
The Yogi Project: Software Property Checking

via Static Analysis and Testing

Aditya V. Nori1, Sriram K. Rajamani1, SaiDeep Tetali1,
and Aditya V. Thakur2

1 Microsoft Research India
{adityan,sriram,v-saitet}@microsoft.com

2 University of Wisconsin-Madison
adi@cs.wisc.edu

Abstract. We present Yogi, a tool that checks properties of C pro-
grams by combining static analysis and testing. Yogi implements the
Dash algorithm which performs verification by combining directed test-
ing and abstraction. We have engineered Yogi in such a way that it
plugs into Microsoft’s Static Driver Verifier framework. We have used
this framework to run Yogi on 69 Windows Vista drivers with 85 prop-
erties. We find that the new algorithm enables Yogi to scale much better
than Slam, which is the current engine driving Microsoft’s Static Driver
Verifier.

1 Introduction

Static analysis and testing have always had complementary strengths and weak-
nesses. With static analysis, we can obtain very good coverage and analyze pro-
gram paths that are hard to exercise using testing, but we are forced to deal
with scalability issues and false errors. With runtime testing, we can obtain only
partial coverage, but the approach scales to large programs and every error that
is reported is indeed realizable. Thus, attempting to combine the complementary
strengths of static analysis and runtime testing is natural.

For the past few years, we have been investigating methods for combining
static analysis in the style of counter-example driven refinement ala Slam [1],
with runtime testing and automatic test case generation approaches in the style
of concolic execution ala Dart [5]. Our first attempt in this direction was the
Synergy algorithm [6], which handled single procedure programs with only in-
teger variables. Then, we proposed Dash [3], which had new ideas to handle
pointer aliasing and procedure calls in programs. Throughout this evolution,
Yogi has been our implementation vehicle to realize and evaluate these algo-
rithms. Currently, Yogi implements the Dash algorithm. We have spent over
3 person-years of engineering to make the tool robust and usable – Yogi has
been run over several hundreds of thousands of lines of C code, with several
properties.

We describe the design and engineering of Yogi in this paper. The Synergy
and Dash algorithms themselves are described in [6,3]. Section 2 outlines the

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 178–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Yogi Project: Software Property Checking 179

(a) Architecture of Yogi (b) An example Slic specification

Fig. 1.

architecture and various components in Yogi. Section 3 describes empirical re-
sults from running Yogi on 69 Windows Vista device drivers with 85 properties
and Section 4 concludes the paper by discussing current status of Yogi.

2 Architecture

As shown in Figure 1(a), Yogi takes two inputs: (1) a C program, and (2) a safety
property specified in the Slic specification language [2]. A sample Slic spec-
ification for a locking protocol (KeAcquireSpinLock and KeReleaseSpinLock
occur in strict alternation) is shown in Figure 1(b). Yogi uses Slam’s front-end
(called slamcl) to parse C programs and Slam’s property instrumentor (called
slicc) to instrument the property into the program. The resulting program with
the property instrumented is in Slam’s internal binary format called li. We have
developed a translator called li2yogi that converts the li format to Yogi’s in-
termediate form called yogi-ir. The yogi-ir is a textual format that represents the
program at the level of basic blocks with instructions. Each instruction is one
of three types: an assignment, assume statement or a procedure call. Once a
program has been converted to the yogi-ir format, it is read by the YogiParser
to produce an internal inter-procedural control flow graph.

The two main components of Yogi are: (1) Ysim, a simulator which can
perform both concrete execution with concrete values and symbolic execution,
and (2) YabsMan, an abstraction manager, which manages proofs.

The Ysim simulator code is polymorphic over the type of the values it oper-
ates. Thus, the same simulation code does both concrete and symbolic execution.
During concrete execution, the simulator uses a model of memory where concrete
values of appropriate type are stored in locations. During symbolic execution,
the simulator stores symbols and formulas in locations. It uses the Z3 theorem
prover [4] to reason about consistency of the formulas and to generate test cases
as satisfiable models of formulas. The YabsMan abstraction manager maintains

180 A.V. Nori et al.

a region graph abstraction of the program. For each control point in a program
YabsMan maintains a finite partition over the set of states. Each partition is
represented by a predicate, which is a Z3 formula.

Yogi implements the Dash algorithm [3]. The Dash algorithm simultane-
ously maintains a forest of test runs and a region-graph abstraction of the
program. Tests are used to find bugs and abstractions are used to prove their
absence. During every iteration, if a concrete test has managed to reach the error
region, a bug has been found. If no path in the abstract region graph exists from
the initial region to the error region, a proof of correctness has been found. If
neither of the above two cases are true, then we have an abstract counterex-
ample, which is a sequence of regions in the abstract region graph, along which
a test can be potentially driven to reveal a bug. The Dash algorithm crucially
relies on the notion of a frontier [6,3], which is the boundary between tested
and untested regions along an abstract counterexample that a concrete test has
managed to reach. In every iteration, the algorithm first attempts to extend
the frontier using test case generation techniques similar to Dart. If test case
generation fails, then the algorithm refines the abstract region graph so as to
eliminate the abstract counterexample.

Yogi performs modular verification. For function calls, Yogi uses an initial
abstraction that is based on locations that the procedure modifies. A conservative
alias analysis is used to get an overapproximation to the set of locations modified
by the procedure and this is used to build an initial summary for each function.
If a procedure call occurs at the frontier, then the summary so computed is first
used to see if a refinement can rule out the abstract counterexample. If this
is not possible, Yogi tries to generate a test case through the procedure, and
see if the test case extends the frontier. If the test case so generated does not
extend the frontier, then Yogi descends into the called procedure and analyzes
the procedure in detail [3].

3 Empirical Results

We have integrated Yogi with Microsoft’s Static Driver Verifier framework.
We have tested Yogi with the Static Driver Verifer’s integration test pass suite,
which contains 69 device drivers and 85 properties, a total of 5865 driver-property
pairs. The largest driver in this pass has over 30K lines of code, and the total
size of all the drivers is over 300K lines of code.

At the time of this writing Yogi finishes on 95% of the runs on the integration
test pass. It is able to both prove properties correct and find bugs in the driver
code. In comparison with Slam there are 129 runs where Slam either times out
or spaces out, where Yogi is able to give a result. The total time taken by Yogi
to run over all the 5865 runs is about 32 hours on an 4 core machine, compared
to over 69 hours taken by Slam.

A comparison of Yogi with Slam on 16 representative drivers is shown in
Table 1. Every row of this table shows the driver, its number of lines of code,
the number of properties checked and the time (in minutes) taken by Slam and
Yogi along with the number of time-outs (set to 30 minutes).

The Yogi Project: Software Property Checking 181

Table 1. Empirical evaluation of Yogi on 16 device drivers

Program Lines Properties Slam Yogi
Time-outs Time (min) Time-outs Time (min)

parport 34196 19 1 91.2 0 26.1
serial1 32385 21 3 142.4 0 21.5
serial 31861 21 3 203.9 0 28.1
fdc fail 9251 50 0 117.6 0 8
kbdclass1 7426 38 2 124.9 0 115
kbdclass 7132 36 2 125.5 0 90.4
serenum 6011 38 1 95.6 0 10.9
pscr 5680 37 0 55 0 26.4
modem 3467 19 0 18 0 22.3
1394Vdev 2757 22 2 90.7 0 72.9
1394Diag 2745 23 3 121.4 0 68.8
diskperf 2351 31 0 36.8 1 100
incomplete1 1558 29 0 16 0 6.3
toastmon1 1539 32 0 13.5 0 8.4
toastmon 1505 32 0 16.6 0 7.6
daytona 565 29 1 106.9 0 77.4

4 Current Status

Yogi is a stable and robust tool that has been run over several hundreds of
thousands of lines of C code. At the tool demonstration, we will show Yogi
running on small programs and demonstrate its ability to find bugs and prove
programs correct. We will also present the results from running Yogi on the
5865 runs from Static Driver Verifier’s integration test pass (a subset of these
results are shown in Table 1).

References

1. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of
interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122. Springer,
Heidelberg (2001)

2. Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking of C.
Technical Report MSR-TR-2001-21, Microsoft Research (2001)

3. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA 2008: International Symposium on Software Testing and Analysis, pp. 103–
122. ACM Press, New York (2008)

4. de Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: PLDI 2005: Programming Language Design and Implementation, pp. 213–223.
ACM Press, New York (2005)

6. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: FSE 2006: Foundations of Software
Engineering, pp. 117–127. ACM Press, New York (2006)

	The Yogi Project: Software Property Checking via Static Analysis and Testing
	Introduction
	Architecture
	Empirical Results
	Current Status

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

