
Peer-assisted On-demand Video Streaming

with Selfish Peers�

Niklas Carlsson1, Derek L. Eager2, and Anirban Mahanti3

1 University of Calgary, Calgary, Canada
2 University of Saskatchewan, Saskatoon, Canada

3 NICTA, Sydney, Australia
niklas.carlsson@cpsc.ucalgary.ca, eager@cs.usask.ca,

anirban.mahanti@nicta.com.au

Abstract. Systems delivering stored video content using a peer-assisted
approach are able to serve large numbers of concurrent requests by utiliz-
ing upload bandwidth from their clients to assist in delivery. In systems
providing download service, BitTorrent-like protocols may be used in
which “tit-for-tat” policies provide incentive for clients to contribute up-
load bandwidth. For on-demand streaming delivery, however, in which
clients begin playback well before download is complete, all prior pro-
posed protocols rely on peers at later video play points uploading data
to peers at earlier play points that do not have data to share in return.
This paper considers the problem of devising peer-assisted protocols for
streaming systems that, similar to download systems, provide effective
“tit-for-tat” incentives for clients to contribute upload bandwidth. We
propose policies that provide such incentives, while also providing short
start-up delays, and delivery of (almost) all video frames by their respec-
tive playback deadlines.

Keywords: BitTorrent-like systems, peer-assisted streaming, tit-for-tat.

1 Introduction

Peer-assisted content delivery techniques are increasingly being adopted by me-
dia companies. For example, in April 2008 it was reported that the BBC iPlayer
service1, which in part uses peer-assisted delivery, was being used for download-
ing more than one million BBC programmes each week.2

When a download-and-play approach is used (as in the BBC iPlayer service),
BitTorrent-like protocols [1] may be used in which a tit-for-tat policy provides
incentives for clients to contribute their upload bandwidth.3 Tit-for-tat is effec-
� This work was supported by the Natural Sciences and Engineering Research Council

(NSERC) of Canada and by the Informatics Circle of Research Excellence (iCORE)
in the Province of Alberta.

1 http://www.bbc.co.uk/iplayer/
2 http://technology.timesonline.co.uk/tol/news/tech and web/article3716781.ece
3 BBC iPlayer also offers a streaming service, but this does not use peer-assisted

delivery.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 586–599, 2009.
c© IFIP International Federation for Information Processing 2009



Peer-assisted On-demand Video Streaming with Selfish Peers 587

tive in this context because the protocol’s “rarest first” piece selection policy
makes it highly likely that peers will have differing sets of file pieces and are
thus able to carry out two-way mutually beneficial piece exchanges.

Clients may, however, prefer services in which they can begin viewing a video
shortly after beginning download, with only a short start-up delay. In such on-
demand streaming systems, once playback begins, reception of each subsequent
frame must occur before the frame’s play point if impairment in playback quality
is to be avoided. Unfortunately, the in-order requirements of playback fundamen-
tally conflict with the goal of high piece diversity, as needed for effective use of
tit-for-tat. In fact, all prior peer-assisted protocols for on-demand video stream-
ing have relied, for good performance including low start-up delay, on peers at
later video play points uploading data to peers at earlier play points that do not
have data to share in return.

This paper considers the problem of improving quality of service in peer-
assisted on-demand streaming systems while retaining the basic tit-for-tat be-
haviour of BitTorrent-like protocols. Tit-for-tat is one of the cornerstone ideas
supporting fairness and scalability in BitTorrent and has the advantage of being
fully decentralized [1]. We attempt to achieve this goal through design of new,
tit-for-tat compatible, peer and piece selection policies, focusing for the most
part on policies to be used for server-to-peer uploads (for which tit-for-tat be-
havior is not an issue) rather than peer-to-peer uploads. We find that the best
system performance is achieved with a peer selection (by the server) policy that
preferentially allocates server bandwidth for uploads to peers at imminent risk
of receiving data too late for playback, and secondly for uploads of rare pieces
to newly arrived peers. Simulations of these new policies are used to evaluate
their effectiveness. Our results show that substantial improvements in quality of
service are feasible while ensuring that the piece diversity is sufficient for peers
to effectively employ tit-for-tat.

The remainder of the paper is organized as follows. Related work is discussed
in Section 2. Section 3 describes a baseline tit-for-tat based peer-assisted stream-
ing protocol. New piece selection policies, and a server policy for prioritizing
upload requests from peers, are discussed in Section 4. Section 5 describes the
simulation model used for evaluating the new policies. Section 6 presents perfor-
mance results. Conclusions are presented in Section 7.

2 Related Work

There exists a large literature on peer-assisted on-demand streaming systems. A
significant portion of this literature has focussed on explicit allocation of peer up-
load bandwidth [2,3,4,5,6,7,8,9,10]. This literature, for example, includes tree-
based cache-and-relay approaches [4,5], and work that considers the problem of
determining the set of servers (or peers) that should serve each peer, and at what
rate each server should operate [6,7]. In recent work, Parvez et al. show that sys-
tems in which pieces are retrieved in-order can significantly benefit from peer se-
lection policies that bias uploads towards peers with fewer potential uploaders



588 N. Carlsson, D.L. Eager, and A. Mahanti

(i.e., peers requiring data closer to the end of the file) [9]. Such bias results in a
natural “daisy-chain” effect wherein peers upload the most pieces to peers with
slightly fewer in-order pieces than the peer itself has obtained thus far. Peer se-
lection bias towards peers with similar playback points has also been used in an
implementation of a video-on-demand system [10]. While effective in cooperative
environments, we note that these techniques do not allow for effective use of tit-
for-tat as younger peers typically are not able to upload to older peers.

Other work has proposed using feedback mechanisms to gain information
about the upload contributions of peers at earlier playback points, and use this
information to reward peers that forward pieces at a higher rate [11]. We note
that such feedback-based schemes are significantly more sensitive to cheating
peers than tit-for-tat techniques in which the peers themselves can effectively
measure the rates they receive from other peers.

There has also been related work on piece selection policies that attempt to
mediate the conflict between high piece diversity and the in-order requirements
of playback (e.g., [12,13,14,15,16]). For example, Annapureddy et al. [12] propose
splitting each file into fixed-sized segments, each consisting of some number of
consecutive pieces. Segments are downloaded sequentially using a BitTorrent-like
protocol. To increase the likelihood that peers downloading the same segment
have pieces to exchange they propose using distributed network coding within
segments, and pre-fetch some smaller number of pieces from future segments.
Probabilistic piece selection policies have also been proposed [14,15,16]. Note
that in order to achieve low start-up delays, these policies depend on older peers
uploading to new peers that most likely do not have any needed pieces to offer
in exchange.

Finally, we note that most prior work on peer-assisted video-on-demand has
assumed that peers begin playback after buffering a fixed amount of data, or
evaluate protocols with respect to the lowest possible start-up delay a peer could
have chosen such that the (unknown a priori) download completion time of every
piece is no later than its playback point. In contrast, we use a simple online
rule (based on LTA [14]) to determine when playback can safely commence, and
evaluate our policies with regards to both the actual start-up delay, as determined
by this online rule, and the percentage of pieces that are not received by their
playback point, given the chosen start-up delay.

3 Baseline Protocol Using Tit-for-Tat

We consider peer-assisted on-demand streaming systems with a single server and
varying numbers of active peers, and focus on the delivery of a single video file.
This file is divided into fixed-size pieces; each piece is further divided into sub-
pieces as in other BitTorrent-like systems [17,18]. The unit of upload/download
is the subpiece. When a peer acquires (all of) a piece, it can advertise this to
other peers, and upload subpieces to other peers that do not yet have (all of)
the piece. A peer may download multiple different subpieces of a piece in par-
allel from multiple other peers. We further assume that pieces are grouped into



Peer-assisted On-demand Video Streaming with Selfish Peers 589

fixed-sized segments, as might be needed in systems utilizing coding, although
the simulation results that we present here are for uncoded content delivery.

A peer is considered to be interested in another peer if the latter peer has at
least one piece that the former peer has not yet received. A piece selection policy
is used to select among the pieces that are available from a particular peer. In our
baseline policy, the candidate pieces are ranked according to how soon they will
be needed for playback, and a piece is selected by sampling from a Zipf probabil-
ity distribution [14]. More specifically, with the Zipf(θ) policy, a peer j about to
request a piece from peer i selects a piece k from the set of pieces that i has, but
that j does not have, with a probability proportional to 1/(k + 1 − k0)θ, where
k is the index of the piece, and k0 is the index of the first piece that peer j does
not yet have. While the Zipf parameter θ can be tuned so that the policy is more
or less aggressive with respect to its preference for earlier pieces,4 for the results
presented here θ is fixed at 1.25. The Zipf(θ) policy has been shown to achieve
a good tradeoff between high piece diversity and sequential progress. In contrast
to in-order policies (including segment-based in-order versions [12]), or proposals
that make explicit allocation of peer upload bandwidth so that older peers upload
to newer peers, Zipf-based policies allow for effective use of tit-for-tat.

As with BitTorrent, each peer establishes persistent connections with a large
set of peers but only uploads to a limited number of peers at each time instance.
A peer selection policy determines which peers to upload to, among the interested
peers. A tit-for-tat peer selection policy is assumed, wherein upload priority at a
peer is given to those other peers that are providing the highest download rates
to that peer. Periodically, a new peer is chosen to upload to, in the chance that
it may offer a better download rate than the current peers. With this optimistic
unchoke component, a random selection is made among the interested peers to
which the peer is not already uploading, if any. At the server, the baseline peer
selection policy is random. The above policies are commonly used in simulations
of BitTorrent-like systems and provide a baseline for comparison.

4 New Policies

4.1 Acquiring Rare Pieces

For good performance including low start-up delay, all previous policies for peer-
assisted streaming delivery depend on older peers uploading to new peers that
most likely do not have any needed pieces to offer in exchange. Such behavior
is not a concern in tit-for-tat based download systems, since in that context
rarest-first piece selection can be used, and new peers can quickly acquire pieces
needed by many others. It is a potential concern, however, in tit-for-tat based
streaming systems. Even with probabilistic piece selection policies such as that
used in our baseline protocol, it may take a relatively long time for new peers to
acquire pieces needed by many others. Selfish peers may therefore be motivated
4 For example, note that θ = 0 and θ → ∞ yield random and in-order piece selection,

respectively.



590 N. Carlsson, D.L. Eager, and A. Mahanti

to adopt optimistic unchoke policies discriminating against new peers. Also, the
upload bandwidth of new peers may be underutilized, particularly in low to
moderate request rate scenarios in which there is frequently only a single or
a small number of concurrently active new peers. Finally, owing to use of tit-
for-tat, new peers may receive a relatively small share of the aggregate upload
bandwidth of other peers, resulting in a relatively low total download rate and
lengthened start-up delays. We address this concern with rare piece delivery to
new peers (RPNP), which entails two modifications to the baseline protocol.

First, when the server unchokes a “new” peer (specifically, a peer that has not
yet begun playback), rather than using the Zipf(θ) piece selection policy used in
the baseline protocol, the selected piece is the rarest piece not currently being
uploaded by the server to some other peer. If there are multiple rarest pieces,
ties are broken randomly except when only the server has these pieces, or when
the server has sufficient upload bandwidth to serve every currently active peer
at the play rate, in which case ties are broken using the Zipf(θ) policy.

Second, to more quickly disseminate rare pieces to new peers, the server gives
upload priority to peers that have not yet begun playback.5 Among such peers,
higher priority is given to peers for which the server has uploaded less data. The
server uploads to only the n highest priority peers, where n is the number of
server upload connections; ties are broken randomly.

4.2 Prioritizing Urgent Piece Downloads

We further modify the baseline protocol so as to increase the likelihood that
each piece is received by its scheduled playback point, by prioritizing delivery
of the next required piece for any peer that has started playback and for which
this next required piece is within either the current segment being played back,
or the next segment (i.e., the peer is in a “low-buffer” state).

This prioritization is accomplished through two policy modifications. First,
peers in the low-buffer state use in-order piece selection, rather than Zipf-based
piece selection. Second, the server gives the highest upload priority to those peers
that are in the low-buffer state. The remaining peers may be prioritized as in
RPNP. Among those peers in the low buffer state, higher priority is given to
peers for which the server has uploaded less data. As with RPNP, the server
uploads to the n highest priority peers, with ties broken randomly.

When used together with RPNP, we call this approach urgent piece prioritiza-
tion with rare piece delivery to new peers (UP/RPNP). Note that neither RPNP
nor UP/RPNP alter the tit-for-tat peer selection policy used by peers.

5 Simulation Model

We use an existing event-based simulator of BitTorrent-like systems [14]. For the
results presented here it is assumed that: (i) all active peers have
5 Both here, and in Section 4.2, we assume that the server is able to reliably identify

peers to which it wishes to give preferential treatment. For example, the system may
require use of content provider software with this functionality built in.



Peer-assisted On-demand Video Streaming with Selfish Peers 591

connections with each other6, (ii) there are sufficiently many sub-pieces per piece
that parallel download is always possible when multiple peers have a desired
piece, (iii) a peer i (or the server) uses at most ni concurrent upload connec-
tions, (iv) connections are not choked in the middle of an upload, and (v) new
downloads are initiated only when the download bandwidth capacity Di is not
being fully utilized.

The set of peers that a peer i (or the server) is uploading to may change when
(i) the peer completes the upload of a piece, or (ii) some other peer becomes
interested and peer i has fewer than ni active upload connections. The new set
of upload targets includes (i) any peer currently being uploaded to, and (ii) ad-
ditional peers up to the limit ni. Using the peer selection policy, additional peers
are selected from the set of interested peers that are not yet fully utilizing their
download capacity. With a probability 1/ni the optimistic unchoke component
is used to choose a peer, and with a probability of (ni − 1)/ni the peer that is
uploading to peer i at the highest rate is chosen.

The start-up delay, that is the time since arrival until a peer begins playback, is
determined using a modified version of the LTA start-up rule [14]. Playback does
not commence until the following two conditions are satisfied. First, the initial
two segments of the video must be fully received. Second, the measured long-term
average rate at which the peer has received in-order pieces must be sufficiently
high such that all of the remaining pieces would be received by their playback
time, should this rate be maintained. The long-term average rate is calculated as
the ratio of the amount of in-order data received thus far, divided by the time since
the peer first began download of a piece that was not selected using “rarest-first
with ties broken randomly”, or in the case no such piece download has begun, the
time since the peer’s arrival to the system.7

For simulating the transmission rates of piece transfers, it is assumed that
connection bottlenecks are located at the end points and the network operates
using max-min fair bandwidth sharing (using TCP, for example). Under these
assumptions, each piece transfer operates at the highest possible rate that en-
sures that (i) no bottleneck operates above its capacity, and (ii) the rate of no
transfer can be increased without decreasing the rate of some other transfer
operating at the same or lower rate.

Unless stated otherwise, it is assumed that peers have three times higher
download bandwidth than upload bandwidth, and that each peer concurrently
uploads to at most four peers. The maximum number of server upload connec-
tions is chosen as the total server bandwidth available for the video file divided
by the video playback bit rate (an integer value owing to the parameters chosen

6 Note that the default parameters in recent versions of the mainline BitTorrent client
allow peers to be connected to up to 80 other peers, which is often achieved in
practice [19]. Furthermore, peers not satisfied with their performance are able to
request additional peers from the tracker.

7 Alternative start-up rules were tried, but did not impact the relative performance
of the considered policies. More aggressive rules, of course, result in shorter start-up
delays but increased likelihood that a piece is not received by its playback point.



592 N. Carlsson, D.L. Eager, and A. Mahanti

in our experiments). By ensuring that each server connection can transfer data
at the playback bit rate, the server is better able to assist “low buffer” peers.

A variety of workload scenarios are considered. For scenarios with a constant-
rate request (peer) arrival process, the system is simulated for 6000 requests,
with the initial 1000 and the last 500 requests removed from the measurements.
For flash crowd scenarios (in which the arrival rate starts high and decays to
zero) no warmup period was used and simulations were run until the system
emptied. Except in two scenarios considered in Section 6.6, it is assumed that
all peers leave the system as soon as they have received the entire file (i.e., act
only as leechers).

6 Performance Comparisons

In this section, we compare the performance of the policies defined in Sections 3
and 4. Section 6.1 describes the metrics that will be considered in the policy
evaluations. Sections 6.2-6.5 present our principal comparisons for four different
workload scenarios. Section 6.6 explores the impact of differing assumptions
regarding the available upload resources.

6.1 Performance Metrics

We use two quality of service metrics: (i) the percentage of late pieces, defined as
the percentage of pieces that are not received by their playback point, and (ii) the
average start-up delay, as determined by the start-up rule of Section 5. Without
loss of generality, data volume is measured in units of the file size, and time in
units of the total video playback duration. Hence, all data rates are expressed
relative to the playback bit rate, and start-up delay is expressed relative to the
time it takes to play the entire video. For example, an upload bandwidth of 1.25
means that when the peer is fully utilizing its upload bandwidth, it can upload
data at 1.25 times the playback bit rate. Similarly, a start-up delay of 5% means
that the delay until playback begins is equal to 5% of the total playback duration,
and an arrival rate of 100 means that on average 100 peers arrive during the time
it takes to entirely play back the video once.

6.2 Steady State Scenario

In the “steady state” scenario, peers (i) do not leave the system until having
fully downloaded the file, (ii) arrive according to a Poisson process at rate λ,
and (iii) are homogeneous (i.e., all peers have the same upload bandwidth U and
download bandwidth D). The server upload bandwidth is denoted by B.

Figure 1 shows results for the baseline protocol. Figures 2 and 3 show results
using RPNP and UP/RPNP, respectively. When interpreting these results, it
should be noted that the total bandwidth requirement (request arrival rate × file
size) ranges from two to forty times the server upload bandwidth, as the request
rate varies from 10 to 200. (Naturally, at least the difference between the total
bandwidth requirement and the server upload bandwidth must be contributed



Peer-assisted On-demand Video Streaming with Selfish Peers 593

 0.1

 1

 10

 100

 8  16  32  64  128  256

La
te

 P
ie

ce
s 

(%
)

Arrival Rate

U=1
U=1.25
U=1.5

U=1.75
U=2

 0.1

 1

 10

 100

 8  16  32  64  128  256

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Arrival Rate

U=1
U=1.25
U=1.5

U=1.75
U=2

(a) Late pieces (b) Start-up delay

Fig. 1. Baseline; steady state scenario (B = 5, D/U = 3, 100 segments with 5
pieces each)

 0.1

 1

 10

 100

 8  16  32  64  128  256

La
te

 P
ie

ce
s 

(%
)

Arrival Rate

U=1
U=1.25
U=1.5

U=1.75
U=2

 0.1

 1

 10

 100

 8  16  32  64  128  256

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Arrival Rate

U=1
U=1.25
U=1.5

U=1.75
U=2

(a) Late pieces (b) Start-up delay

Fig. 2. Rare piece delivery to new peers (RPNP); steady state scenario (B = 5, D/U =
3, 100 segments with 5 pieces each)

 0.1

 1

 10

 100

 8  16  32  64  128  256

La
te

 P
ie

ce
s 

(%
)

Arrival Rate

U=1
U=1.25
U=1.5

U=1.75
U=2

 0.1

 1

 10

 100

 8  16  32  64  128  256

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Arrival Rate

U=1
U=1.25
U=1.5

U=1.75
U=2

(a) Late pieces (b) Start-up delay

Fig. 3. Urgent piece prioritization with rare piece delivery to new peers (UP/RPNP);
steady state scenario (B = 5, D/U = 3, 100 segments with 5 pieces each)

by peers.) To capture a wide range of workloads, start-up delays, and percentage
of late pieces, these figures (as well as subsequent figures) use log scales. Note
that late piece percentages under 0.1% are not shown.



594 N. Carlsson, D.L. Eager, and A. Mahanti

Comparing Figures 1 through 3, we note that RPNP substantially improves
over the baseline protocol, with respect to both start-up delay (owing to “new”
peers being able to compete more effectively for the upload bandwidth of other
peers) and the percentage of late pieces (owing to improved piece diversity in the
system). UP/RPNP provides additional improvements in both of these metrics.
The improvement in start-up delay with UP/RPNP, in comparison to RPNP,
arises from a subtle side-effect of using in-order rather than Zipf-based piece
selection for “low buffer” peers. Generally, a more in-order piece delivery will
tend to degrade the system’s piece diversity somewhat, leading to a greater
fraction of uploads being initiated to a random interested peer (including new
peers) rather than to a peer from which data is currently being downloaded.

6.3 Flash Crowd Scenario

Our second scenario is motivated by measurements of operational file sharing
torrents [20]. In this scenario, peers are assumed to arrive at an exponentially
decaying rate λ(t) = λ0e

−γt, where λ0 is the initial arrival rate at time zero and
γ is a decay factor. By varying γ between 0 and ∞, a variety of arrival processes
can be simulated, from constant-rate arrivals at one extreme, to a flash crowd in
which all peers arrive instantaneously (to an empty system) at the other extreme.

Figures 4 and 5 show the results for the second scenario using the baseline
protocol and UP/RPNP, respectively. For this workload scenario, as well as for
subsequent workload scenarios, results for RPNP are omitted owing to space lim-
itations. Here,λ0 and γ are selected such that the expected total number of arrivals
is equal to 500. By varying γ between 1

8 and 1, we cover a wide range of intensi-
ties of flash crowds. With γ = 1

8 , 11.8% of all arrivals occur within one playback
duration of the first peer arrival; with γ = 1, the corresponding value is 63.2%.

While the potentially very high initial arrival rate makes this scenario much
different than the steady state scenario, UP/RPNP still achieves significant im-
provements in the percentage of late pieces. The cases with a high percentage
of late pieces for both protocols, which occur for intense flash crowds, are due
to pieces not being disseminated from the server to all peers quickly enough. To
further reduce the percentage of late pieces in these cases (given the same server
resources), a more conservative start-up rule would be needed.

6.4 Heterogeneous Scenario

The third scenario is of a heterogeneous workload with two types of peers: low
bandwidth peers and high bandwidth peers. For both types of peers, the down-
load bandwidth is three times the upload bandwidth, as assumed previously. As
in the first scenario peers arrive at a constant rate λ.

Figure 6 shows the percentage of late pieces and the average start-up delay
for this workload scenario. The percentage of high bandwidth peers is varied
such that the system ranges from bandwidth-constrained (most peers are low
bandwidth) to bandwidth-rich (most peers are high bandwidth). Results are
shown for a workload in which the low and high bandwidth peers have upload



Peer-assisted On-demand Video Streaming with Selfish Peers 595

 0.1

 1

 10

 100

 0.125  0.25  0.5  1

La
te

 P
ie

ce
s 

(%
)

Exponential Decay Factor

U=1
U=1.25
U=1.5

U=1.75
U=2

 0.1

 1

 10

 100

 0.125  0.25  0.5  1

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Exponential Decay Factor

U=1
U=1.25
U=1.5

U=1.75
U=2

(a) Late pieces (b) Start-up delay

Fig. 4. Baseline; flash crowd scenario (B = 10, D/U = 3, 100 segments with 5 pieces
each)

 0.1

 1

 10

 100

 0.125  0.25  0.5  1

La
te

 P
ie

ce
s 

(%
)

Exponential Decay Factor

U=1
U=1.25
U=1.5

U=1.75
U=2

 0.1

 1

 10

 100

 0.125  0.25  0.5  1

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Exponential Decay Factor

U=1
U=1.25
U=1.5

U=1.75
U=2

(a) Late pieces (b) Start-up delay

Fig. 5. Urgent piece prioritization with rare piece delivery to new peers (UP/RPNP);
flash crowd scenario (B = 10, D/U = 3, 100 segments with 5 pieces each)

bandwidths of one and two times the playback bit rate, respectively. As in the
previous scenarios, significant improvements in both the percentage of late pieces
and the start-up delays are observed with UP/RPNP.

Note that for both the baseline and UP/RPNP, the high bandwidth peers
generally incur both a smaller percentage of late pieces and lower start-up delays.
This is a consequence of both the higher download bandwidth of these peers,
and of the use of tit-for-tat coupled with their higher upload bandwidth.

6.5 Freeloader Scenario

Our fourth scenario is of a workload with two types of peers: contributing peers
and freeloaders. We assume that both types of peers have identical download
bandwidth, equal to three times their upload bandwidth, as assumed previously.
However, only the contributing peers upload file pieces to other peers.

Figure 7 shows the percentage of late pieces and the average start-up delay
for this workload scenario. Results are shown for a workload in which peers have
an upload bandwidth of 1.25 times the playback bit rate. The percentage of



596 N. Carlsson, D.L. Eager, and A. Mahanti

 0.1

 1

 10

 100

 0  20  40  60  80  100

La
te

 P
ie

ce
s 

(%
)

High Bandwidth Clients (%)

High (baseline)
High (UP/RPNP)

Low (baseline)
Low (UP/RPNP)

 0.1

 1

 10

 100

 0  20  40  60  80  100

S
ta

rt
-u

p 
D

el
ay

 (
%

)

High Bandwidth Clients (%)

High (baseline)
High (UP/RPNP)

Low (baseline)
Low (UP/RPNP)

(a) Late pieces (b) Start-up delay

Fig. 6. Impact of heterogeneity; steady state (B = 5, λ = 100, D/U = 3, Uhigh = 2,
Ulow = 1, 100 segments with 5 pieces each)

 0.1

 1

 10

 100

 8  16  32  64  128  256

La
te

 P
ie

ce
s 

(%
)

Arrival Rate

Contributing (baseline)
Contributing (UP/RPNP)

Freeloader (baseline)
Freeloader (UP/RPNP)

 0.1

 1

 10

 100

 8  16  32  64  128  256

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Arrival Rate

Contributing (baseline)
Contributing (UP/RPNP)

Freeloader (baseline)
Freeloader (UP/RPNP)

(a) Late pieces (b) Start-up delay

Fig. 7. Performance with freeloaders; steady state (B = 5, D = 3.75, U = 1.25, 5%
freeloaders, 100 segments with 5 pieces each)

peers that are freeloaders is fixed at 5%, and the arrival rate is varied between
10 and 200. As in the previous scenarios, significant improvements in both the
percentage of late pieces and the start-up delays are observed with UP/RPNP.

With both the baseline protocol and UP/RPNP, the rate-based tit-for-tat
mechanism ensures that contributing peers receive substantially better perfor-
mance than the freeloaders. For example, with UP/RPNP and λ = 200, freeload-
ers have an average start-up delay roughly three times that of contributing peers,
and observe more than five times as many late pieces. While freeloaders are reg-
ularly unchoked (due to the use of optimistic unchoke), and therefore, are not
completely starved, this performance advantage illustrates that the tit-for-tat
policy provides peers with a strong incentive to contribute their upload resources.

6.6 Impact of Total Upload Capacity

Figures 8 through 10 show the percentage of late pieces and the average start-up
delay as functions of the server upload bandwidth, the average time peers stay in
the system after having completed download as “seeders”, and the peer arrival



Peer-assisted On-demand Video Streaming with Selfish Peers 597

 0.1

 1

 10

 100

 1  2  4  8  16  32  64  128  256

La
te

 P
ie

ce
s 

(%
)

Server Bandwidth

U=1 (baseline)
U=1 (UP/RPNP)
U=1.5 (baseline)

U=1.5 (UP/RPNP)

 0.1

 1

 10

 100

 1  2  4  8  16  32  64  128  256

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Server Bandwidth

U=1 (baseline)
U=1 (UP/RPNP)
U=1.5 (baseline)

U=1.5 (UP/RPNP)

(a) Late pieces (b) Start-up delay

Fig. 8. Impact of server bandwidth; steady state scenario (λ = 100, D/U = 3, 100
segments with 5 pieces each)

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1

La
te

 P
ie

ce
s 

(%
)

Average Seed Time

U=1 (baseline)
U=1 (UP/RPNP)
U=1.5 (baseline)

U=1.5 (UP/RPNP)

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Average Seed Time

U=1 (baseline)
U=1 (UP/RPNP)
U=1.5 (baseline)

U=1.5 (UP/RPNP)

(a) Late pieces (b) Start-up delay

Fig. 9. Impact of the average seed time; steady state scenario (B = 5, λ = 100, D/U =
3, 100 segments with 5 pieces each)

 0.1

 1

 10

 100

 8  16  32  64  128  256

La
te

 P
ie

ce
s 

(%
)

Arrival Rate

U=1 (baseline)
U=1 (UP/RPNP)
U=1.5 (baseline)

U=1.5 (UP/RPNP)

 0.1

 1

 10

 100

 8  16  32  64  128  256

S
ta

rt
-u

p 
D

el
ay

 (
%

)

Arrival Rate

U=1 (baseline)
U=1 (UP/RPNP)
U=1.5 (baseline)

U=1.5 (UP/RPNP)

(a) Late pieces (b) Start-up delay

Fig. 10. Steady state scenario in which peers stay until playback completion (B =
5, D/U = 3, 100 segments with 5 pieces each)

rate for an example scenario in which peers stay in the system until having played
back the entire file (rather than only until download completion), respectively.
For simplicity, we assume that seed times are exponentially distributed.



598 N. Carlsson, D.L. Eager, and A. Mahanti

As expected, increases in the server bandwidth (cf. Figure 8) and the available
peer upload bandwidth (cf. Figures 9 and 10) have positive impacts on the
quality of service. Comparing Figure 10 with Figures 1 and 3, we note that some
performance improvements are possible if peers stay in the system contributing
their upload bandwidth at least until having completed playback (rather than
just until download is complete).

7 Conclusions

This paper has considered the problem of devising BitTorrent-like peer-assisted
protocols for on-demand video streaming systems, in which peers are motivated
to upload data to others owing to the likely beneficial impact on their own
achieved performance. The challenge in this context is that of mediating the
conflict between the goals of low start-up delay and consistently on-time piece
delivery (which motivates piece delivery that is more “in-order”), and the re-
quirements of effective tit-for-tat (which motivates piece delivery that is more
“rarest first”).

We devised new tit-for-tat compatible policies where the server, for which
tit-for-tat is not an issue, gives preference to peers at imminent risk of receiv-
ing data too late for playback, and secondly to upload of rare pieces to newly
arrived peers. Evaluations of the proposed policies for a variety of workload sce-
narios suggests that our policies are able to provide substantial improvements
in quality of service while ensuring that the piece diversity is sufficient for peers
to effectively employ tit-for-tat.

References

1. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proc. Workshop on Eco-
nomics of Peer-to-Peer Systems 2003, Berkeley, CA (June 2003)

2. Huang, C., Li, J., Ross, K.W.: Can Internet Video-on-Demand be Profitable? In:
Proc. ACM SIGCOMM 2007, Kyoto, Japan, pp. 133–144 (August 2007)

3. Janardhan, V., Schulzrinne, H.: Peer Assisted VoD for Set-top Box Based IP Net-
work. In: Proc. ACM SIGCOMM Workshops (Peer-to-Peer Streaming and IP-TV)
2007, Kyoto, Japan (August 2007)

4. Cui, Y., Li, B., Nahrstedt, K.: ostream: Asynchronous streaming multicast in
application-layer overlay networks. IEEE JSAC 22(1), 91–106 (2004)

5. Sharma, A., Bestavros, A., Matta, I.: dPAM: A Distributed Prefetching Protocol
for Scalable Asynchronous Multicast in P2P Systems. In: Proc. IEEE INFOCOM
2005, Miami, FL, pp. 1139–1150 (March 2005)

6. Hefeeda, M., Habib, A., Botev, B., Xu, D., Bhargava, B.: PROMISE: Peer-to-Peer
Media Streaming using CollectCast. In: Proc. ACM MM 2003, Berkeley, CA, pp.
45–54 (November 2003)

7. Rejaie, R., Ortega, A.: PALS: Peer-to-Peer Adaptive Layered Streaming. In: Proc.
NOSSDAV 2003, Monterey, CA, pp. 153–161 (June 2003)

8. Vratonjic, N., Gupta, P., Knezevic, N., Kostic, D., Rowstron, A.: Enabling DVD-
like Features in P2P Video-on-demand Systems. In: Proc. ACM SIGCOMM Work-
shops (Peer-to-Peer Streaming and IP-TV) 2007, Kyoto, Japan (August 2007)



Peer-assisted On-demand Video Streaming with Selfish Peers 599

9. Parvez, N., Williamson, C., Mahanti, A., Carlsson, N.: Analysis of BitTorrent-like
Protocols for On-demand Stored Media Streaming. In: Proc. ACM SIGMETRICS
2008, Annapolis, MD, pp. 301–312 (June 2008)

10. Cheng, B., Stein, L., Jin, H., Zhang, Z.: Towards Cinematic Internet Video-on-
Demand. In: Proc. EuroSys 2008, Glasgow, Scotland, pp. 109–122 (March 2008)

11. Mol, J.J.D., Pouwelse, J.A., Meulpolder, M., Epema, D.H.J., Sips, H.J.: Give-
to-Get: Free-riding Resilient Video-on-Demand in P2P Systems. In: Proc. MMCN
2008, San Jose, CA (January 2008)

12. Annapureddy, S., Guha, S., Gkantsidis, C., Gunawardena, D., Rodriguez, P.R.: Is
High-Quality VoD Feasible using P2P Swarming? In: Proc. WWW 2007, Banff,
Canada, pp. 903–912 (May 2007)

13. Vlavianos, A., Iliofotou, M., Faloutsos, M.: BiToS: Enhancing BitTorrent for
Supporting Streaming Applications. In: Proc. Global Internet Workshop 2006,
Barcelona, Spain (April 2006)

14. Carlsson, N., Eager, D.L.: Peer-assisted On-demand Streaming of Stored Media
using BitTorrent-like Protocols. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., de
Oliveira, J.C., McNair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 570–
581. Springer, Heidelberg (2007)

15. Choe, Y.R., Schuff, D.L., Dyaberi, J.M., Pai, V.S.: Improving VoD Server Efficiency
with BitTorrent. In: ACM MM 2007, Augsburg, Germany, pp. 117–126 (September
2007)

16. Garbacki, P., Epema, D.H.J., Pouwelse, J., van Steen, M.: Offloading Servers with
Collaborative Video on Demand. In: Proc. IPTPS 2008, Tampa Bay, FL (February
2008)

17. Gkantsidis, C., Rodriguez, P.R.: Network Coding for Large Scale Content Distri-
bution. In: Proc. IEEE INFOCOM 2005, Miami, FL, pp. 2235–2245 (March 2005)

18. Zhang, X., Liu, J., Li, B., Yum, T.-S.P.: CoolStreaming/DONet: A Data-driven
Overlay Network for Peer-to-Peer Live Media Streaming. In: Proc. IEEE INFO-
COM 2005, Miami, FL, pp. 2102–2111 (March 2005)

19. Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest First and Choke Algorithms Are
Enough. In: Proc. ACM IMC 2006, Rio de Janeiro, Brazil, pp. 203–216 (October
2006)

20. Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurement, Analysis,
and Modeling of BitTorrent-like Systems. In: Proc. ACM IMC 2005, Berkley, CA,
pp. 35–48 (October 2005)


	Peer-assisted On-demand Video Streaming with Selfish Peers
	Introduction
	Related Work
	Baseline Protocol Using Tit-for-Tat
	New Policies
	Acquiring Rare Pieces
	Prioritizing Urgent Piece Downloads

	Simulation Model
	Performance Comparisons
	Performance Metrics
	Steady State Scenario
	Flash Crowd Scenario
	Heterogeneous Scenario
	Freeloader Scenario
	Impact of Total Upload Capacity

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




