temporal information, we
calculate particular internal deadlines for all activities. Then we use this timed process
graph and the intervention information to extend the process model with 2 aspects: (a)
temporal state assessment and (b) intervention logic. Temporal state assessment moni-
tors the execution of the process and compares the execution times with pre-calculated
thresholds. If the process is not running within its tolerance, exceptions are raised. The
intervention logic reacts to these exceptions and enables changes to the original pro-
cess logic with the goal to regain a safe execution state. This results in an extended
time-aware process with self-healing capabilities which can then be executed on any
enactment service of that process model type.

To be more concrete we instantiated this general approach for WS-BPEL. How-
ever, this approach can be easily ported to any commercial workflow system, which
supports exceptions and timed triggers in it’s proprietary control flow language. Some
more assumptions: we focus on long-running processes with asynchronous communi-
cation structures that take hours, days or even weeks, where the execution time of the
process logic is negligible compared to the processing time of the individual activities.

The remainder of the paper is organized as follows: Section 2 provides an overview
of related work and describes time management basics. Section 3 gives an overview
of elements in a BPEL process definition and shows how to transform it into a graph
representation, a prerequisite for the calculation of the timed graph in Section 4. In Sec-
tion 5 we show how to define intervention and state assessment information. Section 6
describes how to transform the original definition into a time-aware process definition,
based on the timed graph and intervention information. Finally we discuss our prototype
and complexity in Section 7, and conclude the paper with Section 8.

2 Related Work

Workflow time management architectures, as sketched in [9] or [14], consist of sev-
eral components. [9] proposes a build time component that takes a control flow model
and temporal information about activity duration and time constraints as input, and

Composing Time-Aware Web Service Orchestrations 351

calculates thresholds for each activity in the process. The calculation of thresholds is
frequently rooted in techniques based on temporal constraint networks to model and
verify temporal information [12,19], others utilize project planning methods [13,11,19].
All these techniques apply variants of interval-timed graph-based models, which can
also be used to calculate schedules for workflow execution. A node represents an ac-
tivity or its start/end-event, edges represent precedence, constraints between nodes, and
intervals are used to describe valid time frames for the execution of an activity or oc-
currence of an event. In this paper we adopted the approach of [10]. They extend the
temporal model of [11] for asynchronous messaging patterns, an important prerequisite
in web service environments (see also [18]). During run time a prediction component [9]
correlates and compares time stamps of start and end-events with precalculated thresh-
olds of corresponding activities. Based on this comparison the temporal state can be
assessed, for example with the traffic-light model introduced in [17], or the duration
and instantiation space model introduced in [15]. Delays, caused by unexpected wait-
ing times or longer execution durations, will change the temporal state of the process.
According to this state a proactive component [9] has to select intervention strategies
that trigger actions within the process engine to speed up the process. Proactive inter-
vention strategies, aiming at speeding up the process, may be applied according to the
current temporal state to avoid looming deadline violations.

In this paper we apply intervention strategies that can be realized by implementing
them within the process definition, like skipping optional tasks, execution of alterna-
tive paths or the parallel execution of sequential activities (see [22,11,8,16] for basic
descriptions). Furthermore, we utilized an adaptation of the technique described in [6]:
early escalation, which terminates a late process immediately, if the cost of finishing
it, is higher than immediate escalation followed by termination. More escalation strate-
gies, which can not be realized by changing the process definition, can be found in [8].
This includes load balancing strategies like resource redeployment (e.g., add resource
capacity) or grouping similar tasks to batches to decrease the task preparation time.
The closest approach to our’s is [8] where time-awareness is also integrated into the
process definition itself, by extending it with hard-coded conditional structures. Such
a structure could for example be ”if (process late) then {perform two reviews} else
{perform three reviews}”. Naturally, the statement ”process late” must be specified as
a state-assessment expression, that compares time stamps of events (start or end of an
activity) with a precalculated thresholds. The disadvantages of such an approach are
obvious. Defining the process gets more complex as the designer has to specify state
assessment mechanisms and temporal exception handling parts. New duration estima-
tions or changed deadlines alter the thresholds, resulting in manual adaptations of the
assessment expressions. Furthermore, intervention strategies for late processes may be
added, changed or removed, which alters the process structure. And finally, with such a
”passive” approach it is not possible to handle activities that block process execution.

Specific temporal aspects of web service environments where examined in, e.g.,
[20,21]. [20] uses temporal abstractions of business protocols in a finite state machine
formalism and [21] exploits an extension of a timed automata formalism for modeling
time properties of web services. However, these approaches aim primarily at service
compatibility, therefore proved to be unsuitable for our purposes.

352 H. Pichler, M. Wenger, and J. Eder

3 Process Representations

In this section we describe the elements of BPEL (the process definition language of
our realization), show how to transform it to a graph representation and augment it with
temporal information, and describe subsequent timed graph calculations.

3.1 BPEL Representation

The original process is defined in WS-BPEL, also known as BPEL 2.0, which provides
the following elements:

Declarative Elements to specify the environment of the process, like links to web ser-
vices (partner links), process variables, or correlation sets.

Basic Activities for the communication with web services: invoking or sending a mes-
sage to a web service with invoke; receive a message from an external service; send
a reply to an external service (as answer to a prior receive). Furthermore, activities
to assign a value to a variable, delaying execution with wait, doing nothing with
empty, and explicit termination with exit.

Structured Activities which define the control flow of the process by nesting of basic
or structured activities: sequence for sequentially executed activities; if for condi-
tional exclusive execution of activities; flow for parallel execution; while, repea-
tUntil and forEach for iterative execution; and pick for conditional execution based
on the type of a received message. Additionally it is possible to declare event and
fault-handlers within scopes, which handle thrown faults and raised events.

Some activity-types delay process execution because they wait for something (e.g.,
an incoming message). Therefore we consider the basic activities receive and pick as
blocking. Furthermore, every structured activity is considered as blocking, if it contains
a blocking basic or structured activity. The left-hand side of Figure 2 shows the skeletton
of a BPEL process definition. To identify specific activities within a process definition,
we use the name-attribute, an attribute that can be added to any BPEL-element. Note
that this paper focuses on the regular flow in block-structured processes, therefore we
do not consider flows with links and exception handlers.

3.2 Process Graph

According to [10] and as visualized in Figure 2, a process graph consists of named
nodes (rectangles with labels) connected by edges, which describe precedence con-
straints (solid arrows). Each node has a type (label above or below a node), which can
either be activity (act) or an opening or closing node-type for structured elements: se-
quential execution of elements (seq-start, seq-end), 1-out-of-n exclusive conditional ex-
ecution (xor-split, xor-join), parallel execution of a several paths (and-split, and-join),
and the process itself (proc-start, proc-end). Furthermore, asynchronous communica-
tion relationships between invoking and receiving activities are represented as dashed
arrows, augmented with service response times (angle-brackets on top of dashed ar-
rows). The example process contains several nested structures: a sequence s0 that exe-
cutes a-i, followed by an if-conditional element i, which selects either b-i and b-r or c-i

Composing Time-Aware Web Service Orchestrations 353

<process name="p">
<variables>…
<partnerLinks>…
<correlationSets>…
<sequence name="s0">
<invoke name="a-i">…
<if name="i">
<condition>…
<sequence name=“s1“>
<invoke name="b-i">…
<receive name="b-r">…

</sequence>
<else>
<sequence name=“s2“>
<invoke name="c-i">…
<receive name="c-r">…

</sequence>
</else>

</if>
<receive name="a-r">…

</sequence>
</process>

p-ps s0-ss a-i i-xs

a-r i-xjs0-sep-pe

proc-start seq-start

seq-endproc-end

act

act

xor-split

act xor-join

[7,10] [3,5] [8,11]
act

b-r

b-i

act

act

c-r

c-i

s1-ss s2-ss
seq-start seq-start

s1-se s2-se
seq-end seq-end

Fig. 2. BPEL process and Graph-representation - Generation Step 1

and c-r, followed by a receiving a-r. Although the details are not specified in this short-
ened example, assume, that a-i asynchronously sends a message to an external service,
whose response is received by a-r; furthermore, b-i and c-i send messages to services,
whose response is received by b-r and c-r. Due to space limitations we omitted the
XML-representation of the process graph and temporal information, which we used in
our prototypical implementation.

3.3 Temporal Information

Additionally we need explicit temporal information, which are a maximum process du-
ration (assume [15,15] for our running example) and response times of asynchronous
relationships between invoking and receiving nodes. We apply [min, max]-intervals
for temporal information (durations, deadlines), given in a specified time-unit, which
will be days or hours (as applied in the running example) for long running processes.
Expected service response times may stem from empirical knowledge (extracted from
logs) or be estimated by experts. Especially when dealing with web services this in-
formation may also come from the service provider [5] or service directories, which
may offer temporal information as part of their service descriptions [3]. The algorithm
in [10] additionally requires explicit information about the execution duration of ev-
ery node (ranging from millis to a few minutes at maximum), which we considered,
compared to service response times, negligible. So we set all node durations to [0,0].

3.4 Transformation

How to transform a hierarchical block-structured process, which BPEL is, to a flat-
tened graph representation is described in [4]. For the transformation we had to add the
following BPEL-specific rules:

354 H. Pichler, M. Wenger, and J. Eder

– every basic activity is represented as a node of type act
– the structured activities sequence, if and flow are represented as two nodes of cor-

responding type, which embrace inner nested activities: seq-start and seq-end, xor-
split and xor-join, and-split and and-join

– the structured activity pick must be encapsulated in a sequence, which contains one
node (the message receiver), followed by an xor-structure with a branch for each
message type handler

– structured scope activities are interpreted as sequences

The following exceptions to above stated rules had to be considered: (a) iterative activ-
ities are represented by two nodes of type act connected by a precedence edge. Even-
tually nested elements are omitted.1 Additionally these two nodes are connected with
an asynchronous relationship edge, augmented with the specified, estimated (or calcu-
lated) execution time of the activity, specified in the temporal information file. (b) The
same applies for wait activities, but here the duration can be extracted from the dura-
tion expression in the BPEL-definition. (c) Event, fault and compensation handlers of
the original process definition are not considered, as time management focuses on the
regular flow, and are therefore omitted in the graph representation.

It is basically possible to extract asynchronous, and therefore temporal, relationships
(dashed arrows) between invoking and receiving activities from the BPEL process defi-
nition by interpreting the declaration parts (partnerLinks, etc.). However, this is outside
the scope of this paper, and therefore we demand, that information about these relations
must be specified by the process designer within the temporal information file. Asyn-
chronous relationship edges and their response times can now be added to the graph in
the final transformation step.

4 Timed Graph Calculation and State Assessment

Now we have a basic graph representation, augmented with a maximum duration and
service response times (in hours) between invoking and receiving activities. Equipped
with this information we can calculate the timed graph. Based on the process structure
and explicit temporal information, it is is possible to determine remaining durations for
each node in the process graph. The remaining duration interval represents the expected
minimum and maximum execution duration of the path between node n and the end of
the process. The calculation algorithm utilizes the graph specified above and explicit
temporal information, and yields remaining durations for each node as visualized in
Figure 3. The remaining duration of the first node proc-start also depicts the expected
overall process duration. Due to space limitations we can not explain the details of this
calculation (refer to [10]). Furthermore note that remaining durations or thresholds may
be calculated with any interval-based approach that is capable of dealing with above
mentioned control structures, where some even allow more complex time constraints
(like [11], which introduces upper and lower-bound constraints).

1 As cyclic structures are problematic for time management calculations, since the actual number
of iterations will not be known in advance, we applied a common solution for now: interpreting
the loop as one complex activity with an estimated or calculated overall duration.

Composing Time-Aware Web Service Orchestrations 355

p-ps

s0-ss

a-i i-xs a-ri-xj

s0-se

p-pe[7,10]

[3,5]

[8,11]

b-rb-i

c-rc-i

s1-ss

s2-ss

s1-se

s2-se

[7,11]

[7,11]

[7,11] [3,11]
[3,5] [3,5] [0,0] [0,0]

[0,0]

[0,0]

[8,11] [8,11] [0,0] [0,0]

[0,0]

[0,0]

Fig. 3. Timed Graph - Generation Step 2

For run-time purposes we need thresholds, relative to the start time of the process,
that shall not be exceeded in order to meet the process deadline. For this we adapted
the idea of the traffic light model, described in [17]. It’s lights represent the tempo-
ral states: (1) Green indicates, that the process can be finished within the calculated
process duration. (2) Yellow indicates, that the process can be finished within the speci-
fied maximum duration. Future delays should be avoided, as the process already started
consuming buffer time. Proactive intervention is advised. And otherwise it is (3) Red,
which indicates, that all available buffer time has been consumed, and that missing the
deadline is likely. Proactive intervention is inevitable, the process must be sped up.

For illustration purposes we applied a very simple (rather pessimistic worst-case)
approach for temporal assessment: we calculate two state switching thresholds for each
node/activity n, based on the upper bound of a specified maximum process duration
interval maxduration.ub = 15 hours, the upper bound of the calculated process dura-
tion interval calcduration.ub = 11 hours, and the upper bound of the node’s remaining
duration interval n.rduration.ub, as follows:

– n.greenToYellow := calcduration.ub - n.rduration.ub
– n.yellowToRed := maxduration.ub - n.rduration.ub

Note, that state assessment for blocking structured activities must use the remaining
durations of the corresponding end node. This calculation yields, e.g., for the node
a-i the following thresholds: a-i.greenToYellow = 0 hours after process start and a-
i.yellowToRed = 4 hours after process start. As a-i is the first basic activity in the pro-
cess, it will be reached within (milli)seconds (rounded to 0 hours) after process start,
therefore the temporal state will most probably never switch to yellow or red at this
position. However, theoretically a-i could consume up to four hours before the state
switches to red - this time is also called buffer time. For the receiver activity b-r, we
determine the following values: b-r.greenToYellow = 11 and b-r.yellowToRed = 15. If,
for example, b-r did not receive its message until 11 (hours after process start) then the
state switches to yellow and we could start an intervention, e.g., interrupt the waiting
activity b-r and invoke an alternative fast (more ”expensive”) service which returns a
message immediately: the process is in time, but the costs increased. You will notice,
that the threshold-values of b-r are equal to the specified and calculated process dura-
tion (and equal to the thresholds of c-r and a-r). This means that each of these activities
is allowed to consume the whole buffer time of the process, leaving no buffer for sub-
sequent activities. For descriptions of fairer buffer distribution techniques refer to [7].

356 H. Pichler, M. Wenger, and J. Eder

5 Interventions

Proactive time management needs information about how to intervene when the tem-
poral state changes. We support the following intervention strategies, which may be
applied on any BPEL-activity (basic or structured).

Optional Execution. Skipping optional activities can be used on any element, which is
not absolutely necessary for the successful completion of the process. Therefore the
element, or activities nested within this element, should not have communication
relationships to another element in the process (e.g. skipping an invoke activity may
block the process at the matching receive activity).

Parallelization of Sequence. Parallelization of sequences forces the parallel execution
of elements of a sequence. Note, that elements nested in the sequence (or their
subelements) may have communication relationships between each other. In the
worst case, such an execution will again be sequential.

Alternative Path. A late process can sped up by executing a faster alternative (basic or
structured) activity, instead of the original one. Again, eventually existing commu-
nication relationships between elements must be considered: e.g., an alternative for
an invoke-activity which calls another service may block the process at the match-
ing receive-activity.

Dynamic Service Selection. This strategy is a variant of Alternative Path that offers
multiple alternatives. In case the process is late, the fastest of several variants
must be selected and executed. We assume, that the list of matching candidates has
been preselected. Alternatively one could also apply a QoS-based adaptive service-
retrieval technique, which automatically finds compatible candidates [23].

Early Termination. Early termination of a late process, depicted by terminate, aims
at the avoidance of costs resulting from further process execution and exception-
handling actions at the end. Although we do not consider the cost factor in this
paper (cp. [6]), we offer this policy as a last resort, only to be used in extreme
cases, as it does not consider side-effects on integrated processes or services.

The specification of interventions binds activities of the process, depicted by their
name, to a certain intervention-behavior, which shall be invoked instead of the activity,
if the process is in the given temporal-state. We defined an XML-structure for interven-
tion information, specified by the following DTD.

<!ELEMENT interventions (intervention)+ >
<!ELEMENT intervention (intervene)+ >
<!ATTLIST intervention activity CDATA #REQUIRED >
<!ELEMENT intervene ((terminate|optional|parallelize|alternative|dynamic), bpel?>
<!ATTLIST intervene when (yellow|red) #REQUIRED >
<!ELEMENT terminate EMPTY >
<!ELEMENT skip EMPTY >
<!ELEMENT parallelize EMTPY >
<!ELEMENT alternative (bpel) >
<!ELEMENT dynamic (variant)+ >
<!ATTLIST dynamic objective (green|yellow|red) #REQUIRED >
<!ELEMENT variant (bpel) >
<!ATTLIST variant duration CDATA >
<!ELEMENT bpel (declarations,actions) >
<!ELEMENT declarations (#PCDATA) >
<!ELEMENT activity (#PCDATA) >

Composing Time-Aware Web Service Orchestrations 357

A set of interventions for a specific process may contain several intervention el-
ements. Each refers to a basic or structured activity-name in the BPEL-process and
contains intervene elements, that define which intervention strategy to apply, when a
certain temporal state is assessed. An Intervene-element must contain one element of
type terminate, skip, parallelize, alternative, or dynamic, which specifies the strategy to
apply. Furthermore, an intervene-element may contain an optional bpel element, which
defines a BPEL-activity (basic or structured) and necessary BPEL-declarations, which
we do not further specify here (variables, partnerLinks, etc.). This BPEL code will be
executed before the intervention itself takes place; it may for instance be used to no-
tify the process-owner about temporal state changes. The following example defines
interventions for two activities of a (fictituos) process.

<interventions>
<intervention activity="a_sequence" >

<intervene when="red"> <optional/> </intervene>
<intervene when="yellow"> <parallelize/> </intervene>

</intervention>
<intervention element="an_activity">

<intervene when="yellow"> <optional/> </intervene>
<intervene when="red" >

<terminate />
<bpel>

<declarations> ... BPEL declarations ... </declarations>
<activity> ... BPEL activity (e.g. notify owner)... </activity>

</bpel>
</intervene>

</intervention>
</interventions>

Intervene-elements of type alternative must contain bpel declarations and code of the
alternative. For interventions of type dynamic we must specify multiple execution vari-
ants, augmented with information about the (expected) duration for each alternative.
The attribute objective defines the desired temporal state after the execution of a vari-
ant. The duration of a variant (may be a structured activity) can be calculated with the
calculation algorithm explained above. The following intervention specification refers
to activities within our example process. The sequence s1 shall be skipped if the pro-
cess enters state red, and if it enters state yellow alternative code shall be executed (e.g.
invoking a fast service and receiving it’s message). If the process waits too long at the
the receiving activity a-r it shall either select a faster variant (yellow) or even terminate
(red). Note, that both activities are considered ’blocking’, as they wait for an incoming
message.

<interventions>
<intervention element="s1">

<intervene when="red"> <optional/> </intervene>
<intervene when="yellow">

<alternative>
<bpel> declarations and activity for alternative </bpel>

</alternative>
</intervene>

</intervention>
<intervention element="a-r">

<intervene when="red"> <terminate/> </intervene>
<intervene when="yellow">

<dynamic objective="green">
<variant duration="[6,9]">

<bpel> declarations and activity for alternative1 </bpel>

358 H. Pichler, M. Wenger, and J. Eder

</variant>
<variant duration="[3,5]">

<bpel> declarations and activity for alternative3 </bpel>
</variant>
<variant duration="[4,7]" >

<bpel> declarations and activity for alternative2 </bpel>
</variant>

</dynamic>
</intervene>

</intervention>
</interventions>

6 Generation of a Time-Aware Process Definition

A time-aware process definition is an extension of the original process definition with
state assessment and intervention mechanisms for specified process-parts, to be exe-
cuted in case given thresholds are violated. The generation is based on the original
process definition, the timed graph, and intervention information, and consists of the
following basic steps:

[works on copy of original process definition]
add process-level extensions
for each activity x in bottom-up order (deepest nestings first)

if exists intervention for x
if x is non-blocking

add activity-level extensions for non-blocking activity x
elseif x is blocking

add activity-level extensions for blocking activity x
end-if

end-if
end-for

6.1 Process-Level Extension

First the original process definition must be extended on the top-level, as visualized in
the BPMN-diagram [2] on the left-hand side of Figure 4 (elements of the original pro-
cess are displayed grey-shaded). We decided to use BPMN as graphical representation
instead of BPEL-code due to space limitations.

1. Nest the top-level activity of the process within a new sequence-activity top seq
2. Insert assignment for the current time t, which is the start time of the process.
3. Initialize the temporal state by assigning it the value ’green’.

top_seq
state :=

green

t :=

now

process x_seq activity x

state

green

assess

state
yellow interventionyellow

red interventionred
Process-level
extensions

Activity-level
extensions

top-level

activity

Fig. 4. Process-level Extensions and Extensions for non-blocking Activities

Composing Time-Aware Web Service Orchestrations 359

We used XQuery and XPath in our BPEL-prototype for accessing, comparing and ma-
nipulating variables, as they offer a rich function-base for diverse purposes, along with
datatypes for the structured representation of dates, times and durations.

6.2 Generation of Intervention Logic

The intervention logic for an activity consists of a state assessment mechanism to de-
termine the current temporal state, conditional structures to select the corresponding
intervention, and timed triggers for blocking elements.

State Assessment Mechanism. An important part of intervention logic is the assess-
ment of the current temporal state. The following shows a simplified pseudo-code
representation of the necessary state assessment extensions for an activity x and it’s
thresholds:

rel_time := currentTime() - t;
if (rel_time <= x.greenToYellow) then state := green

elsif (rel_time <= x.yellowToRed) then state := yellow
else state := red

State assessment is based on a comparison of the relative time (duration since start of
the process) and the corresponding node-dependent threshold value. For non-blocking
activities it takes place before the invocation, and for blocking activities during their
execution.

Basic Intervention Extensions for Non-blocking Activities. The BPMN-diagram on
the right-hand side of Figure 4 shows the extensions for a non-blocking activity x.

1. Replace activity x with a new if-activity x if (omitted in the diagram).
2. Add three branches and conditions for states green (if), yellow and red (elseif).
3. Insert activity x into the if-branch.
4. Generate intervention handling code for the elseif-branches (see details below).
5. Nest x if within a new sequence-activity a seq.
6. Insert state assessment elements before x if into a seq.

Intervention Extensions for Blocking Activities. For blocking activities such a pas-
sive intervention mechanism is not sufficient. The prediction component must addi-
tionally check threshold-violations during the execution of this element. Therefore it is
necessary to add time-triggered logic as visualized in Figure 5. We used several mech-
anisms: timed triggers (circle with clock) which invoke corresponding event-handlers,
throwing of faults (fat circle with flash-symbol), and catching of faults within a fault-
handler (double circle with flash-symbol). Within a BPEL-scope we use fault-handlers,
which catch named faults (exceptions) that are thrown within this scope. Furthermore,
it is possible to define time triggered event-handlers based on the onAlarm-element,
which periodically executes specified code (basically a concurrent sub-process). The
diagram is to be interpreted as follows: the control flow enters the scope and starts
the (blocking) activity. An onAlarm event-handler periodically calls state assessment,
which checks if the temporal state has changed. If this is the case, it will immediately

360 H. Pichler, M. Wenger, and J. Eder

activity x

x_scope

x_faulthandler

catch x_fault

yellow intervention

state

yellow

red red intervention

repeatEvery

P minutes

x_eventhandler

state

green

throw x_fault

yellow

or red
assess

state

Fig. 5. Activity-level Extensions for blocking Activities

throw x fault, which is caught by x faulthandler. If the state is still green the event han-
dler will return control to the regular control flow (the execution of x). The generation
of extensions for blocking activities consists of the following steps:

1. Nest activity x within a new scope x scope.
2. Add x eventhandler to the scope, containing an onAlarm-element with a specified

repeatEvery-period, including state assessment logic including a throw-element.
3. Add x faulthandler to the scope, which contains state-dependent intervention han-

dling code.

Generating Intervention Handler Code. Intervention handler code is executed when
the temporal state changes to yellow or red, and must be integrated in the corresponding
if-branches. Intervention code for an activity x and a certain temporal state is determined
by the specified intervene-element within the intervention information (see Section 5)
and basically generated as follows.

1. Insert a sequence x int seq within the corresponding if-branch.
2. Add type-dependent intervention code to x int seq (for details see below).
3. If the optional bpel-element exists within the intervene element:

(a) add the bpel-activity before the intervention code that was generated in step 2
(b) add the related bpel-declarations (variables, partnerLinks, etc.) on process level

Step 2 generates type-dependent intervention code: for an intervention of type op-
tional we add the BPEL-activity empty and for terminate we simply add the BPEL-
activity exit. Adding BPEL-code for an alternative path is equal to steps 3.a) and 3.b).
To parallelize a sequence we generate a flow element in the corresponding if-branch of
the intervention logic, which contains a duplicate of every activity within the sequence-
activity (including already generated intervention logic of nested activities).

The last intervention mechanism, dynamic service replacement, has to select one
out of several replacement alternatives. Selection is based on the current delay of the
process, the position and duration of replacement variants, and the objective (desired
goal state). Code generation is best explained by an example. In Section 5 we defined
a yellow-intervention of type dynamic for activity a-r, with three replacement variants
ordered by maximum duration: one with a duration of [6,9], one with [4,7] and one with
[3,5]. The objective is green, which means that the execution of the selected alternative

Composing Time-Aware Web Service Orchestrations 361

should be finished until the green end-threshold of a-r. The calculation of green and
yellow thresholds for activity a-r yielded: c greenToYellow=11 and c yellowToRed=15
(hours after the process start). With this information we generate the following code:

if (state = yellow)
rel_time := currentTime() - t;
timeframe := a-r.greenToYellow - rel_time;
if (timeframe >= 9) bpel-code of variant

elseif (timeframe >= 7) bpel-code of variant
else bpel-code of fastest variant

Again we applied a worst-case approach: first we calculate the relative time (duration
since process start), followed by the calculation of the time frame. The time frame is the
difference between the threshold of the goal state (greenToYellow) and the relative time.
The duration of the selected variant must fit into this time frame. Therefore we compare
the time frame with the upper bound values (worst case) of the duration intervals spec-
ified for each alternative (in decreasing order) and add corresponding BPEL-code. The
fastest variant will be selected, even if it does not fit in the time frame. This approach
assumes that the faster a service the more expensive it will be, and shall therefore only
be selected if absolutely necessary. For our prototype we implemented an additional
version, which allows to specify variants ordered by preference – a preferred service
will be selected when it fits into the time frame, even if a slower service exists, that also
fits into the time frame.

Furthermore, we designed and implemented an improved version for alternative and
dynamic interventions on blocking activities, which exploits the following finding: if the
(blocking) activity is almost finished, it is not a wise decision to interrupt it and execute
one of the variants. Therefore we added a special treatment on state-assessment-level
for these types, which checks (on state change) if the remaining execution duration of
the activity is less than the duration of the variant that fits into the time frame. If this is
the case no fault will be thrown, and the original activity is allowed to finish.

7 Prototypical Implementation and Complexity Considerations

We implemented a proof-of-concept Java-based transformation prototype and tested
several processes with the open source engine ActiveBPEL. The advantage of this ap-
proach is, that it adds pro-active time-awareness to the process, which results in less
deadline violation. The process designer is not addressed with complicated calculations
and programming of tedious intervention logic. Furthermore, if the effect of current in-
tervention strategies is insufficient, then temporal information, intervention strategies or
temporal assessment can be changed easily, and used to generate new time-aware pro-
cess definition. On the downside we have to state, that the generated process will contain
considerably more elements than the original process definition. The number of addi-
tional elements varies heavily, depending on various parameters, the nesting-depth, the
number of specified interventions, and the complexity of intervention logic. Still, it can
be predicted by using the tables in Figure 6. For specific interventions both tables must
be combined, e.g., when defining an intervention for non-blocking sequence-activity
(with n = 3 nested basic activities), where the yellow-intervention is parallelize and the

362 H. Pichler, M. Wenger, and J. Eder

process**
non-blocking

blocking

var
decl.

var
assign

seq
if fault

handler
event

handler
3*** 2 1 0 0 0

br*
0

scope

0

on
Alarm

0

throw

0

catch

0
0 3 1 1 0 03 0 00 0

Sum

6
8

0 3 1 3 1 17 1 11 1 20

Extension Types: Number of additional Elements

*number of branches incl. conditions ** always included *** includes rel_time for state assessment

skip
terminate
parallelize

act &
decl.

flow seq
if

1 0 0 0
br

0

var
assign

0
1 0 0 0 0 0

Sum

1
1

n 1 0 0 0 0 n + 1

Intervention Types: Number of additional Elements (w/o optional BPEL code)

n … #activities nested in activity for which intervention has been declared
v … #variants (activities) for dynamic replacement
b … avg. #activities nested in activities, which describe one variant
d … avg. #declarative elements (partnerLinks, etc.) for one variant

alternative b + d 0 0 0 0 0 b + d
dynamic (v*b) + (v*d) 0 1 1 v 2 (v*b) + (v*d) + 4

Fig. 6. Tables for Prediction of Number of Additional Elements

red-intervention is skip, we calculate the number of additional elements as: sum pro-
cess + sum non-blocking + sum skip + sum parallelize = 6 + 8 + 1 + 4 = 19 additional
elements. In nearly all cases the complexity will be linear, with one exception: nested
parallel structures, where increase is exponential in the number of parallelizations in a
nesting path, as all nested elements must be duplicated on each level with paralleliza-
tion during the bottom up generation of intervention logic. Therefore, we propose to
specify interventions only for selected mission-critical parts and for parts which have
the potential to significantly speed up the process. A related problem is, that a user who
monitors the progress of the process will see a rather complicated transformed process.

8 Conclusions

The prediction and proactive avoidance of deadline violations decreases costs of pro-
cesses and increases their quality of service. Existing approaches describe how to model
and calculate temporal information for these purposes, but do not show how to apply
corresponding interventions on running processes. Therefore we enhanced the original
process definition with additional interval-based temporal and intervention information,
and showed how to transform it into a time-aware process definition, which pro-actively
avoids looming deadlines and that can be executed on any engine that supports BPEL.
To achieve this we utilized inherent control-flow features of the process definition lan-
guage to integrate time-triggered predictive and proactive intervention mechanisms,
with a focus on blocking activities that wait for messages of delayed external services.
Current and future research comprises handling of non-blocked structures (flows with
links), exception handlers, and how to compensate already finished activities.

References

1. Cardoso, J., Sheth, A., Miller, J.: Workflow Quality of Service. In: Proc. of the Int. Conf. on
Integration and Modeling Technology (IEIMT/IEMC). Kluwer Publishers, Dordrecht (2002)

2. OMG: Business Process Modelling Notation (BPMN) 1.1. OMG Specification (2008)

Composing Time-Aware Web Service Orchestrations 363

3. W3C: OWL-S: Semantic Markup for Web Services. W3C Member Submission (2004)
4. Eder, J., Gruber, W.: A Meta Model for Structured Workflows Supporting Workflow Trans-

formations. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS,
vol. 4152. Springer, Heidelberg (2006)

5. Gillmann, M., Weikum, G., Wonner, W.: Workflow Management with Service Quality Guar-
antees. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data. ACM Press, New
York (2002)

6. Panagos, E., Rabinovich, M.: Predictive Workflow Management. In: Proc. of the 3rd Int.
Workshop on Next Generation Information Technologies and Systems, Neve Ilan, Israel
(1997)

7. Kao, B., Garcia-Molina, H.: Deadline Assignment in a Distributed Soft Real-Time System.
IEEE Transactions on Par. Dist. Systems 8(12) (1997)

8. van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-based Escalation in Process-
Aware Information Systems. BPM Center Report, BPM-05-05, BPMcenter.org (2005)

9. Eder, J., Pichler, H., Vielgut, S.: An Architecture for Proactive Timed Web Service Composi-
tions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 323–335.
Springer, Heidelberg (2006)

10. Eder, J., Pichler, H., Vielgut, S.: Avoidance of Deadline-violations for Inter-org. Business
Processes. In: Proc. of the 7th Int. Baltic Conf. on DBs and Inf. Systems. IEEE Press, Los
Alamitos (2006)

11. Eder, J., Panagos, E., Rabinovich, M.: Time Constraints in Workflow Systems. In: Jarke, M.,
Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, p. 286. Springer, Heidelberg (1999)

12. Haimowitz, I.J., et al.: Temporal Reasoning for Automated Workflow in Health Care En-
terprises. In: Adam, N.R., Yesha, Y. (eds.) Electronic Commerce 1994. LNCS, vol. 1028.
Springer, Heidelberg (1996)

13. Marjanovic, O., Orlowska, M.: On Modeling and Verification of Temporal Constraints in
Production Workflows. Knowledge and Information Systems 1(2) (1999)

14. Marjanovic, O., Orlowska, M.: Workflow Temporal Manager. In: Proc. of the Australian
Workshop on Intelligent Desicion Support and Knowledge Management, Sydney, Australia
(1998)

15. Marjanovic, O., Orlowska, M.: Dynamic Verification of Temporal Constraints in Produc-
tion Workflows. In: Proc. of the Australasian Database Conf. IEEE Computer Society, Los
Alamitos (2000)

16. Baggio, G., et al.: Applying Scheduling Techniques to Minimize the Number of Late Jobs in
Workflow Systems. In: Proc. of ACM 2004 Symp. on Applied Computing. ACM Press, New
York (2004)

17. Eder, J., Panagos, E.: Managing Time in Workflow Systems. In: Workflow Handbook 2001,
Future Strategies Inc. (2001) ISBN 0-970-35090-2

18. Newcomer, E.: Understanding Web Services. Addison-Wesley, Reading (2002)
19. Bettini, C., et al.: Free Schedules for Free Agents in Workflow Systems. In: Proc. of 7th Int.

Workshop on Temporal Representation and Reasoning. IEEE Computer Society Press, Los
Alamitos (2000)

20. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of web service
protocols. In: CAiSE 2005 Forum Short Paper Proceedings, CEUR-WS.org (2005)

21. Kazhamiakin, R., et al.: Representation, verification, and computation of timed properties in
web service compositions. In: Proc. of Int. Conf. on Web Services. IEEE Comp. Society, Los
Alamitos (2006)

22. Pozewaunig, H., et al.: ePERT – Extending PERT for Workflow Management Systems. In:
Proc. of Symp. on Adv. in Databases and Information Systems, Nevsky Dialect (1997)

23. Ardagna, D., et al.: PAWS: A Framework for Executing Adaptive Web-Service Processes.
IEEE Software 24(6) (2007)

	Composing Time-Aware Web Service Orchestrations
	Introduction
	Related Work
	Process Representations
	BPEL Representation
	Process Graph
	Temporal Information
	Transformation

	Timed Graph Calculation and State Assessment
	Interventions
	Generation of a Time-Aware Process Definition
	Process-Level Extension
	Generation of Intervention Logic

	Prototypical Implementation and Complexity Considerations
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

