
An Algorithm for Unrestored Flow Optimization

in Survivable Networks Based on p-Cycles

Adam Smutnicki

Chair of Systems and Computer Networks,
Wroc�law University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroc�law, Poland
adam.smutnicki@pwr.wroc.pl

Abstract. This paper provides compound algorithm for Unrestorable
Flow Optimisation (UFO) problem formulated for computer networks
protected by p-cycles, created on the base of mathematical model and
solution approaches proposed in our complementary paper [1]. Compo-
nents of the algorithm have been selected carefully and then experimen-
tally tested in order to compose the best final algorithm. Results of the
wide computer tests on common benchmarks have been also presented
as well as some practical conclusions following from the research made.

Keywords: Computer network, survivability, optimization, p-cycles,
UFO problem.

1 Introduction

In [1] we have shown that Unrestorable Flow Optimization (UFO) problem, as
a complicated task, may be decomposed into several auxiliary subproblems with
dedicated solution methods. The mentioned above paper outlines also solution
methods without practical realizing comments. This paper refers chiefly to so-
lution algorithms derived from theory, [1] and their numerical properties tested
for the best practical performance. Paper [1] is complementary to this research.

2 Algorithm Components

Consider the problem of allocating demands into p-cycles while restoring the
net flow in case of failure. The problem can be modeled by Multiple Knapsack
Problem (MKP) which is strongly NP-hard. One can find several approximate
and exact algorithms for MKP in [2]. In our research we use a greedy algorithm
for MKP, based on principle of best fit rule – element is packed into this knap-
sack in which most of free space is left. This algorithm has pseudo-polynomial
complexity O(nm) (n is a number of elements and m is a number of knapsacks)
acceptable in practice, taking into account that overall solution is approximate.
Up to now, research have been made using commonly Greedy algorithm for
MKP; quite recently there have been proposed and analyzed profits of usage
branch-and-bound algorithm for MKP in UFO problem in [3].

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 315–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

316 A. Smutnicki

Next subproblem, described in [1], consists in determining the maximum spare
capacity of all p-cycles. For non-disjoint p-cycles there can be written set of
linear equations or inequalities, where criteria function, as mentioned in [1] is
to maximize sum of residual capacity of all p-cycles. This forms a set of linear
equations and can be solved using algorithm dedicated Linear Programming
task. Simplex method, as most popular and easiest to use, has been chosen.

At the end, for each demand there have to be prepared a set of alternative
routing paths. Because demands are defined from source to target nodes, k-SPD
algorithm based on Dijkstra’s Shortest Path Algorithm, can be used [4].

2.1 Generation of p-Cycles

The optimal configuration of p-cycles protecting the network can be either con-
structed from scratch or selected among certain subset of p-cycles called cycle-
candidates set. The number of all possible cycles in network with the full mesh
topology (i.e. full undirected graph) is ω(2V), i.e. is rising faster than 2V , where
V is the number of vertices in the net, see [5] for detail. Thus, assuming usage of
the step-by-step search technique, even for quite small networks, the total num-
ber of cycle candidates is usually too big to store all of them in the computer
memory and then to check any of them. Therefore, two alternative approaches
one can propose next: (a) use pre-generated set of cycle candidates, of limited
reasonable cardinality, generated in advance, in off-line mode, (b) generate on-
line cycle candidates on demand, whereas the number of generated cycles is a
priori unknown. The former approach is called pre-generation technique, whereas
the latter – enumeration technique, [5,6]. In both cases a “good” p-cycles are
expected from the generation algorithm. The problem of generation cycle com-
ponents is nontrivial and has been studied among others in [5,6,7,8,9,10].

The presented paper provides research made for conception (a). Application of
(b) remains an open research task. A decision process, which particular p-cycles
are used for protection, will be done by tabu search (TS) algorithm, see Section
2.2 for detail. In order to evaluate the impact of generation scheme onto overall
solution quality, we tested four different generation algorithms, to compare re-
sults obtainable for different sets of p-cycles. A lot of algorithms generate larger
set of p-cycles by extending a small one with the help of some transformations.
We refer here to the well-known algorithm Straddling Link, proposed first time
in [9]. It is quite simple and never generates more cycles than number of spans in
network. In [7,11] there have been described several different algorithms provid-
ing rules for transformations from simple p-cycles to complex ones. Among them,
three have been chosen as the most promising: SP-Add (Span Add), Expand and
Grow, described in [7].

2.2 Tabu Search

It has been shown, [1], that UFO problem is strongly NP-hard. Thus the use
of heuristic or metaheuristic algorithms is fully justified. We decided to apply
Tabu Search (TS) technology, because of good results achieved for many other

An Algorithm for Unrestored Flow Optimization in Survivable Networks 317

applications in optimization. Referring the reader to foundations of TS, [12],
we present here only implementations of its crucial elements in our case. Each
solution of our problem will be represented by current configuration of p-cycles
(a subset of components selected from the whole candidates set) plus current set
of routing paths (only one path is selected for each flow demand). Quality of the
solution is measured by the amount of unrestored flow, expressed as fraction of
total flow. The whole evaluation of UFO value consists of calculation of capacities
for chosen p-cycles (an LP task) and determining which demands can be restored
(by solving the sequence of MKP instances), see [1] for detail.

Because our solution consists of two inhomogeneous structures (p-cycles and
routing paths) the move (transformation) from the current solution can be either
p-cycle move or routing path move. All moves, generated from the current solution,
generate its neighborhood. Let us describe these transformations more precisely.
First, because of small change philosophy, we assume that transformed solutions
differ from original one by single element. For transformation performed on rout-
ing configuration, we had to choose solution which will not increase drastically
the size of TS neighborhood. For example, if there are three alternative routing
paths for some demand, two new neighboring solutions will be generated for this
demand — each of them corresponds to one of two remaining routing path (ex-
cept this already used). Thus, having k alternative paths and d demands, (k−1)d
new neighboring solutions will be generated. For p-cycles transformations we have
defined three possible changes (three neighbors) for each component of p-cycle :
add one p-cycle to current configuration from candidates set (not used yet), re-
move one p-cycle from current configuration, exchange one p-cycle from current
configuration into one from candidates set (not used yet). Each new element in
neighborhood is generated by performing only one of mentioned transformations.
Whole neighborhood coming from p-cycles set transformation is done by perform-
ing for each p-cycle in current configuration following steps: (a) remove a compo-
nent p-cycle; (b) add n times randomly chosen with weights (value of AE ([11])
metric as weight) p-cycle from candidates set; (c) exchange current cycle compo-
nent into one from candidates set being not far than |l| steps from actual. p-Cycles
in candidates set are sorted decreasingly by value of AE metric. We see that pa-
rameters l and n values has significant influence on size and type of generated TS
neighborhood. Next, we will call l a size of p-cycles neighborhood and n as number
of randomly chosen p-cycles.

The starting solution of TS is created by using the following principles: (1)
for each demand, the first (shortest) path on the candidate list is set, (2) current
configuration of p-cycles contains single component, the first one from the list
of candidates (with greatest value of metrics AE).

Tabu list (short term memory of the search history) is considered as the crucial
control element of TS, since it is responsible for proper behavior of the whole
algorithm (it prevents cycling). In our implementation we assume that tabu list
stores the move made, both types of moves on the common list. The move to be
performed is considered as tabu if its inverse move is stored on tabu list. The
form of inverse move is easy to define for the moves introduced earlier.

Selection of TS control parameters is discussed in Section 3.4.

318 A. Smutnicki

3 Computational Results

The quality of proposed (metaheuristic) algorithm will be evaluete in computer
test on common benchmarks.

3.1 Common Benchmarks

For network optimization tasks there exists a library, called SNDlib [13], pro-
viding a set of network topologies, as well as all necessary information about
flows and possible routes. SNDlib consists of several network topologies, which
are in most cases real networks, or at least advanced projects, e.g.: COST-266,
germany50, poland, france. Test described in this paper have been performed
using COST-266 topology, because it is quite similar to COST-239 (COST-239
is the project older than COST-266). COST-239 was used in most of papers in
literature dealing with p-cycles optimization.

3.2 Generation Technology Test

First performed test compares the behavior of algorithm depending on p-cycles
generation algorithm. Four, mentioned in Section 2.1, algorithms have been
tested. Results are presented on the Fig. 1, where one routing path for each
demand is used. First and most obvious conclusion is that the Grow algorithm
finds final result using smaller number of TS iterations. Grow also descends to-
ward final result quicker that other algorithms. We see that best results are
achieved using p-cycles set from Grow algorithm, but it is quite interesting that
for this combination, the TS algorithm needed less time to find better result than
using other p-cycles algorithm. So the configuration of parameters giving the best

0%

10%

20%

30%

40%

50%

60%

70%

80%

 0 5 10 15 20 25

U
nr

es
to

re
d

flo
w

Number of TS iterations

SSA
SP-Add
Expand

Grow

Fig. 1. Comparison of p-cycles generation algorithms for one routing path for each
demand

An Algorithm for Unrestored Flow Optimization in Survivable Networks 319

Table 1. Comparison of parameters of p-cycles generated by four mentioned algo-
rithms, for COST-266 topology

SLA SP-Add Expand Grow

number of p-cycles 45 96 89 1214
av. value of AE metrics 1.27 1.49 1.56 1.74
av. p-cycle length 7.20 11.04 13.01 21.38
av. number of straddling-spans 1.17 2.88 3.96 8.48
average generation time in seconds 0.0019 0.0076 0.0061 2.65

results produce them in shorter time than other, worse configurations. Only one
disadvantage of this solution is that the time needed to generate p-cycles candi-
dates set using Grow algorithm is significantly longer than for other algorithms.
Average time needed for generation sets of p-cycles and parameters of those sets
for test COST-266 topology, for tested four algorithms arepresented in Tab. 1.

3.3 Alternative Routing Paths Test

In Section 3.2 there have been analyzed influence of chosen p-cycles generation
algorithm on final result. But as mentioned in [1], this is not only one control
parameter. Second one, no less important is the number of alternative routing
paths for each demand. Moreover during whole optimization in TS, the most
useful path is chosen for each demand, so giving more optional paths, algorithm
receives wider range of possible solutions. On Fig. 2 there have been presented
comparison of p-cycles generation algorithm but for three alternative routing

0%

10%

20%

30%

40%

50%

60%

70%

80%

 0 10 20 30 40 50 60 70 80

U
nr

es
to

re
d

flo
w

Number of TS iterations

SSA
SP-Add
Expand

Grow

Fig. 2. Comparison of p-cycles generation algorithms for three routing path for each
demand

320 A. Smutnicki

Table 2. Comparison of example results depending on used p-cycles generation al-
gorithm and number of alternative routing paths; presented values stands for % of
unrestorable flow

SLA SP-Add Expand Grow

1 kSPD 3.84 6.70 6.87 3.68
3 kSPD 0.67 1.25 1.28 0.35

0%

1%

2%

3%

4%

5%

6%

7%

8%

 1 2 3 4 5

U
nr

es
to

re
d

flo
w

Number of alternative routing paths per demand

SSA
SP-Add
Expand

Grow

Fig. 3. Comparison of results for each p-cycles generation algorithm depending on
number of alternative routing paths for each demand

paths for each demand. Comparing Fig. 1 and Fig. 2 one can notice, that giv-
ing more alternative paths improve the way that overall algorithm works. First
improvement is that for each p-cycles generation algorithm TS descending to-
ward final result is quicker. Second conclusion is that, TS is working longer
(bigger number of TS iterations till stop condition). It is because using more
alternative paths, allow TS algorithm to tune more the final result. Also, as
previously, the best p-cycles generation algorithm is Grow.

Presented results on Fig. 1 show only general behavior of two described op-
tions. Exact results are presented in Tab. 2. Analyzing those results one can
see that using three alternative paths improve the quality of final result several
times. So without any additional resources, only changing the routing, adjusting
it for chosen set of p-cycles, we can improve the level of final protection.

Comparing results of mentioned test with tests for only one routing path, we
see that only changing flow in network, we can highly improve the protection per-
formed by p-cycles set. So it is highly recommended that p-cycles optimization
should be accompanied with dedicated routing.

One can ask, why not use more routing paths, if it gives such improvement.
The answer is presented on Fig. 3. We can see that the best improvement of

An Algorithm for Unrestored Flow Optimization in Survivable Networks 321

0

10

20

30

40

50

60

70

 1 2 3 4 5

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

in
 m

in
ut

es

Number of alternative routing paths

SSA
SP-Add
Expand

Grow

Fig. 4. Comparison of time needed to find best solution depending on used p-cycles
generation algorithm and number of alternative routing paths

quality of final result is when changing from one to three alternative routing
paths for each demand. Adding more paths till five, practically do not change
the quality of received final result. What is important, adding more alternative
paths increase the time of computation – Fig. 4.

For more that three routing paths, possible improvement is not worth because
of amount of time needed to finish computations. What more, the increase of
time needed for all algorithms except Grow is higher than for Grow.

Analyzing presented results for time of computation and time needed to gen-
erate a set of p-cycles (presented in Section 3.2) we can see, that using Grow is
highly recommended because of best preformed results and shortest computa-
tion time, even taking into account time needed to generate p-cycles set. This
additional time is several hundred times smaller that time saved in TS.

3.4 Finding the Optimal Configuration

In whole process of finding final solution several elements are important. Two
main were analyzed and discussed in Section 3.2 and 3.3. Other are: size of tabu
list, number of TS iterations till algorithm stops, size of p-cycles neighbourhood,
number of random p-cycles configuration change. All mentioned parameters have
been tested within defined ranges, to find which of them and how much influence
the quality of final result.

During tests we have notices that TS algorithm was falling into cycle nearby
found local minimum. In this case, we decided to try to block this cycles, as
this prevents algorithm for further search. Those cycles came from situation,
when reaching local minimum, TS while generating neighborhood received most
of solutions with the same value of criteria function. Also there have to be
mentioned, that in basic structure tabu list does not protect before cycles. We

322 A. Smutnicki

decided to filter TS neighborhood – solutions having the same value of criteria
function were not analyzed. Results presented in this paper compare version of
TS with and without filtering.

Because of limited size of this paper, we are unable to present all results and
comparisons, so we decided to present only conclusions drawn from performed
tests. The conclusions are:

1. we have not notices influence of size of p-cycles neighborhood on quality of
final result;

2. there exists dependency of quality of final result on number of randomly
chosen p-cycles configuration – till the value of 5 it increases the quality,
bigger values practically do not change anything;

3. for algorithm without filtering the neighborhood one can notice link between
final solution quality and length of tabu list – longer list improves the quality,
but influence is quite small;

4. for algorithm with filtering the neighborhood we have not noticed link be-
tween the quality of final solution and tabu list size – probably tabu list
blocks only one step back and filtering process prevents algorithm from back-
tracking;

5. we have notices direct influence of number of TS iterations till stop on quality
of final result – there is an improvement till value of 20, after this value there
is no increase in quality;

6. analyzing all parameters, we have notices that algorithm with filtering neigh-
borhood, generally gave better results that without filtering;

7. in all cases for option with filtering solutions and without, best results were
received using Grow p-cycles generation algorithm;

8. quite surprising was that second best results were received using SSA p-cycles
generation algorithm – the one that generates simplest and most basic
p-cycles;

9. computations using Grow algorithm gave better results, because p-cycles set
generated by this algorithm consists of p-cycles form SSA algorithm (which
was second best) and some additional p-cycles with different feature, which
improved the quality of final solution, over single set from SSA.

3.5 Final Solution Quality Test

In Section 3 there have been presented received results. The best parameters
configuration have been identified and discussed. In this section we will analyze
the quality of received results. Because for now one have performed such research
like described in this paper, there is no point which we can refer to. Test have
been performed for TS algorithm with filtering and without. Both of them have
started from same basic solutions, which ”unrestorability” was 64.15%. In Tab. 3
there have been presented average received results for 100 repeats. Also there
are some statistic parameters of results sample. Time of computations for TS
with filtering was ca. 30% longer that without. We can see that both versions
have reached 0.0% of unrestorability and both have done it four times. Median

An Algorithm for Unrestored Flow Optimization in Survivable Networks 323

Table 3. Comparison of results quality for TS algorithm with filtering and without,
for optimal algorithm configuration, for COST-266 topology; values are value of un-
restorability in %

without filtering with filtering

av. result value 0.62 0.43
best value 0.00 0.00
best value found no. of times 4 4
worst value 5.11 3.82
median 0.35 0.35
standard deviation 0.87 0.42
av. deviation 0.49 0.17

is the same, version with filtering have much lower deviation from average value.
Additionally there have been done T-Student statistic tests to confirm that both
samples differ each other. Tests were positive.

4 Conclusions

We have presented a set of algorithms building overall solution for UFO prob-
lem formulated in our paper [1]. Presented algorithms are first ever developed for
UFO problem. Performed tests analyze wide range of parameters influencing the
quality of final result. Notice, we have proposed a joint optimization of routing
and selecting p-cycles, which most of authors in literature have avoided, called
them too complex. We have found configuration of the net ensuring unrestorable
flow below 1% of total flow in network, and in many situations achieving 100%
of restorability. Taking into account that this optimization is done in advance,
we have enough time to find best solution. We have also confirmed that the com-
bination of p-cycles with different size (generated by Grow algorithm) provides
best restorability.

References

1. Smutnicki, A., Smutnicki, C.: Flow Optimization in Survivable Networks Based on
p-Cycles. Submitted for International Conference on Computational Science (ICCS
2009) (2009)

2. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

3. Smutnicki, A.: Branch-and-bound Algorithm for Multiple Knapsack Problem in the
Unrestorable Flow Optimisation Problem. In: Proceedings of 23rd IAR Workshop
on Advanced Control and Diagnosis, Coventry, UK (November 2008)

4. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and
Computer Networks. Elsevier Inc., San Francisco (2004)

324 A. Smutnicki

5. Schupke, D.: An ILP for Optimal p-Cycle Selection Without Cycle Enumeration.
In: Proceedings of Eighth IFIP Working Conference on Optical Network Design
and Modelling (ONDM 2004), Ghent, Belgium (February 2004)

6. Wu, B., Yeung, K., Xu, S.: ILP Formulation for p-Cycle Construction Based on
Flow Conservation. In: Proceedings of Global Telecommunications Conference,
2007. GLOBECOM 2007, Washington, DC, USA, pp. 2310–2314 (November 2007)

7. Doucette, J., He, D., Grover, W.D., Yang, O.: Algorithmic Approaches for Efficient
Enumeration of Candidate p-Cycles and Capacitated p-Cycle Network Design. In:
Proceedings of Fourth International Workshop on Design of Reliable Communica-
tion Networks, pp. 212–220 (October 2003)

8. Chang, L., Lu, R.: Finding Good Candidate Cycles for Efficient p-Cycle Network
Design. In: Proceedings of 13th International Conference on Computer Communi-
cations and Networks, pp. 321–326 (October 2004)

9. Zhang, H., Yang, O.: Finding Protection Cycles in DWDM Networks. In: Proceed-
ings of IEEE International Conference on Communications, pp. 2756–2760 (2002)

10. Lo, K., Habibi, D., Rassan, A., Phung, Q.V., Nguyen, H.N., Kang, B.: A Hybrid p-
Cycle Search Algorithm for Protection in WDM Mesh Networks. In: Proceedings of
ICON 2006. 14th IEEE International Conference on Networks, pp. 1–6 (September
2006)

11. Grover, W.D.: Mesh-Based Survivable Networks: Options and Strategies for Opti-
cal, MPLS, SONET, and ATM Networking. Prentice Hall PTR, New Jersey (2003)

12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Pusblishers, Dordrecht
(1997)

13. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0 — Survivable
Network Design Library. In: Proceedings of the 3rd International Network Opti-
mization Conference (INOC 2007), Spa, Belgium (April 2007),
http://sndlib.zib.de

http://sndlib.zib.de

	An Algorithm for Unrestored Flow Optimization in Survivable Networks Based on p-Cycles
	Introduction
	Algorithm Components
	Generation of p-Cycles
	Tabu Search

	Computational Results
	Common Benchmarks
	Generation Technology Test
	Alternative Routing Paths Test
	Finding the Optimal Configuration
	Final Solution Quality Test

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

