
Cryptanalysis of CubeHash

Eric Brier and Thomas Peyrin

Ingenico, France
eric.brier@ingenico.com,

thomas.peyrin@ingenico.com

Abstract. CubeHash is a family of hash functions submitted by Bern-
stein as a SHA-3 candidate. In this paper, we provide two different crypt-
analysis approaches concerning its collision resistance. Thanks to the first
approach, related to truncated differentials, we computed a collision for
the CubeHash-1/36 hash function, i.e. when for each iteration 36 bytes
of message are incorporated and one call to the permutation is applied.
Then, the second approach, already used by Dai, much more efficient
and based on a linearization of the scheme, allowed us to compute a
collision for the CubeHash-2/4 hash function. Finally, a theoretical col-
lision attack against CubeHash-2/3, CubeHash-4/4 and CubeHash-4/3 is
described. This is currently by far the best known cryptanalysis result
on this SHA-3 candidate.

Keywords: hash functions, CubeHash, collision.

1 Introduction

A cryptographic hash function is a very important tool in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. One of its main and most important security feature is the collision
resistance: finding two messages M and M ′ leading to the same hash value
should require at least 2n/2 operations, where n is the output length of the hash
function. Wang et al. [14,16,15,17] recently showed that most standardized hash
functions (e.g. MD5 [12] or SHA-1 [10]) are not collision resistant. As a response,
the National Institute of Standards and Technology (NIST) opened a public
competition [9] to develop a new cryptographic hash algorithm that will be
called SHA-3. 51 submissions met the minimum submission requirements, and
had been accepted as the first round candidates. Among them, CubeHash is a
new hash function designed by Bernstein [3] and currently under evaluation. One
of its advantages is its simplicity of description which makes the analysis much
easier for a cryptanalyst. This proposal can be considered as a stream-cipher
oriented hash function. It maintains a big 1024-bit internal state, in which b-
byte of message are incorporated at each iteration. After adding such a message
block, a fixed permutation is then applied r time. Generally, the bigger is r (or
the smaller is b) the harder it should be for the attacker to break the collision
resistance of CubeHash-r/b.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 354–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalysis of CubeHash 355

Previous results. The first analysis of CubeHashwas proposed by Aumasson et
al. [1,2] in which the authors showed some non-random properties for several
versions of CubeHash as well as a collision for CubeHash-2/120. Later, thanks
to a linearization approach, Dai [6] computed a collision for CubeHash-1/45 and
CubeHash-2/89. Those results were soon improved to CubeHash-2/12 [7].

Our contributions. In this paper, we provide two different cryptanalysis ap-
proaches concerning the collision resistance. The first approach, related to trun-
cated differences, allowed us to compute a real collision for CubeHash-1/36.
The second approach, i.e. linearizing the scheme, gives us much better results:
we provide a real collision for CubeHash-2/4 and theoretical collision attacks
against CubeHash-2/3, CubeHash-4/4 and CubeHash-4/3. This is currently the
best known cryptanalysis result on CubeHash. To give an insight of the broken
schemes, CubeHash-4/3 speed is about 26 cycles/byte, comparable to the speed
of SHA-2 [10].

2 Description of CubeHash

We refer to the specifications of CubeHash [3] for the complete description of the
scheme. CubeHash-r/b-h is the h-bit output version of CubeHash, for which b bytes
of message are incorporated and r calls to the internal permutation F is applied
at each iteration. The function can hash messages up to 2128 − 1 bits. After an
appropriate padding, the message is therefore divided into block Mi of b bytes
each. A 1024-bit internal state is maintained, divided into 32 words Xi of 32 bits
each and initialized by the following process: set the first three state words X0,
X1, X2 to the integers h/8, b, r respectively and set the remaining state words to
0. Then apply on the state 10 × r times the internal permutation F .

After the initialization, the message blocks are treated iteratively: exclusive or
the incoming b-byte message block onto the first b bytes of the internal state and
apply the iteration function, composed of r times the application of the internal
permutation F . When all the message blocks have been treated, exclusive or the
integer 1 to the state word X31 and apply 10× r times the internal permutation
F without incorporating message blocks anymore. Finally, output the h first bits
of the internal state.

The internal permutation F uses very simple operations: rotation, exclusive
or, modular addition and word swapping. It is composed of 10 steps (represented
graphically in Figure 1):

1. Add Xi into Xi⊕16, for 0 ≤ i ≤ 15.
2. Rotate Xi on the left by seven bits, for 0 ≤ i ≤ 15.
3. Swap Xi and Xi⊕8, for i ∈ [0, 1, 2, 3, 4, 5, 6, 7].
4. Xor Xi⊕16 into Xi, for 0 ≤ i ≤ 15.
5. Swap Xi and Xi⊕2, for i ∈ [16, 7, 20, 21, 24, 25, 28, 29].
6. Add Xi into Xi⊕16, for 0 ≤ i ≤ 15.
7. Rotate Xi on the left by eleven bits, for 0 ≤ i ≤ 15.

356 E. Brier and T. Peyrin

Fig. 1. Internal permutation F in CubeHash. Each cell represents a 32-bit word.

8. Swap Xi and Xi⊕4, for i ∈ [0, 1, 2, 3, 8, 9, 10, 11].
9. Xor Xi⊕16 into Xi, for 0 ≤ i ≤ 15.

10. Swap Xi and Xi⊕1, for i ∈ [16, 18, 20, 22, 24, 26, 28, 30].

3 Truncated Differential Paths

In this section, we depict a cryptanalysis approach for CubeHash regarding its
collision resistance, based on two very generic differential paths. The technique is

Cryptanalysis of CubeHash 357

related to truncated differences, originally introduced by Knudsen [8] to cryptan-
alyze block ciphers and later utilized by Peyrin [11] in the hash functions setting.
These one-round differential paths can potentially be used to build more complex
differential characteristics on any number of rounds per iteration. Our results
provide theoretical collision attacks for CubeHash-2/b with r ≤ 2 and b ≥ 36
and as a proof of concept, we computed a collision for the 512-bit version of
CubeHash-1/36.

3.1 The Differential Paths

In the following, we say that a 32-bit word is active when a non-zero difference
exists on this word. We denote a differential path for the internal permutation
by A �−→ B, where A and B are 32-bit words for which each bit represents one
internal word (the LSB will denote X31 and the MSB will denote X0). Said in
other words, we only check if the internal words are active or not, whatever are
the values of the non-zero differences. For example, 0x05000000 �−→ 0x00000800
means that we have X5 and X7 active on the input, and that we expect only
X20 to be active on the output of the permutation.

In this paper, we use two distinct differential paths for the internal permuta-
tion (see also Figure 2):

Δ1 : 0xa0800000 �−→ 0x0a020000

Δ2 : 0x0a020000 �−→ 0xa0800000

One can see that the two-round differential path composed of Δ1 and Δ2 has
the interesting property that the input and output active words patterns are
the same. In the difference mask 0xa0800000, only the nine first 32-bit words of
the internal state are active. Therefore, we can look for an attack on CubeHash-
r/36 by using the differential paths Δ1 and Δ2 successively. In this section, we
consider that the attacker insert 9 32-bit words of message at each iteration, i.e.
he has full control on X0, . . . , X8 at the beginning of each iteration.

We denote by X≪y the rotation of y positions on the left applied to the word
X and by X the complement value of X . Also, X ′ will represent the second
member of the pair when X is an active word. For each differential path Δ1 and
Δ2, a system of four equations on 32-bit words must be satisfied:

System 1 (for Δ1) :

(X24 + X8) ⊕ X≪7
0 = (X24 + X ′

8) ⊕ X ′≪7
0

X8 + [(X26 + X10) ⊕ X≪7
2] = X ′

8 + [(X26 + X10) ⊕ X ′≪7
2]

X0 + [(X18 + X2) ⊕ X≪7
10] = X ′

0 + [(X18 + X ′
2) ⊕ X≪7

10]
X2 + [(X16 + X0) ⊕ X≪7

8] = X ′
2 + [(X16 + X ′

0) ⊕ X ′≪7
8]

358 E. Brier and T. Peyrin

Fig. 2. Differential paths Δ1 (left) and Δ2 (right) for the internal permutation of
CubeHash. A cell stands for a 32-bit word of the internal state and the boxes represent
in hexadecimal display the active words during the computation.

System 2 (for Δ2) :

(X30 + X14) ⊕ X≪7
6 = (X30 + X ′

14) ⊕ X ′≪7
6

X14 + [(X28 + X12) ⊕ X≪7
4] = X ′

14 + [(X28 + X12) ⊕ X ′≪7
4]

X6 + [(X20 + X4) ⊕ X≪7
12] = X ′

6 + [(X20 + X ′
4) ⊕ X≪7

12]
X4 + [(X22 + X6) ⊕ X≪7

14] = X ′
4 + [(X22 + X ′

6) ⊕ X ′≪7
14]

We describe here a fast method to resolve the first system of equations. Exactly
the same method will also apply for the second system, so we will only focus on the
first one. The internal state words X10, X16, X18, X24 and X26 are given inputs
of the system. The words X0, X ′

0, X2, X ′
2, X8 and X ′

8 are fully controlled by
the attacker. Our method directly finds a solution for the three first equations. We
will repeat this process several times until the last equation is also verified. More
precisely, if we assume the equations to be independent, we will repeat the process
232 times on average in order to get a solution for the complete system.

We now describe how to solve the three first equations of the system. First,
we pick random values for X2 and X ′

2, such that X2 �= X ′
2. We can rewrite the

second and third equations respectively, so we directly get

X ′
8 − X8 = A (1)

X ′
0 − X0 = B (2)

Cryptanalysis of CubeHash 359

where A and B are constant terms. We then set Y = X8 + X24 and Y ′ =
X ′

8 + X24, so we can rewrite the first equation as:

Y ⊕ X≪7
0 = Y ′ ⊕ X ′≪7

0 . (3)

Finally, we combine the three equations together:

Y ⊕ (A + Y) = X≪7
0 ⊕ (B + X0)≪7. (4)

We need a trick to solve this equation quickly: one can check that x⊕(x+k) is
always equal to 0xffffffff when x = k/2 and when the least significant bit of
k is equal to one. Thus, we wait for A and B values so that their least significant
bit is equal to one and we set Y = A/2 and X0 = B

≪25
/2. The two sides of

the equations are therefore equal to 0xffffffff and we can finally deduce a
solution that verifies the three first equations of our system.

3.2 A Collision for CubeHash-1/36

Using the differential paths Δ1 and Δ2 and the solving technique previously
explained, we computed within a few minutes on an average PC (Processor Intel
Core 2 Duo 2.0 GHz, with 2 GB of RAM) a collision for CubeHash-1/36 with
512 bits of output.

The collision attack uses four message inputs. The first message block is used
without any difference in order to randomize the values of the internal state
just after the initialisation (randomization of the equations systems). Then, the
second message pair verifies the differential path Δ1 and the third message pair
the differential path Δ2. Finally, the fourth and last message pair will erase
the remaining differences (0xa0800000) in the internal state, and thus leads to
an internal collision. Obviously, by adding some other message words without
difference, one will maintain colliding pairs of internal states until the end of the
computation of the hash function.

The values of the message words to insert and the final hash value are given
in Table 4 in the Appendix A.

3.3 Extensions to Other Versions

One can easily extend this practical attack against CubeHash-1/36 to theoretical
attacks against stronger versions. First, it is obvious that when b ≥ 36, our
attack remains valid. When r = 2, one has to verify equations from system 1 in
the first internal permutation call, and equations from system 2 in the second
internal permutation call of the iteration function.

We managed to generate input blocks verifying directly five equations among
the eight of the two systems. Thus, one can assume that the three other equations
will be verified with probability 2−32×3. Therefore, one can find a collision for
CubeHash-2/36 with a computation complexity of about 296 function calls.

360 E. Brier and T. Peyrin

4 Linear Differential Paths

In this section, we will try to find interesting differential paths by using a F2-
linear version of the scheme. More precisely, in the internal permutation F , we
replace all the modular additions by bitwise XOR operations on 32-bit words.
Overall, this simplification makes sense since non-linear components are quite
few in CubeHash. This technique is very frequently used in order to study hash
functions, for example in the case of SHA-1 [4]. Dai [6,7] also used this simplifi-
cation to compute a collision for CubeHash-2/12 and CubeHash-1/45.

4.1 The Differential Path

In this section, we are interested in attacking CubeHash-2/4. Said in other words,
after a 2-round iteration, the attacker hash complete control over X0 (and only
X0). The linear differential path we use is very simple, almost the simplest
someone can think of. We first insert a one-bit perturbation in X0 and apply
the first 2-round iteration. We then erase all the differences present in X0 and
we apply the second 2-round iteration. Finally, we get a collision on the internal
state by erasing a very last difference in X0.

More precisely, we first insert a message pair with a one-bit difference located
at bit position y. Then, the next message pair will correct three differences
located at bit position y + 4, y + 14 and y + 22 (the positions are to be taken
modulo 32). Finally, the last message pair will correct the last difference located
at bit position y + 4. The differential path is described in Figure 3.

In the linear model, a collision can be computed directly. However, as any dif-
ferential path, for the real function there is a certain probability of success that
a random message pairs fulfilling the input differential constraints will also fulfill
the output differential constraints. This probability can often be translated to a
set of sufficient conditions to verify. In our case, the conditions directly depict the
expected linear behavior of the scheme. The real CubeHashuses two modular addi-
tions in each call of the internal permutation F , which are non-linear components
because of the carry potentially created.Thus, two interesting situations can occur:

1. a perturbation at a certain bit position is added to another bit containing
no difference (move).

2. a perturbation at a certain bit position is added to another bit containing a
difference (correction).

Each such situation will lead to exactly one sufficient condition because we want
the modular addition carry to be unaffected by the perturbation. Said in other
words, when we add together two word pairs A, B and A′, B′, the number of con-
ditions will be the hamming weight of (A⊕A′)∨ (B ⊕B′), where ∨ stands for the
bitwise or operation. When all the conditions from situations 1 and 2 are verified
through the entire differential path, we are assured that the scheme behaved com-
pletely linearly regarding the bit perturbations and we can finally get our collision.

In total, the differential path presented possesses 46 sufficient bit conditions
(24 for the first iteration and 22 for the second). This means that by testing

Cryptanalysis of CubeHash 361

it. round step active bits nb. cond.

1 1 M M0
1

1 1 X0
0

1 1 1 X0
0 , X0

16 1

1 1 2 X7
0 , X0

16

1 1 3 X7
8 , X0

16

1 1 4 X0
0 , X7

8 , X0
16

1 1 5 X0
0 , X7

8 , X0
18

1 1 6 X0
0 , X7

8 , X0
16, X0

18, X7
24 3

1 1 7 X11
0 , X18

8 , X0
16, X0

18, X7
24

1 1 8 X11
4 , X18

12 , X0
16, X0

18, X7
24

1 1 9 X0
0, X0

2 , X11
4 , X7

8 , X18
12 , X0

16, X0
18, X7

24

1 1 10 X0
0, X0

2 , X11
4 , X7

8 , X18
12 , X0

17, X0
19, X7

25

1 2 1 X0
0, X0

2, X11
4 , X7

8 , X18
12 , X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28 8

1 2 2 X7
0 , X7

2, X18
4 , X14

8 , X25
12 , X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28

1 2 3 X14
0 , X25

4 , X7
8, X7

10, X18
12 , X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28

1 2 4 X0
0, X14

0 , X0
1 , X0

2 , X0
3 , X11

4 , X25
4 , X7

9 , X7
10, X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28

1 2 5 X0
0, X14

0 , X0
1 , X0

2 , X0
3 , X11

4 , X25
4 , X7

9 , X7
10, X0

16, X0
17, X0

18, X0
19, X11

22 , X7
26, X7

27, X18
30

1 2 6 X0
0 , X14

0 , X0
1 , X0

2 , X0
3 , X11

4 , X25
4 , X7

9 , X7
10, X14

16 , X11
20 , X25

20 , X11
22 , X7

25, X7
27, X18

30 12

1 2 7 X11
0 , X25

0 , X11
1 , X11

2 , X11
3 , X22

4 , X4
4, X18

9 , X18
10 , X14

16 , X11
20 , X25

20 , X11
22 , X7

25, X7
27, X18

30

1 2 8 X4
0 , X22

0 , X11
4 , X25

4 , X11
5 , X11

6 , X11
7 , X18

13 , X18
14 , X14

16 , X11
20 , X25

20 , X11
22 , X7

25, X7
27, X18

30

1 2 9 X4
0 , X14

0 , X22
0 , X11

5 , X11
7 , X7

9 , X7
11, X18

13 , X14
16 , X11

20 , X25
20 , X11

22 , X7
25, X7

27, X18
30

1 2 10 X4
0 , X14

0 , X22
0 , X11

5 , X11
7 , X7

9 , X7
11, X18

13 , X14
17 , X11

21 , X25
21 , X11

23 , X7
24, X7

26, X18
31

2 1 M M4
2 , M14

2 , M22
2

2 1 X11
5 , X11

7 , X7
9 , X7

11, X18
13 , X14

17 , X11
21 , X25

21 , X11
23 , X7

24, X7
26, X18

31

2 1 1 X11
5 , X11

7 , X7
9 , X7

11, X18
13 , X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31 10

2 1 2 X18
5 , X18

7 , X14
9 , X14

11 , X25
13 , X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 3 X14
1 , X14

3 , X25
5 , X18

13 , X18
15 , X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 4 X14
3 , X7

8 , X7
9 , X7

10, X7
11, X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 5 X14
3 , X7

8 , X7
9 , X7

10, X7
11, X14

19 , X25
23 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 6 X14
3 , X7

8 , X7
9 , X7

10, X7
11, X25

23 , X18
29 , X18

31 8

2 1 7 X25
3 , X18

8 , X18
9 , X18

10 , X18
11 , X25

23 , X18
29 , X18

31

2 1 8 X25
7 , X18

12 , X18
13 , X18

14 , X18
15 , X25

23 , X18
29 , X18

31

2 1 9 X18
12 , X18

14 , X25
23 , X18

29 , X18
31

2 1 10 X18
12 , X18

14 , X25
22 , X18

28 , X18
30

2 2 1 X18
12 , X18

14 , X25
22 3

2 2 2 X25
12 , X25

14 , X25
22

2 2 3 X25
4 , X25

6 , X25
22

2 2 4 X25
4 , X25

22

2 2 5 X25
4 , X25

20

2 2 6 X25
4 1

2 2 7 X4
4

2 2 8 X4
0

2 2 9 X4
0

2 2 10 X4
0

3 1 M M4
3

Fig. 3. Linear differential path for CubeHash-2/4 and CubeHash-2/3. The three first
columns give in order the iteration number, the round number and the step number in
the internal permutation. A step denoted M represents the active bits of the message
block inserted. The fourth column provides the active bits, where Xj

i denotes the j-
th bit of the internal word Xi. Finally, the number of conditions is given in the last
column.

362 E. Brier and T. Peyrin

about 246 different messages pairs, one has a rather good chance to find a valid
candidate. However, this can be improved by carefully choosing the bit position
on which the initial difference is inserted. Indeed, some conditions can be placed
on bit position 31 and will therefore be always verified with probability 1. We
give in Table 1 the number of bit conditions of the differential path from Figure 3,
according to the bit position of the initial difference inserted.

Table 1. Number of conditions for the differential path from Figure 3, according to
the bit position of the first difference inserted

bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nb. conditions 46 46 46 46 46 46 41 46 46 46 46 46 46 38 46 46

bit position 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nb. conditions 46 43 46 46 41 46 46 46 32 46 46 46 46 46 46 35

Note also that valid candidate search speed-ups are very likely to exist. Indeed,
the complexity cost here only takes in account the probability of the differential
path. However, in hash functions cryptanalysis, the use of the available degrees
of freedom can drastically improve the overall complexity of the attack. For
example, it is easy to force some bits of the first inserted message word in order
to validate with probability 1 the very first condition of the differential path.
Also, one can try to validate some conditions of the first iteration and some
conditions of the second iteration independently, by playing with the message
word inserted just before the second iteration.

4.2 Collision Attack for CubeHash-2/4 and CubeHash-2/3

According to Table 1, using the differential path from Figure 3 on bit position
24 provides a collision attack on CubeHash-2/4 with an overall complexity of 232

operations. An example of such a collision for the 512-bit output version of the
scheme is given here. It required a few minutes of computation on an average PC
(Processor Intel Core 2 Duo 2.0 GHz, with 2 GB of RAM). No specific search
speed-up were used which leaves room for further improvements.

This colliding pair is composed of five message inputs. The two first message
blocks are used without any difference in order to randomize the values of the
internal state just after the initialisation. Then, the third message pair inserts
the initial one-bit difference at position 24, and the fourth message pair permits
to prepare the internal state for the second part of the differential path. Finally,
the fifth and last message pair will erase the remaining difference in the first
word of the internal state, and thus leads to an internal collision.

The values of the message words to insert and the final hash value are given
in Table 5 in the Appendix B.

In the implementation of CubeHash, one can check that if 3 bytes are inserted
at each iteration, they will be xored to the 3 first least significant bytes of X0 (the

Cryptanalysis of CubeHash 363

it. round step active bits nb. cond.

1 1 M M0
1

1 1 X0
0

1 1 1-10 X0
0 , X0

2 , X11
4 , X7

8 , X18
12 , X0

17, X0
19, X7

25 4

1 2 1-10 X4
0 , X14

0 , X22
0 , X11

5 , X11
7 , X7

9 , X7
11, X18

13 , X14
17 , X11

21 , X25
21 , X11

23 , X7
24, X7

26, X18
31 20

X4
0 , X14

0 , X22
0 , X4

2 , X14
2 , X22

2 , X1
4 , X15

4 , X25
4 , X11

8

1 3 1-10 X21
8 , X29

8 , X0
12, X8

12, X18
12 , X22

12 , X18
14 , X4

17, X14
17 , X22

17 30

X4
19, X14

19 , X22
19 , X25

22 , X11
25 , X21

25 , X29
25 , X18

28 , X18
30

X4
0 , X8

0 , X12
0 , X28

0 , X1
5, X15

5 , X25
5 , X1

7 , X15
7 , X25

7 , X11
9 , X21

9 , X29
9

1 4 1-10 X11
11 , X21

11 , X29
11 , X0

13, X8
13, X22

13 , X4
17, X18

17 , X28
17 , X1

21, X7
21, X25

21 , X29
21 60

X1
23, X15

23 , X25
23 , X11

24 , X21
24 , X29

24 , X11
26 , X21

26 , X29
26 , X0

31, X8
31, X22

31

2 1 M M8
2 , M12

2 , M28
2

X4
0 , X1

5 , X15
5 , X25

5 , X1
7, X15

7 , X25
7 , X11

9 , X21
9 , X29

9 , X11
11 , X21

11

2 1 X29
11 , X0

13, X8
13, X22

13 , X4
17, X18

17 , X28
17 , X1

21, X7
21, X25

21 , X29
21 , X1

23

X15
23 , X25

23 , X11
24 , X21

24 , X29
24 , X11

26 , X21
26 , X29

26 , X0
31, X8

31, X22
31

2 1 1-10 X4
0 , X4

2 , X15
4 , X11

8 , X0
12, X8

12, X0
14, X8

14, X22
14 , X4

17, X4
19

X7
22, X15

22 , X29
22 , X11

25 , X0
28, X8

28, X22
28 , X0

30, X8
30, X22

30 56

2 2 1-10 X15
5 , X15

7 , X11
9 , X11

11 , X22
13 , X18

17 , X15
21 , X29

21 , X15
23 , X11

24 , X11
26 , X22

31 29

2 3 1-10 X22
12 , X22

14 , X29
22 , X22

28 , X22
30 18

2 4 1-10 X8
0 4

3 1 M M8
3

Fig. 4. Linear differential path for CubeHash-4/4 and CubeHash-4/3. The three first
columns give in order the iteration number, the round number and the step number in
the internal permutation. A step denoted M represents the active bits of the message
block inserted. The fourth column provides the active bits, where Xj

i denotes the j-
th bit of the internal word Xi. Finally, the number of conditions is given in the last
column. The display of this differential path has been simplified because of the big
number of active bits.

first byte of a word is considered to be the least significant one). Thus, using the
same differential path but by inserting the initial perturbation at bit position 0
gives us a collision attack against CubeHash-2/3 with only 246 operations. Indeed,
if one inserts the perturbation at bit position 0 (in the first byte of X0), the first
message correction after one iteration will occur on bit positions 4, 14 and 22
(all located in the three first bytes of X0). Finally, after another iteration, the
attacker will have to erase the difference located at bit position 4 (in the first
byte of X0) in order to get an internal collision. One can see that all the control
needed by the attacker is located in the three first bytes of X0. Thus, a collision
for CubeHash-2/3 can be found with only 246 operations.

4.3 Collision Attack for CubeHash-4/4 and CubeHash-4/3

One can use the same linearization technique to cryptanalyze CubeHash-4/4 and
CubeHash-4/3. The differential path will be a little bit more complicated than

364 E. Brier and T. Peyrin

Table 2. Number of conditions for the differential path from Figure 4, according to
the bit position of the first difference inserted

bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nb. conditions 221 221 198 218 221 221 212 221 221 195 207 221 221 207 221 221

bit position 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nb. conditions 210 207 221 221 189 221 221 213 202 221 221 197 221 221 216 202

Table 3. Best found probability of success for linear differential paths, according to
the parameters of the hash function (r and b) and the maximum number of iterations

r b max nb. it. probability

1

64 3 23

32 5

23216 5

8 5

4 5

2 7 2221

1 15 21225

2

64 3

23232 3

16 3

8 3

4 3

2 4 2221

1 8 21225

r b max nb. it. probability

4

64 3

218932 3

16 3

8 3

4 3

2 4 2964

1 9 22614

8

64 3 2650

32 3
2830

16 3

8 3
21009

4 3

2 5
22614

1 5

the one from Figure 3 and its probability of success will also be much lower.
We give in Figure 4 the new differential path for CubeHash-4/4. The display has
been simplified because of the big number of conditions. However, since we use
the linear model, the entire set of sufficient conditions can be easily retrieved
from the input differences.

As for the previous differential path, the number of conditions depends on
the bit position of the first perturbation inserted (because the conditions on bit
position 31 are automatically verified). We give in Table 2 the number of bit
conditions of the differential path from Figure 4, according to the bit position
of the initial difference inserted.

One can directly conclude that a collision attack requiring 2189 operations
can be mounted on CubeHash-4/4 by selecting the bit position 20 for the first
perturbation inserted. Concerning CubeHash-4/3, only the bit positions 4 to 11
can be selected to insert the first perturbation, so that the control required by
the attacker only involves the three least significant bytes of the internal word

Cryptanalysis of CubeHash 365

X0. Thus, by choosing the bit position 9, one gets a collision attack against
CubeHash-4/3 with only 2195 operations.

4.4 Others Versions of CubeHash

We can apply similar techniques to cryptanalyze other versions of CubeHash. We
give in Table 3 the best possible linear differential path probabilities, according to
the parameters of the hash function considered and the maximum number of iter-
ations. One can check that for some slower versions of CubeHash the probabilities
of success of the linear differential paths are too low. However, it may be possi-
ble to use more iterations and aim to build a more complex attack composed of
the concatenation of several individual linear differential paths. Also, depending
on the amount of degrees of freedom available, one may be able to improve the
overall complexity of the attack.

5 Conclusion

In this paper, we provided two different cryptanalysis approaches that led to the
computation of a real collision for CubeHash-1/36 and CubeHash-2/4. The linear
differential paths also give a theoretical collision attack against CubeHash-2/3 in
246 operations, against CubeHash-4/4 in 2189 operations and against CubeHash-
4/3 in 2195 operations. Those complexities have to be compared to 2128 and 2256

for an ideal hash function of 256 and 512-bit output respectively.

Acknowledgments

The authors would like to thank Jean-Philippe Aumasson, Shahram Khazaei,
Willi Meier and Maŕıa Naya-Plasencia for the very interesting discussions on
CubeHash.

References

1. Aumasson, J.-P.: Collision for CubeHash2/120-512. NIST mailing list, local link
(2008)

2. Aumasson, J.-P., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the hypercube.
Cryptology ePrint Archive, Report 2008/486 (2008)

3. Bernstein, D.J.: CubeHash specification (2.b.1). Submission to NIST (2008)
4. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)
5. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg

(2005)
6. Dai, W.: Collisions for CubeHash1/45 and CubeHash2/89 (2008)
7. Dai, W.: Collision for CubeHash2/12 (2009)
8. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE

1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

366 E. Brier and T. Peyrin

9. National Institute of Standards and Technology. Cryptographic Hash Algorithm
Competition

10. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002)

11. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

12. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
13. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions

MD4 and RIPEMD. In: Cramer [5], pp. 1–18 (2005)
15. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [13],

pp. 17–36
16. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [5],

pp. 19–35
17. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup

[13], pp. 1–16

Cryptanalysis of CubeHash 367

Appendix A: Collision for CubeHash-1/36-512

Both message instances given in Table 4 lead to the following hash output, in
hexadecimal display:

fb5e5578 c020296a 9d66df51 c49031ba

12c1eb92 eb404187 0b02e344 d2c9b335

5b1d6afa 8ac26a39 2fa35d96 c684bc3d

d6ecbd6e f71339e3 ba35bd72 841af694

Table 4. Message words to insert during four iterations in order to get a collision
for the 512-bit output version of CubeHash-1/36. The values are given in hexadecimal
notation.

Iteration 1 Iteration 2

word i Mi M ′
i Mi ⊕ M ′

i

0 9d45c73a 9d45c73a 00000000

1 f6106042 f6106042 00000000

2 7f3be941 7f3be941 00000000

3 2b58d9ed 2b58d9ed 00000000

4 b7923ded b7923ded 00000000

5 fb187e3f fb187e3f 00000000

6 fd5d2414 fd5d2414 00000000

7 e66ffb2c e66ffb2c 00000000

8 367126de 367126de 00000000

word i Mi M ′
i Mi ⊕ M ′

i

0 43f69ab4 bc09654b ffffffff

1 00000000 00000000 00000000

2 e3c37da8 1c6319ad ffa06405

3 00000000 00000000 00000000

4 58fdd79b 58fdd79b 00000000

5 b08456a3 b08456a3 00000000

6 00000000 00000000 00000000

7 765e25fb 765e25fb 00000000

8 edaea852 bddcae41 50720613

Iteration 3 Iteration 4

word i Mi M ′
i Mi ⊕ M ′

i

0 00000000 00000000 00000000

1 00000000 00000000 00000000

2 00000000 00000000 00000000

3 00000000 00000000 00000000

4 1be9de4a 1fa91472 0440ca38

5 00000000 00000000 00000000

6 8912b045 6b0ea65f e21c161a

7 00000000 00000000 00000000

8 00000000 00000000 00000000

word i Mi M ′
i Mi ⊕ M ′

i

0 00000000 7d23e83d 7d23e83d

1 00000000 00000000 00000000

2 00000000 07e4687b 07e4687b

3 00000000 00000000 00000000

4 00000000 00000000 00000000

5 00000000 00000000 00000000

6 00000000 00000000 00000000

7 00000000 00000000 00000000

8 00000000 8e6c1d83 8e6c1d83

368 E. Brier and T. Peyrin

Appendix B: Collision for CubeHash-2/4-512

Both message instances given in Table 5 lead to the following hash output, in
hexadecimal display:

220f6a8a 640870f4 2757873d 8f16bc80

0f5595fa a519aa37 2091d3f0 c1e86527

fe9fa656 de7d1cb7 b9c367b2 a06d6616

27aa321d d3fd2ec6 378d61d1 9a270371

Table 5. Message words to insert during fives iterations in order to get a collision
for the 512-bit output version of CubeHash-2/4. The values are given in hexadecimal
notation.

M M ′ M ⊕ M ′

Iteration 1 72d9dcf5 72d9dcf5 00000000

Iteration 2 b835e32f b835e32f 00000000

Iteration 3 05a4593f 04a4593f 01000000

Iteration 4 b897ebd7 a897ab97 10004040

Iteration 5 00000000 10000000 10000000

	Cryptanalysis of {\sf CubeHash}
	Introduction
	Description of {\sf CubeHash}
	Truncated Differential Paths
	The Differential Paths
	A Collision for {\sf CubeHash}-1/36
	Extensions to Other Versions

	Linear Differential Paths
	The Differential Path
	Collision Attack for {\sf CubeHash}-2/4 and {\sf CubeHash}-2/3
	Collision Attack for {\sf CubeHash}-4/4 and {\sf CubeHash}-4/3
	Others Versions of {\sf CubeHash}

	Conclusion
	References
	Appendix A: Collision for {\sf CubeHash}-1/36-512
	Appendix B: Collision for {\sf CubeHash}-2/4-512

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

