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Abstract. Building a high performance IP lookup engine remains a
challenge due to increasingly stringent throughput requirements and the
growing size of IP tables. An emerging approach for IP lookup is the
use of set associative memory architecture, which is basically a hardware
implementation of an open addressing hash table with the property that
each row of the hash table can be searched in one memory cycle. While
open addressing hash tables, in general, provide good average-case search
performance, their memory utilization and worst-case performance can
degrade quickly due to bucket overflows. This paper presents a new sim-
ple hash probing scheme called CHAP (Content-based HAsh Probing)
that tackles the hash overflow problem. In CHAP, the probing is based
on the content of the hash table, thus avoiding the classical side effects of
probing. We show through experimenting with real IP tables how CHAP
can effectively deal with the overflow.

Keywords: IP lookup, hardware multiple hashing, content-based
probing.

1 Introduction

High speed routers require wire speed packet forwarding while the sizes of the IP
tables across core routers are increasing at a very high rate [1]. IP address lookup
has been a significant bottleneck for core routers. The advancement of optical
networks made the situation even worse with link rates already beyond 40 Gbps.
Some predict that in the near future,“Terabit” link rates will be available with
affordable prices [2, 3].

IP lookup proceeds as follows: the destination address of every incoming
packet is matched against a large forwarding database (i.e., routing table) to
determine the packet’s next hop on its way to the final destination. An entry in
the forwarding table (called a prefix) is a binary string of a certain length (pre-
fix length), followed by don’t care bits. The adoption of Classless Inter-Domain
Routing resulted in the need for longest prefix match (LPM) [4].

Existing IP forwarding engines are categorized into two main groups: hardware
based and software based. The hardware based schemes are generally constrained
by the size and power consumption of the engine. The software based schemes are
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mainly constrained by the throughput, measured as the number of lookups per
second. Recently, using hash techniques for IP lookup gained a lot of momentum.
Hash tables come in two flavors: open addressing hash and closed addressing
hash (or chaining). The hash table in closed addressing hash has a fixed height
(number of buckets), and each bucket is an infinite size linked list. During the
lookup process, a specific row index is generated by the hash function and the
row is searched to find the target key. An important design goal in this case is
to minimize the worst-case length of the linked lists and to balance the bucket
population by using Bloom filters-like data structures [5, 6, 7].

In open addressing, the hash table has a fixed height and a fixed bucket width
(number of elements per bucket). Open addressing hash has a simpler table struc-
ture than closed addressing hash and is amenable to hardware implementations.
However, the issues of overflow and overflow handling have to be dealt with.
Normally, the overflow is handled by means of probing [8].

The hardware schemes use special hardware such as Ternary Content Ad-
dressable Memory (TCAM) to increase the lookup throughput. Unfortunately,
the TCAM approach has its own set of limitations: high power consumption,
poor scalability, and low bit density. Moreover, most commodity TCAMs run at
low speed compared to SRAM memory [3]. Hence many researchers proposed
optimizations to the TCAM architecture [9, 10, 11, 12].

In this paper, we assume open addressing hash schemes for which a number
of efficient hardware prototype implementations have been proposed recently
[13, 14]. In these implementations, the hash table is stored in a set associative
memory where each set stores all the elements in a bucket and the buckets are
indexed through the hash function. Our goal is to fit an entire IP lookup table in
a single fixed size hash table with no/acceptable overflow and with good space
utilization. In addition, we want to keep both insertion/deletion into/from the
table simple and straightforward. This paper makes the following contributions
to the area of open addressing hash in general:
– The introduction of the new concept of content-based hash probing which

more effectively tackles the overflow than other existing probing techniques.
– The application of content-based probing to multiple hash function schemes.
– The use of content-based probing and multiple hashing, together, to imple-

ment an efficient hardware-based IP lookup engine.
The rest of the paper is organized as follows. In Section 2 we briefly summarize

the state-of-the-art hardware-based hash techniques. In Section 3 we describe
CHAP, our main scheme. Section 4 discusses the setup procedure of CHAP and
how search is done. We will then discuss the incremental updates in Section 5.
Section 6 shows experimental results. Finally, we give conclusions and future
work in Section 7.

2 Background

2.1 Open Addressing Hash
Searchable data items, or records, contain two fields: key and data. Given a
search key, k, the goal of searching is to find a record associated with k in
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the database. Hash achieves fast searching by providing a simple arithmetic
function h(·) (hash function) on k so that the location of the associated record
is directly determined. The memory containing the database can be viewed as a
two-dimensional memory array of N rows with L records per row.

It is possible that two distinct keys ki �= kj hash to the same value: h(ki) =
h(kj). Such an occurrence is called collision. When there are too many (≥ L)
colliding records, some of those records must be placed elsewhere in the table by
finding, or probing, an empty space in a bucket. For example, in linear probing,
the probing sequence used to insert an element into a hash table is given as
follows:

h(k), h(k) + β0, h(k) + β1, · · · , h(k) + βm−1 (1)

where each βi is a constant, and m is the maximum number of probes. Linear
probing is simple, but often suffers from primary key clustering [8].

Instead of probing, one can apply a second hash function to find an empty
bucket, which is known as double hashing [8]. In general, the use of H ≥ 2 hash
functions is shown to be better in eliminating hash overflow than probing [15].
In this case (which we will refer to as multiple hashing in the rest of this paper)
the probing sequence of inserting a key into the hash table is given as follows:

h0(k), h1(k), · · · , hH−1(k) (2)

where H is the maximum number of hash functions. Most work that is done in
the multiple hashing domain is for closed addressing hash as in [15, 16].

Given a database of M records and an N -bucket hash table, the average
number of hash table accesses to find a record is heavily affected by the choice
of h(·), L (the number of slots per bucket), and α, or the load factor, defined as
M/(N × L). With a smaller α, the average number of hash table accesses can
be made smaller, however at the expense of more unused memory space.

2.2 Set Associative Memory Architecture Overview

We will use the CA-RAM (Content Addressable-Random Access Memory) as
a representative of a number of set associative memory architectures proposed
for IP lookup [13, 14]. A CA-RAM takes as an input a search key and outputs
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the result of a lookup. Its main components are: an index generator, a memory
array (SRAM or DRAM), and match processors, as shown in Figure 1.

Given a key, the index generator uses a hash function to create an index which
is used to access a row of the memory array. All the keys stored in that row are
fetched simultaneously and the match processors compare the row of keys with the
search key in parallel, resulting in constant-time matching. Note that the format
of each memory row is flexible and the matching processors are programmable.

3 Content-Based Hash Probing

As we mentioned in the last section, a CA-RAM row stores the elements of a
bucket and is accessed in one memory cycle. Because the architecture is very
flexible, we may keep some bits at the end of each row for auxiliary data;
this allows for more efficient probing schemes with multiple hash functions.
In this section we first present the basic content-based hash probing scheme,
CHAP(1,m), which is a natural evolution of the linear probing scheme de-
scribed by Equation (1). We then extend this scheme to H hash functions, which
we call CHAP(H,m).

In open addressing hash, some rows may incur overflow while others have
space. While linear probing uses predetermined offsets to solve that problem as
specified by Equation (1), CHAP uses the same probing sequence, but with the
constants β0, β1, · · · , βm determined dynamically for each value of h(k), depend-
ing on the distribution of the data stored in a particular hash table. Specifically,
the probing sequence to insert a key “k” is:

h(k), β0[h(k)], β1[h(k)], · · · , βm−1[h(k)] (3)

This means that for each row we associate a group of m pointers to be used if
overflow occurs to point to other rows that have empty spaces. We call those
pointers “probing pointers” and the overall scheme is called CHAP(1,m) since
it has only one hash function and m probing pointers per row.

Figure 2 shows the basic idea of CHAP when m = 2. In order to match the
overflow excess keys to specific rows, we need to collect all the overflow elements
across all the rows. We achieve this by counting the excess elements per row and
finding for each row i two rows in which these overflow elements can fit. These
two rows indices’ are recorded in β0[i] and β1[i].

Probing 
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Assume that we are searching for a key k. If the hash function points to row
i = h(k) and it turns out that the input key k is not in this row, we check to see
if the probing pointers at row i are defined or not. If defined, this means that
there are other elements that belong to row i but reside in either row β0[i] or in
row β1[i] and might contain k. Consequently, rows β0[i] and β1[i] are accessed
in subsequent memory cycles to find the matching key.

The content-based probing can also be applied to the multiple hashing scheme.
Specifically, we refer to CHAP with H hash functions and m probing pointers by
CHAP(H,m). For example, in CHAP(H,H) we have H hash functions and
m = H probing pointers. In this case, the probing sequence for inserting a key,
k, can be defined by:

h0(k), h1(k), · · · , hH−1(k), β0[h0(k)], β1[h1(k)], · · · , βm−1[hH−1(k)] (4)

In essence, we dedicate to each hash function a pointer per row. An example is
shown in Figure 3 for a two hash functions CHAP scheme where a key is mapped
to two different buckets. In the example, this key will have four different buckets
to which it can be allocated: h0(k), h1(k), β0[h0(k)] and β1[h1(k)] in the given
order, where βi[hi(·)] is the probing pointer of hash function hi(·).

There are different ways to organize CHAP(H,m) when m �= H depending
on whether or not the probing pointers are shared among the hash functions in
a given row. In the example described above for CHAP(H,H), we assume that
one probing pointer is associated with each hash function. Another organization
is to share probing pointers among hash functions. Yet a third organization
is to assign multiple pointers for each hash function, which is the only possible
organization for CHAP(1,m), when m > 1. In the rest of this paper, we will limit
our discussion to CHAP(1,m) and CHAP(H,H) with one pointer for each hash
function and with the row order given by Equation (3). We defer the investigation
of the other organization to future work.

4 The CHAP(H,H) Scheme

In this section we describe how to establish an IP lookup engine using
CHAP(H,H). We present the setup algorithm that sets the probing pointers and
maps actual IP prefixes into the CHAP hash table. With minor modifications,
this algorithm can apply to the case of CHAP(1,m).

Before we describe the CHAP setup algorithm, we note that on average 98%
of IP prefixes are 16 bits or longer [1]. In this work, we will use only the most
significant 16 bits in our hash functions. Prefixes shorter than 16 bits (short
prefixes) are not included in the hash table. A separate small TCAM can be
used to store those prefixes. This small TCAM is to be searched in parallel with
the main hash table on every lookup, which is a common practice [12, 17].

4.1 The Setup Algorithm

Algorithm 1 lays out the setup phase of CHAP. In that algorithm, j = 0, · · · , M−1
is used to index the prefixes,whereM is the total number of prefixes in an IP routing
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Algorithm 1. CHAP(H,H) Setup Algorithm
1: Sort the IP prefixes from long to short and initialize the arrays HC[N ] & OC[N ][H] to zeros
2: table overflow = 0
3: for(j = 0; j < M ; j + +)
4: finished = false
5: for(i = 0; i < H; i + +)
6: ri = hi(kj)
7: for (i = 0; i < H AND finished == false; i + +)
8: if(HC[ri] < L), then
9: HC[ri] + +

10: finished = true
11: for (i = 0; i < H AND finished == false; i + +)
12: if(OC[ri][i] < λ), then
13: OC[ri][i] + +
14: finished = true

15: if(finished == false), then table overflow++

table. The goal is to map this table into a hash table with 2R = N rows, where R
is the number of bits used to index the hash table. We use i as an index for hash
functions and H as the maximum number of hash functions. An array of counters,
HC[row index], is used to count the number of elements that will be mapped to
each row of the hash table. We define a two dimensional array of counters OC[row
index][hash function index] to count the overflow elements for each hash function
per row. The maximum value of a single counter in this array is equal to λ, where
λ ≤ L, and L is the number of prefixes per row. This bound comes from the fact
that a hole, or an empty space in any row of the hash table, can never exceed L.

CHAP setup phase determines if the configuration parameters of the hash table
is valid or not. In otherwords,will the parametersL,H ,λ andN result in amapping
of the M prefixes into a single hash table without/with acceptable overflow?

Algorithm 1 calculates the number of prefixes to be assigned to each row.
By “assigned” we mean not only the prefixes that are hashed to this row, but
also the overflow prefixes that are supposed to be in this row but will reside in
other rows that are pointed to by this row’s probing pointers. It starts by sorting
prefixes from long to short, then initializing the two arrays HC, OC and the
table overflow counter to zeros (lines 1–2). The set of hash values {r0, · · · rH−1}
for each prefix is calculated (lines 5–6). Then, the algorithm updates the counter
HC by using the H hash values of each prefix. If there is a spot for the current
prefix in HC then the algorithm will move on to the next prefix (lines 8–10). If
not, it will increment the OC counter (lines 11–14).

When Algorithm 1 exits, table overflow contains the number of prefixes that
could not fit in either HC or OC. If that number is not acceptable, then the
algorithm can be repeated with more hash functions. That is with H = H + 1.
If a separate TCAM is used to store the short prefixes as described earlier, then
this same TCAM can be used to store the overflow prefixes. Hence the acceptable
overflow in Algorithm 1 will depend on the capacity of the added TCAM.

4.2 The Mapping of IP Prefixes in CHAP

The last step in CHAP is to allocate the elements into the hash table using the
probing pointers. Before moving to the actual mapping of the prefixes, however,
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we need to assign values to the probing pointer’s array. This is done by running
the best fit algorithm [18] to set the values of the probing pointer. The algorithm
starts by finding the largest counter value from the OC array, say OC[t][i], and
the smallest counter value from HC, say HC[J ], (we call this a hole). Then the
ith probing pointer of row t is assigned the value of J , the row having the largest
hole provided that the hole size is larger than the largest counter.

Clearly, the best fit algorithm may not find a hole for each overflow counter,
which means that some keys will not be able to fit in the hash table. The number
of these keys are added to table overflow, and again, if the resulting overflow is
not acceptable, then Algorithm 1 has to be re-executed with a larger value of H .
After setting the probing pointers, the prefixes are mapped to the hash table.

4.3 Search in CHAP

As discussed in Section 2.2, hardware implementation of hash tables reads a full
row (bucket) of the table into a buffer and uses a set of comparators to determine,
in parallel, the longest prefix match among the elements in that bucket. Hence,
a metric that will be used to measure the efficiency of the search in CHAP is the
Average Successful Search Time, ASST, the average number of rows accessed
for successful search.

The CHAP search algorithm itself is straightforward. Given a key kx as
an input IP address, we calculate the row address h0(kx) and then match
the prefix against all the elements in this row (in parallel). If we find a hit
at that row, we stop searching. If not, we try the next hash functions (i.e.,
h1(kx), · · · , hH−1(kx)). After we are done with all the H hash functions we
start looking at the probing pointers. First the probing pointer β0[h0(kx)], then
β1[h1(kx)], · · · , βH−1[hH−1(kx)]. In other words, the order of accessing the point-
ers used in searching is the same order used in inserting the prefixes. This con-
straint has to be satisfied to guarantee the LPM feature in searching. Specifically,
if we do not use the insertion order when searching, we might search in a row that
contains shorter prefixes than the longest prefix that should match the address
kx. This order is maintained through the dedication of one probing pointer per
hash function. Without this dedication, we cannot preserve LPM as the probing
pointers will be shared between multiple hash functions.

5 The Incremental Updates

An important issue in the IP forwarding engine is the incremental updates of
the prefix database. The number of prefixes included in a routing table grows
with time [1,2]. The updates consist of two basic operations, Insert/Update and
Delete a prefix. In CHAP the delete operation is straightforward. For any prefix
deletion operation we find the prefix first, then we delete it and decrement the
row counter RC, where a counter RC[i] is associated with each row i to record
the number of prefixes stored in that row. This counter will be used during the
insert/update operation to keep track of full rows.
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Algorithm 2. CHAP Insert Update Algorithm
1: subroutine CHAP Insert Update (prefix kn)
2: for(i = 0; i < H; i + +)
3: T [i] = hi(kn)
4: T [i + H] = βi[hi(kn)]
5: By searching the rows T [0], · · ·T [2 × H − 1], find:
6: kl = longest prefix that matches kn and rl = row that contains kl

7: ks = shortest prefix that matches kn and rs = row that contains ks

8: if(kl is not defined AND ks is not defined ), then
9: return(Insert in Rows(kn, T [0], T [2×H − 1]) /* if no matching: insert kn in any row */

10: else if ((|kn| == |kl|) OR (|kn| == |ks|)), then
11: Replace kl or ks with kn /* an update operation */
12: return (true)
13: else if (|kn| > |kl|), then return (Insert in Rows(kn, T [0], rl))
14: else if(|kn| < |ks|), then return(Insert in Rows(kn, rs, T [2 × H − 1]))
15: else, return(Insert in Rows(kn, rl, rs))
16:
17: subroutine Insert in Rows (prefix kx, row ra, row rb)
18: for(i = ra; i <= rb; i + +)
19: if(RC[i] < L), then
20: insert kx in row i and RC[i] + +
21: return (true)

22: return (false)

The basic idea of the insert/update operation, which is detailed in Algorithm
2, is to find the appropriate row r that the new prefix should fit in, taking into
account the LPM feature. In other words, we need to find where the new prefix
should be stored according to its length to achieve LPM. If it is found that the
prefix already exists in the CHAP table, the existing entry will be updated.

Algorithm 2 consists of two “Boolean” subroutines,CHAP Insert Updtae()
and Insert in Rows(). The second subroutine is where the actual insertion is
made, as it take a prefix kx and tries to insert it in a series of rows starting from row
ra all the way to rb. The first subroutine, CHAP Insert Updtae(), will determine
the appropriate rows to insert the new prefix, kn.

In the first routine a single dimension array T [·] of size (2×H) is used to store
the computed values of the hash functions of kn and the corresponding probing
pointers (lines 2–4). For each row in T [i] we match kn against all the prefixes in
this row and extract both the longest prefix, kl, and the shortest prefix, ks, that
match kn (lines 5–7). We record the rows rl and rs, that include kl and ks, if a
matching is found.

Depending on the length of kn relative to the length of both kl and ks, we
will try to insert kn in one of the 2×H rows. This is done through an if − else
construct (lines 8–15). The first case is when neither kl nor ks are defined (i.e.,
no matching), thus we can insert kn into any row (lines 8–9). The second case,
which is route update [1], is when kn is equal either kl or ks. In this case we
replace either kl or ks with the new prefix kn (lines 10–12). The third case is if
the length |kn| of kn is larger than |kl|, the length of kl. We will try to insert
kn into one of the buckets T [0], · · · , rl if they have a space (line 13). In the next
case we check to see if |kn| < |ks| and if it is true, then we try to insert kn in a
row among rs, · · · , T [2×H−1] (line 14). The final case is when |ks| < |kn| < |kl|
and in this case we will call Insert in Rows() to try to put kn in any row between
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rl and rs (line 15). In any case, the subroutines terminate successfully if we were
able to insert kn.

6 Evaluation

We used C++ to build our own simulation environment. This environment allows
us to choose and arrange different types of hash functions. The BGP (Border
Gateway Protocol) routing tables of Internet core routers were obtained from
the routing information service project [19]. The statistics for the routing tables
used are listed later in Table 9. When measuring the average lookup time, we
used synthetic traces (uniform distribution) generated from these tables.

The hash functions used in our experiments are from three different hashing
families: bit-selecting, CRC-based, and H3 [20] hashing families. Those families
have the advantage of being simple and fast enough to be easily realized in
hardware.

For a given hardware implementation, the number of rows, N , and the number
of entries per row, L, are fixed and the performance of the CHAP scheme depends
on two important parameters, namely the maximum overflow value of the OC
counters, λ, and the number of hash functions used, H , which is also the number
of probing pointers per row in CHAP(H,H). Intuitively, if λ is small, then the
setup algorithm (Algorithm 1) may not be able to eliminate the overflow. On the
other hand, if λ is large, then Algorithm 1 may terminate with every OC having
smaller value than λ, but the best fit algorithm may not find holes that are large
enough in the table to accommodate the values of the OC, thus increasing the
overall overflow of the hash table.

In addition to H and λ, the performance of CHAP depends on the load factor
α. Clearly, α depends on the size of the actual IP routing table and the size of
the physical memory used to store the hash table. For a given α, the hashing
overflow depends on the aspect ratio of the memory N/L. In what follows, we
will define a “configuration” by specifying both N and L.

6.1 The Advantages of Content-Based Hash Probing

In order to show the advantage of content-based probing over linear probing, we
compare the overflow generated by both CHAP(1,m) and linear probing (that
has the same number of probing steps) when mapping routing tables to hash
tables with specific configurations (that is with specific L and N). We will use the
table “rrc07-AS21202” obtained from [19] and use two different configurations
C1: L = 200, N = 1024 and C2: L = 100, N = 2048. We tried many different
configurations and they all led to results similar to those shown in Figure 4. In
addition, these two configurations have a high average load factor α = 91.27%
for the “rrc07-AS21202” table, which articulates the strength of CHAP.

Figure 4 shows that for the same number of probing steps, overflow in
CHAP(1,m) is less than that in linear probing. In fact, CHAP achieves 71.61%
more overflow reduction than linear probing on average. Moreover, we can see
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Fig. 4. Overflow of CHAP(1, m) vs. linear probing for table rrc07-AS13645

that the longer the probing sequence, the more effective is CHAP in eliminat-
ing overflow compared to linear probing. The main reason behind this is that
CHAP is addressing the overflow reduction directly by choosing empty (or par-
tially empty) buckets to reallocate the overflow elements. This is in contrast to
linear probing which blindly tries to put the overflow elements in the nearest
available bucket which may not be found within m probes.

6.2 Sensitivity Analysis of CHAP (H,H)

In this section we study the effect of varying λ or the maximum value of the
overflow counter, OC, in the CHAP setup algorithm (Section 4.1). We report
the results for table “rrc07-AS13645” since all other tables have similar results.
We will also show the results for slight variations of the configurations C1 and
C2. In both case we use H = 3.

Figure 5 shows the values of overflow versus λ for the reported configurations.
For the Figure 5(a), we set N = 1024 rows and L = 180, 200, 220 and 240 entry
per row, which results in α = 96.03%, 91.27%, 82.98% and 76.10% respectively.
As for Figure 5(b), we set N = 2048 rows and L = 90, 100, 110 and 120 entry
per row which will result in the same loading factors. Note that λ ∈ [0, L].

From the figures we can see that the overflow starts at some non zero value and
then decreases in the range 0 < λ < L

2 . At λ = L
2 the overflowbecomes almost zero

in Figure 5(b) while it is actually zero in Figure 5(a). The low overflow determined
at λ = L

2 means that the average hole size in the hash table is equal to L
2 . For

larger values of λ, the maximum hole size becomes smaller than λ and thus we
are unable to insert all the elements that were counted by OC into the hash table.
This increases the overflow. In the following section we will use λ = L
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6.3 CHAP(H,H) Versus Multiple Hashing(H)

In this section we compare the CHAP(H,H) scheme against the regular multi-
ple hash function scheme (which we call MH(H)) [15], where H is the number
of hash functions used. We compare the two schemes in terms of the ASST (Av-
erage Successful Search Time) and the overflow. Again, we use the routing table
rrc07-AS13645.

In Figure 6 we show the average values of overflow for different number of
hash functions (between 1 and 4) and for four different bucket sizes. To keep α
constant at 91.27%, we set N = 512, 1024, 2048 and 4096 where L = 400, 200, 100
and 50. It’s obvious from this figure that CHAP(H,H) has much less overflow
than multiple hashing for the same number of hash functions.

The results shown in Figure 7 indicates that the average ASST over the four
bucket sizes for MH(H) is 1.7, while it’s 2.24 for CHAP(H,H). Although the
difference between the two schemes seems large, we have to take into considera-
tion that at H = 3 the overflow of CHAP is already zero for the bucket sizes of
L = 400, 200 and is less than 2% when L = 100, 50. Thus adding more hash func-
tions in this case makes the average memory access time worse. If we recalculate
the average ASST over the four bucket sizes for CHAP (without taking H = 4
into account) we find it to be 1.87 which is only 10% higher than MH. What
looks like the classical tradeoff between the overflow and the average memory ac-
cess time can be seen in Figures 6 and 7. However, a better understanding of the
tradeoff that CHAP and MH present can be obtained by comparing CHAP(H,H)
with MH(2H) since both has 2 × H as the maximum number of table accesses.
For example at H = 2 with a bucket size L = 200, the overflow for CHAP(2,2)
is 1.01% with an average access time of 2.2 memory cycles, while for the MH(4)
is 10.12% with an average access time of 2.1 memory cycles.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

400 200 100 50

M
em

or
y 

C
yc

le
s

Bucket Size

MH (H)

H = 1

H = 2

H = 3

H = 4 0.0

0.5

1.0

1.5

2.0

2.5

3.0

400 200 100 50

M
em

or
y 

C
yc

le
s

Bucket  Size

CHAP(H,H)

H = 1

H = 2

H = 3

H = 4

Fig. 7. Average ASST of 4 bucket widths for MH(H) and CHAP(H,H)



CHAP: Enabling Efficient Hardware-Based Multiple Hash Schemes 767

 0

 10

 20

 30

 40

 50

 60

 70

 1  1.2  1.4  1.6  1.8  2  2.2  2.4

O
ve

rfl
ow

 %

ASST

MH(2H)- α = 98.14
CHAP(H,H)- α = 98.14

MH(2H)- α = 84.51
CHAP(H,H)- α = 84.51

Fig. 8. Overflow vs. the ASST for MH(H)
v.s. CHAP(H,H) for different load factors

No# Avg. Avg. A.short
Tables size α prefixs

rrc04 3 185 93 0.77
rrc05 4 179 89.5 0.76
rrc07 3 133 66.5 0.96
rrc11 4 198 99 0.78

Fig. 9. The Statistics of the IP
lookup tables used in Figure 10

In order to show that CHAP can achieve both lower overflow and average ac-
cess time than MH, we plot in Figure 8 the average access time versus the overflow
of both schemes for two load factors (98.14% and 84.51%) for L = 200 ± 25 ele-
ments and N = 1024 rows. We used the same table as before and we monitored
the variation of ASST and the overflow for the same load factor α. We varied the
number of hash functions from 1 to 10. Each curve on the graph corresponds to 10
values of H (H = 1, · · · , 10), where the left most point corresponds to H = 1 and
the rightmost point corresponds to H = 10. CHAP(3,3) has zero overflow, thus
we do not need to use more than three hash functions. Figure 8 shows that for the
region of interest (low overflow), for any H > 1, the CHAP(H,H) curve has both
smaller ASST and overflow than the MH(H) curve. In other words, CHAP(H,H),
for H > 1, is more efficient (smaller ASST and fewer overflows) than the MH(H)
under the same system configurations and under the same load factor.

In a different experiment we compare CHAP(3,3) with MH(6). For this ex-
periment we map each of the 14 IP tables of [19] into a fixed hash table of 200 K
entries. A summary of the properties of the 14 tables is given in Table 9, where
the third column in this table indicates the average load factor (percentage)
when the IP tables are mapped to a 200 K entries. All the 14 tables are from
the date January 19th, 2007. The last column in the table indicates the average
percentage of short prefixes in each IP routing tables group. We have indicated
that these short prefixes are excluded from the main CHAP hash table and in-
serted in a separate TCAM table. We repeated the experiment for 4 different
configurations, namely (L = 400, N = 512), (L = 200, N = 1024), (L = 100,
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N = 2048) and (L = 50, N = 4096), and we measured the average overflow and
ASST for the 14 tables (Figure 10).

As we can see, CHAP(H,H) is better than MH(2H) in all cases in terms of
both the ASST and the overflow. However there is only one case, L = 100
and N = 2048, where CHAP(H,H) has a slightly higher ASST (2.52 cycles)
than the MH(2H) (2.51 cycles). However, for this configuration, MH(2H) has
its worst-case overflow (12.3 %), while CHAP(H,H) incurs only 1.98% overflow.
This means that CHAP(H,H) table contains around 20 K entries more than
MH(2H) table at this configuration.

7 Conclusions and Future Work

In this paper we have described and studied CHAP, a new hash-based IP lookup
scheme that eliminates the overflow problem by utilizing content-based probing
and multiple hash functions. We showed that CHAP is very effective in eliminat-
ing the overflow, and at the same time, achieves a low average memory access
time. We also illustrated that CHAP can be realized in hardware by taking
advantage of state-of-the-art search memory architectures.

Unlike other hash-based schemes, the CHAP scheme does not require complex
preprocessing of the IP tables. Simply sorting the prefixes from long to short
while setting up is the only preprocessing required. CHAP uses simple functions
that can be easily realized in hardware. Moreover, CHAP has simple setup and
incremental update algorithms. Simulation results show that content-based hash
probing is superior compared to linear probing in terms of overflow elimination.
CHAP achieves 71.61% more overflow reduction than linear probing on average.
The results also show that CHAP achieves lower average memory access time
than the multiple hash function scheme while also reducing the overflow.

In this paper we did not study the general CHAP(H,m) scheme when m �= H
and we intend to study this further in the future. Future work also includes the
possibility of using CHAP in other IP protocol processing tasks (e.g., packet
filtering and inspection).
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