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Abstract. This paper describes new methods in pairing-based signa-
ture schemes for identifying the invalid digital signatures in a batch, af-
ter batch verification has failed. These methods efficiently identify non-
trivial numbers of invalid signatures in batches of (potentially large)
numbers of signatures.

Our methods use “divide-and-conquer” search to identify the invalid
signatures within a batch, but prune the search tree to substantially
reduce the number of pairing computations required. The methods pre-
sented in this paper require computing on average O(w) products of
pairings to identify w invalid signatures within a batch of size N , com-
pared with the O(w(log2(N/w) + 1)) [for w < N/2] that traditional
divide-and-conquer methods require. Our methods avoid the problem of
exponential growth in expected computational cost that affect earlier pro-
posals which, on average, require computing O(w) products of pairings.

We compare the expected performance of our batch verification meth-
ods with previously published divide-and-conquer and exponential cost
methods for Cha-Cheon identity-based signatures [6]. However, our
methods also apply to a number of short signature schemes and as well
as to other identity-based signature schemes.

Keywords: Pairing-based signatures, Identity-based signatures, Batch
verification, Short signatures, Wireless networks.

1 Introduction

Public-key digital signatures have frequently been used in proposals for secur-
ing wireless network protocols. Proposals include methods for performing the
following: combating SPAM [11]; securing routing protocols [19,30]; providing
secure accounting and charging for use of the wireless network, or securely giv-
ing incentives to nodes for desirable (to the network) behavior [22,4]; protecting
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location and safety messages in vehicular networks [23,21]; and securely trans-
porting ordinary messages in delay (or disruption) tolerant networks [7,26]. Even
in wireless networks that have significant performance constraints such as sen-
sor networks, it has been argued on efficiency grounds that signature schemes
should be used for message authentication rather than symmetric cryptographic
techniques [10,27].

When protocol designers need to select a bandwidth efficient signature scheme,
they will be drawn to schemes based on bilinear pairings, such as the short sig-
nature schemes [2,5] or the bandwidth efficient identity-based signature schemes
[6,5]. However, the computational cost of such schemes, especially the cost of
their verification algorithms, can negatively impact the performance of wireless
networks (e.g., increased delay, CPU utilization, energy consumption). There-
fore, whenever circumstances allow, designers will employ batch verification
methods for such pairing-based signature schemes [29,5,14]. Adversaries can at-
tempt to negate the advantages of batch verification by corrupting messages
or signatures within a batch. To counter such attacks, efficient methods are
needed to identify the valid signatures within a batch that has failed initial batch
verification.

To discover the valid signatures in an invalid batch, rather than verifying
each signature individually, “divide-and-conquer” (DQ) techniques have been
proposed [20,14]. These methods can be significantly faster than verifying in-
dividually whenever the ratio of the number of invalid signatures to the batch
size is low. These methods require only O(w(log2(N/w)+1)) batch verifications
and, for pairing-based signatures, product of pairings computations [13]. Recent
methods for identification of invalid pairing-based signatures require O(w) batch
verifications [14]. When the ratio w/N is very low these methods can provide
significant performance improvements over DQ methods; however, the cost of
performing the batch verifications used in these methods grows exponentially,
limiting their use to very small batches, and to batches with only very few invalid
signatures.

Our contribution. In this paper, we present two new methods for finding in-
valid signatures in pairing-based schemes. These methods are based on divide-
and-conquer searching, but differ from previous methods in how the (sub-)
batches are verified. The average number of product of pairings computations
required in our methods is O(w), which is a substantial improvement over pre-
vious divide-and-conquer methods when the ratio w/N is low, and is the same
complexity as the exponential cost methods. The expected number of multipli-
cations in Fqd required of the new methods is O(w

√
N), and O(wN), compared

to estimates of the cost of the two exponential cost methods, O(Nw−1/(w− 1)!)
and O(ww−1N

w−1
2 /(w − 1)!) [14]. We have specified these methods and com-

pared their performance for Cha-Cheon signatures [6]; however, these methods
can be applied to several other pairing-based signature schemes, specifically the
batched identity-based and batched short signature schemes discussed in [8].



Identification of Multiple Invalid Signatures 339

2 Notation

In this paper we assume that pairing-based schemes use bilinear pairings on an
elliptic curve E, defined over Fq, where q is a large prime. G1 and G2 are distinct
subgroups of prime order r on this curve, where G1 is a subset of the points on
E with coordinates in Fq, and G2 is a subset of the points on E with coordinates
in Fqd , for a small integer d (the embedding degree). The pairing e is a map from
G1 × G2 into GT where GT is a multiplicative group of order r in the field Fqd .

We use the following notation for the components of the costs of (batch) signa-
ture verification and invalid signature identification methods for Cha-Cheon sig-
natures. CstDblPair is the cost of a double product of pairings computation [13].
CstMultG1(t1) is the cost of multiplying an element of G1 by a scalar s of size |s|
and t1 = �log2(|s|)�; likewise CstDlbMultG1(t1, t2) is the cost of a pair of multipli-
cations of elements of G1 by scalars of size t1 and t2 simultaneously. CstAddG1 is
the cost of adding two elements of G1, and CstSubG1 is the cost of subtracting an
element of G1 from another element. CstInvGT is the cost of computing an inverse
of an element in GT ; CstMultGT is the cost of multiplying two elements of GT ;
and CstExptGT(t1) is the cost of raising an element of GT to the power s.

3 Background

Batch cryptography was introduced by Fiat [9], and the first batch signature
scheme was that of Naccache et al. [18] for a variant of DSA signatures. Bellare
et al. [1] presented three generic methods for batching modular exponentiations:
the random subset test, the small exponents test (SET), and the bucket test,
which are related to techniques in [18,28].

The inputs to the small exponents test are a security parameter l, a generator g
of the group G of prime order q, and (x1, y1), (x2, y2), . . . , (xN , yN ) with xi ∈ Zq

and yi ∈ G. The verifier 1) checks that gxi = yi for all i, 1 ≤ i ≤ N ; 2) chooses

n random integers r1, . . . , rN in the range [0, 2l − 1]; 3) computes x =
N∑

i=1
xiri

and y =
N∏

i=1
yi

ri ; and 4) tests whether gx = y and accepts the batch if true, else

rejects. If the test rejects a batch, then there is at least one invalid pair (xi, yi);
the probability that the test accepts a batch containing invalid signatures is at
most 2−l [1], if the order of G is a prime [3]. One of the r’s can be set to one
without loss of security [14]. The small exponents test has appeared in pairing-
based signature schemes [2,5] including, in [14], as the batch verifier for the
Cha-Cheon signature scheme [6].1

Cha-Cheon Identity-Based Signature scheme. H(m, U) is a cryptographic hash
that maps a bit string m and a point U ∈ G1 to an integer between 1 and r.
1 For Cha-Cheon signatures with the cost parameters in Section 5, SET always verifies

a valid batch more efficiently than the random subset test, and the bucket test verifies
a valid batch more efficiently than SET when the batch size exceeds 512.
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1. Setup: The system manager selects an order r point T ∈ G2 and randomly
selects an integer s in the range [1, r − 1]. The manager computes S = sT .
The public system parameters are T and S. The system manager’s secret
key is s.

2. Extract: Each user is given a key pair. The user’s public key, Q, is a point
in G1 that is derived from the user’s identity using a public algorithm. The
user’s private key is C = sQ.

3. Sign: To sign a message m, the signer randomly generates an integer t in
the range [1, r − 1] and outputs a signature (U, V ) where U = tQ and V =
(t + H(m, U))C.

4. Verify: To verify a signature (U, V ) of message m, the verifier derives the
signer’s public key Q from the alleged signer’s identity and computes h =
H(m, U). If e(U + hQ, S) = e(V, T ) then the signature is accepted. Oth-
erwise, the signature is rejected. This test can be rewritten as 1 = e(U +
hQ, S) · e(V,−T ) which can be computed more efficiently [13].

In [14] the following batch verifier was presented. The verifier obtains N messages
mi, for i = 1 to N , and the signatures (Ui, Vi) and signer’s identity for each
message. The verifier derives each public key Qi from the signer’s identity and
checks that Ui and Vi are elements of G1. The verifier sets r1 = 1 and generates
random values ri from [0, 2l − 1], for i = 2 to N . The batch is valid if

1 = α0 = e

(
N∑

i=1

Bi, S

)
· e

(
N∑

i=1

Di,−T

)

where Bi = ri (Ui + H(mi, Ui) · Qi), Di = riVi, and 1 is the identity in Fqd .

3.1 Identifying Invalid Signatures

The problem of identifying invalid signatures within a batch has only recently
been investigated. Work in this area generally falls into three categories: divide-
and-conquer methods [20,14], identification code based methods [20], and
expo-nent testing methods [15,16,25,14].

Divide-and-Conquer Methods. Pastuszak et al. [20] first investigated meth-
ods for identifying invalid signatures within a batch. They explored “divide-and-
conquer” methods for generic batch verifiers, i.e., methods that work with any
of the three batch verifiers studied by Ballare et al. In these methods the set
of signatures in an invalid batch is repeatedly divided into d ≥ 2 smaller sub-
batches to verify. The most efficient of their techniques, the Fast DC Verifier
method, exploits knowledge of the results of the first d−1 sub-batch verifications
to determine whether the verification of the dth sub-batch is necessary, i.e., if
a (sub-)batch batch is invalid and the first d − 1 sub-batches of batch are all
valid, then the d’th sub-batch must be invalid, and the batch verifier for that
sub-batch is not computed. Performance measurements of one of the methods
of [20] for the Boneh, Lynn and Shacham (BLS) [2] signature scheme have been
reported [8]. The authors observed that the divide-and-conquer method they
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studied outperformed verifying each signature individually when w/N < .15 in
batches of 1024 BLS signatures using 160-bit MNT curves.

In [14] a more efficient divide-and-conquer method called Binary Quick Search
(BQS) was presented; BQS is applicable to small exponents test based verifiers.
In this method a batch verifier that compares two quantities, X and Y , is re-
placed with an equivalent test A = XY −1, and the batch is accepted if A = 1.2

The BQS algorithm is always3 more efficient than any d = 2nary DC Verifier;
When it is necessary to verify the dth child sub-batch, in BQS the sub-batch can
be verified by simply computing a single inverse operation and a single multi-
term multiplication (or d − 1 ordinary multiplications) rather than the much
more expensive batch verification required by the Fast DC verifier. The upper
bound of the number of batch verifications required by BQS is half that of the
Fast DC Verifier for d = 2 [14].

Identification Code Based Methods. Pastuszak et al. [20] investigated using
a Hamming identification code and a two-layer Hamming identification code for
identifying invalid signatures in generic batch verification. The Hamming code
verifier can identify a single error in a batch of size 2n − 1 using n + 2 batch
verifications, and the two-layer verifier can identify 2 invalid signatures in a batch
of 2n − 2 signatures using 3n + 3 batch verifications.

Exponent Testing Methods. The first exponent testing method, developed
by Lee et al. [15], was capable of finding a single invalid signature within a batch
of “DSA-type” signatures. Signatures of this type have verification equations
of the form “gm = s mod p” where m is the message, s is the signature, the
generator g has order q, and p and q are primes where q | (p− 1). To identity an
invalid signature, compute X =

∏N
i=1 si/g

∑N
i=1 mi and Y =

∏N
i=1 si

i/g
∑N

i=1 i·mi

and test whether Y = Xz for z ∈ [1, N ]. The Exponentiation method of Law
and Matt [14], for the special case of identifying a single invalid signature, is
similar to the above method.

Lee et al. [16] applied their approach for DSA-type signatures to identifying a
single invalid signature in batches of RSA signatures. They addressed the prob-
lem of identifying multiple invalid RSA signatures by using their RSA method
in a divide-and-conquer method that is somewhat similar to the Single Prun-
ing Search we present in Section 4. However, Stanek showed in [25] that their
approach for RSA signatures is not secure.

In [14] two exponent testing methods for pairing-based batch signatures, the
Exponentiation method and the Exponentiation with Sectors method, were pre-
sented. Both methods require computing a number of batch verifications that are
proportional to the number of invalid signatures w in the batch. The Exponenti-
ation method requires w+1 verifications (including the initial batch verification)
2 For the initial batch verification, if it is more efficient to do so compute X and

Y , compare them, and compute A = XY −1 if the comparison fails; otherwise A is
computed directly, e.g., in Cha-Cheon where A = α0.

3 Except when w = 1 and the invalid signature is located in the rightmost position in
the batch then Fast DC verifier and BQS have equal costs.
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and the same number of product of pairings computations. Exponentiation with
Sectors requires at most 2w+1 product of pairings computations. Both methods
use exhaustive search during batch verification, resulting in exponential cost.

Exponentiation Method. For the Cha-Cheon signature scheme, compute α0 and
test whether α0 is equal to the identity. If so, the batch is valid. Otherwise
compute αj , w ≥ j ≥ 1,

αj = e

(
N∑

i=1

ijBi, S

)
e

(
N∑

i=1

ijDi,−T

)
, (1)

and perform a test on the values αj , αj−1, . . . α0. For j = 1, test whether
α1 = αz1

0 has a solution for 1 ≤ z1 ≤ N using Shanks’ giant-step baby-
step algorithm [24]. If successful, w = 1 and z1 is the position of the invalid
signature. In general the method tests whether

αj =
j∏

t=1

(αj−t)
(−1)t−1 pt (2)

has a solution where pt is the tth elementary symmetric polynomial in 1 ≤ z1 ≤
. . . ≤ zj ≤ N . The authors show that the tests can be performed in O(

√
N)

for j = 1 and O(N j−1/(j − 1)!) for j ≥ 2 multiplications in Fqd . If a test fails
increment j, compute αj , and test. When j = w the test will succeed, and the
values of z1, . . . , zw are the positions of the invalid signatures.

Exponentiation with Sectors Method. The Exponentiation with Sectors Method
uses two stages. In the first stage, the batch is divided into approximately

√
N sec-

tors of approximately equal size and the Exponentiation method is used, where
each Bi, and Di within a sector is multiplied by the same constant, to identify the
v invalid sectors. In the second stage, the Exponentiation method is used to find
the invalid signatures within a batch consisting of the signatures from the v invalid
sectors. This method requires w + v + 1 product of pairings computations, includ-
ing the initial verification, where v ≤ min(w,

√
N). During the first stage the tests

can be performed in O(N
1
4 ) for j = 1 and O(

√
N

j−1
/(j − 1)!) for j ≥ 2 multipli-

cations in Fqd . During the second stage the number of multiplications required for

w ≤ j ≥ v is O(
√

v
√

N) for j = 1, and O(v
√

N
j−1

/(j − 1)!) for each j ≥ 2.

4 An Alternate Approach to Divide-and-Conquer
Methods

Divide-and-conquer methods can be viewed as operating on (for simplicity) a
binary tree T with w ≥ 1 invalid signatures whose root node, rootT , is the batch,
and each pair of child nodes represents the two nearly equal size sub-batches of
their parent. Previously published methods such as Binary DC Verifier and BQS
identify the invalid signatures within the initial batch by descending through the
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tree, performing verifications on the sub-batches of the nodes they encounter.
When one of the methods reaches a node whose sub-batch is valid, the methods
do not visit its descendants, if any. The methods identify the invalid signatures
by identifying those nodes that are either the ancestors of the leaf nodes of T that
represent invalid signatures, or the leaf nodes themselves. The difference between
the published methods are 1) the degree of the tree and 2) how efficiently the
nodes of the tree are verified.

The methods we propose view T as consisting of a parent sub-tree PT with
root node rootPT = rootT , and the leaves of PT are the roots of the w maximal
sub-trees STi, i = 1, .., w, of T which represent sub-batches that have a single
invalid signature. If the w = 1, then T = ST1 and PT is the node rootT . The new
methods identify invalid signatures by descending through PT and identifying
its leaves, and concurrently identifying the single invalid signature in each of the
sub-batches these leaves represent.

For signature schemes such as the Cha-Cheon, node of T is the root of some
STi if there exists a value z, lb ≤ z ≤ ub, that is a solution to α1,node = αz

0,node.
The values lb and ub are the lower and upper bounds of the sub-batch represented
by node within B, and αj,node = e

(∑ub
i=lb ijBi, S

)
·e

(∑ub
i=lb ijDi,−T

)
. Shanks’

giant-step baby-step algorithm can determine if such a solution exists in time
(multiplications in Fqd) proportional to the square root of the size of the sub-
batch. If no solution is found, then node is in PT but is not a leaf; hence its
children must be tested. We refer to this approach as single pruning.

When the children of an interior node p in PT , l and its sibling r, are leaves
of PT , there exist values zl in the range of indexes of the signatures in the left
sub-batch and zr in the range of signatures in the right sub-batch, such that
α1,p = αzl

0,l · αzr
0,r. The values zl and zr can be determined using an algorithm,

PairSolver(Left, Right), with cost proportional to the size of the (sub-)batch
represented by p. If the algorithm fails, then at least one of the child nodes is
not a leaf of PT and they are tested individually using Shanks’ algorithm. We
refer to this approach as paired single pruning.

4.1 Single Pruning Search (SPS) Method

The recursive algorithm below describes the Single Pruning Search (SPS) method
on a batch B which is a list of N = 2h, h ≥ 1, randomly ordered message
/ signature pairs ((m1, s1), . . . , (mN , sN)) where the signature components for
Cha-Cheon are verified elements of G1. On the initial call to SPS(X, α0,P , α1,P ),
X = B, α0,P = 1, α1,P = 1. SPS uses the following algorithms:

1. Get0(X) – checks whether α0 has been computed for X and if so returns it;
otherwise it computes α0 by the most efficient method available,
and it may compute α−1

0 [17].
2. Get1(X) – checks whether α1 has been computed for X and if so returns it;

otherwise it computes α1 by the most efficient method available,
and it may compute α−1

1 [17].
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3. Shanks(X) – if X has a single invalid signature, the algorithm returns the
position of the invalid signature; otherwise the algorithm re-
turns 0 [17].

4. Left(X) – returns a sub-batch with the first len/2 pairs in X , or ∅ if X = ∅.
5. Right(X) – returns a sub-batch with the later len/2 pairs in X , or ∅ if

X = ∅.
6. Len(X) – returns the number of pairs in X , or 0 if X = ∅.

Algorithm. SPS(X, α0,P , α1,P ) (Single Pruning Search)

Input: X a list of message / signature pairs, α0,P and α1,P in GT .
Output: A list of the invalid pairs in the batch.
Return: A boolean.

if (Len(X) = 1) then
output X

return (true)
else

α0,N ← Get0(X)
if (α0,N = 1) then

return (true)
elseif (X = B) then

invα0,[B] ← α−1
0,N

endif
α1,N ← Get1(X)
if (α0,N �= α0,P ) then

z ← Shanks(X)
if (z �= 0) then

output (mz, sz)
return (true)

elseif (X = B) then
invα1,[B] ← α−1

1,N

endif
endif
if (SPS(Left(X), α0,N , α1,N )) then

SPS(Right(X), α0,N , α1,N )
endif
return (α0,N �= α0,P )

endif

Get0(X) computes products of pairings only for the root node and left children
nodes that are tested by SPS. Get1(X) only computes products of pairings for
the root and for each left child X tested by SPS when the α0 of X is not equal
to α0 of the parent of X .

4.2 Paired Single Pruning Search Method

The recursive algorithm below describes the Paired Single Pruning Search (PSPS)
method on a batch B, which is a list of N = 2h, h ≥ 1, randomly ordered message /
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signature pairs ((m1, s1), . . . , (mN , sN )) where the signature components for Cha-
Cheon are verified elements of G1. On the initial call to PSPS(X, α0,P , α1,P ),
X = B, α0,P = 1, α1,P = 1. PSPS also uses the following algorithms:

1. PairSolver(Left, Right) – returns the positions of two invalid signatures,
one in Left and one in Right, or returns
(0, 0) [17].

2. Parent(X) – returns the parent of X , or ∅ if X is the initial batch B.

Algorithm. PSPS(X, α0,P , α1,P ) (Paired Single Pruning Search)

Input: X a list of message / signature pairs, α0,P and α1,P in GT .
Output: A list of the invalid pairs in the batch.
Return: A boolean.

if (Len(X) = 1) then
output X

return (true)
else

α0,N ← Get0(X)
if α0,N = 1 then

return (true)
elseif (X = B) then

invα0,[B] ← α−1
0,N

endif
if (α0,N = α0,P ) then

α1,N ← Get1(X)
else

if (X �= B and X = Left(Parent(X))) then
(zl, zr) ← PairSolver(X,Right(Parent(X)))
if zl �= 0 then

output (mzl , szl), (mzr , szr )
return (false)

end
end
α1,N ← Get1(X)
z ← Shanks(X)
if z �= 0 then

output (mz, sz)
return (true)

elseif (X = B) then
invα1,[B] ← α−1

1,N

endif
endif
if (PSPS(Left(X), α0,N , α1,N )) then

PSPS(Right(X), α0,N , α1,N )
endif
return (α0,N �= α0,P )

endif
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5 Performance

For Cha-Cheon signatures, the divide-and-conquer methods and the exponen-
tiation methods batch verify by first checking that the signature components
are in G1, then computing α0 for B, and testing whether α0 = 1. With the
exception of BQS and the DC Verifiers, they compute their α0s, as shown
in Get0(B) in Appendix A. The cost (not including the membership tests) is
N · CstDlbMultG1(t1, t2)+N · CstMultG1(t1)+ 2(N −1)CstAddG1 +CstDblPair
with t1 = �log2(r)/2� and t2 = �log2(r)�.4

5.1 Cost of the New Methods When w ≥ 1

Single Pruning Search Performance. If w = 1, the cost of SPS increases
by the cost of computing α−1

0 (CstInvGT) and α1 for B (2(N − 1)CstAddG1
+CstDblPair), plus the expected cost of a successful Shanks(B) call, which is
approximately 4

3

√
N CstMultGT.5 If w ≥ 2, the average cost of SPS is the sum of

the costs of computing α0, α−1
0 , α1, a failed Shanks(B) call (2

√
N CstMultGT),

α−1
1 , plus the sum of the costs generated as SPS investigates the descendents of

rootT . The following recurrence relation generates these costs:

R(S)(w, M) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w = 0, 1,

w > M or

w = 2 and M = 2;

⎡⎢⎢⎣ 2
(

M/2
2

)
(R(S)(2, M/2) + C(S)(2, 0, M/2))+(

M/2
1

)2
(C(S)(1, 1, M/2))

⎤⎥⎥⎦
(M

2 ) , w = 2 and M > 2;

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
(

M/2
w

)
(R(S)(w, M/2) + C(S)(w, 0, M/2))+

2
(

M/2
w−1

)(
M/2

1

)
(R(S)(w − 1, M/2) + C(S)(w − 1, 1, M/2))+

w−2∑
i=2

(
M/2
w−i

)(
M/2

i

)
(R(S)(w − i, M/2) + R(S)(i, M/2) + C(S)(w − i, i, M/2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M

w) , w ≥ 3,

4 BQS and the DC Verifiers can compute α0 with the same cost [17].
5 Shanks(X) tests whether the equation α1,n = αz

0,n has a solution z in the range of
l up to u, the bounds of the (sub-)batch X within the original batch. The algorithm
alternately computes a value from the series α1 · (α−1

0 )i and the series (αs
0)j · αl

0,
s = �√|X|�, stopping when a match is found (single invalid signature) or when both
series have been computed. Similarly, PairSolver(Left, Right) alternately computes
a value from one of two series, and terminates when a newly computed value from
one series is equal to one of the values already computed for the other series, or when
both series have been computed.
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where for Cha-Cheon:

Costs

Argument CstDblPair CstInvGT CstMultGT

C(S)(2, 0, M/2) 1

C(S)(1, 1, M/2) 2 2 8
3

√
M/2

C(S)(w, 0, M/2) 1

C(S)(w − 1, 1, M/2) 2 2 10
3

√
M/2

C(S)(w − i, i, M/2) 2 2 4
√

M/2

For C(S)(2, 0, M/2) and C(S)(w, 0, M/2), Get0(X) is called for the left child node
and no inverse is computed, with cost CstDblPair. For C(S)(1, 1, M/2), both
Get0(X) and Get1(X) are called for the left child, combined cost is 2CstDblPair+
2CstInvGT; for the right child, cost is zero, and two successful calls are made to
Shanks(X) with combined cost of 8

3

√
M/2CstMultGT. C(S)(w − 1, 1, M/2) is

similar to C(S)(1, 1, M/2) except that one of the calls to Shanks(X) fails to find
a solution. Both calls to Shanks(X) fail for C(S)(w − i, i, M/2).

Paired Single Pruning Search Performance. If w ≤ 1, PSPS has the same
average cost as SPS. If w ≥ 2, the average cost of PSPS is the sum of the costs
of computing α0, α−1

0 , α1, α−1
1 , the cost of the failed Shanks test on the batch

B, and the sum of the costs generated as PSPS investigates the descendants of
rootT . The following recurrence relation generates these costs:

R(P)(w, M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w = 0, 1,

w > M or

w = 2 and M = 2;

⎡⎢⎢⎣ 2
(

M/2
2

)
(R(P)(2, M/2) + C(P)(2, 0, M/2))+(

M/2
1

)2
(C(P)(1, 1, M/2))

⎤⎥⎥⎦
(M

2 ) , w = 2 and M > 2;

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
(

M/2
w

)
(R(P)(w, M/2) + C(P)(w, 0, M/2))+

2
(

M/2
w−1

)(
M/2

1

)
(R(P)(w − 1, M/2) + C(P)(w − 1, 1, M/2))+

w−2∑
i=2

(
M/2
w−i

)(
M/2

i

)
(R(P)(w − i, M/2) + R(P)(i, M/2) + C(P)(w − i, i, M/2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M

w) , w ≥ 3,
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where for Cha-Cheon:

Costs

Argument CstDblPair CstInvGT CstMultGT

C(P)(2, 0, M/2) 1

C(P)(1, 1, M/2) 1 1 M/2

C(P)(w, 0, M/2) 1

C(P)(w − 1, 1, M/2) 2 2 M + 10
3

√
M/2

C(P)(w − i, i, M/2) 2 2 M + 4
√

M/2

For C(P)(2, 0, M/2) and C(P)(w, 0, M/2), Get0(X) is called for the left child node
and no inverse is computed. ForC(P)(1, 1, M/2),Get0(X) is called for the left child,
the cost is CstDblPair+ CstInvGT, and a successful call is made to PairSolver
(Left, Right) with expected cost of M/2CstMultGT. For the argument C(P)(w −
1, 1, M/2), both Get0(X) and Get1(X) are called for both the left and right child,
one failed call is made to PairSolver(Left, Right) with cost M CstMultGT, and
one successful and one failed call are made to Shanks(X). C(P)(w − i, i, M/2) is
similar to C(P)(w − 1, 1, M/2) except that both calls to Shanks(X) fail.

5.2 Number of Product of Pairings Computations of SPS and PSPS

Let T be a perfect binary tree, and PT(2) be the sub-tree of PT , where each node
represents 2 or more invalid signatures. For each node in PT(2), SPS computes an
α0 for its left child, unless the child is a leaf node of T . For each node in the PT(2)
with both child nodes in PT , SPS also computes α1 for its left child, unless the
child is a leaf node of T . This computation occurs w−1 times. SPS also computes
a pair of αs for the root. Therefore, including the initial batch verification, SPS
requires |PT(2) | + (w + 1) product of pairings computations, if none of the leaf
nodes of PT are leaves of T . SPS requires two fewer α computations whenever
a pair of leaves of PT are leaves of T .

For a perfect binary tree, the number of ways j pairs leaves of PT can be leaves
of T is

(
N/2

j

)
, and the number of ways the remaining w − 2j invalid signatures

can be in the remaining N/2− j distinct 3 node subtrees at the lowest level of T

is
(
N/2−j
w−2j

)
2w−2j. Therefore, the expected number of occurrences of two sibling

leaf nodes of T both representing invalid signatures is

1(
N
w

) 
w/2�∑
j=1

(
N/2

j

)(
N/2 − j

w − 2j

)
2w−2j.

Since
(
N−2
w−2

)
=

∑
w/2�
j=1

(
N/2

j

)(
N/2−j
w−2j

)
2w−2j the expression simplifies to w(w−1)

2(N−1) ,
and the expected number of αs computed by Single Pruning Search when the
batch size is a power of 2 is

|PT(2) | + (w + 1) − w(w − 1)
N − 1

.
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In Appendix B we show that |PT(2) | < 2w − 1; therefore the expected number
of product of pairings computations required by SPS is less than 3w. Since the
number of product of pairings computations in the cost functions of PSPS are
all less than or equal to the corresponding functions of SPS , the average number
of product of pairings computations used by PSPS is also O(w).

5.3 Number of Multiplications in Fq

Figure 1 and Figure 2 compare methods analyzed in Section 5.1 and in [17] for
finding invalid signatures in a batch once the initial batch verification has failed
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Fig. 1. (c,d) Number of multiplies in Fq, where r and q are 160-bit values and d = 6



350 B.J. Matt

216

217

218

219

220

221

222

20 21 22 23 24 25 26 27 28

Invalid Signatures

M
ul

ti
pl

ic
at

io
ns

in
F

q Key

BQS

Expon.

Exp. w. Sect.

SPS

PSPS

N individual

(a) Batch Size 16

216

217

218

219

220

221

222

20 21 22 23 24 25 26 27 28

Invalid Signatures

(b) Batch Size 64

Fig. 2. (a,b) Number of multiplies in Fq, where r and q are 256-bit values and d = 12

216

217

218

219

220

221

222

223

224

225

226

20 21 22 23 24 25 26 27 28 29

Invalid Signatures

M
ul

ti
pl

ic
at

io
ns

in
F

q

(c) Batch Size 256

216

217

218

219

220

221

222

223

224

225

226

20 21 22 23 24 25 26 27 28 29 210 211

Invalid Signatures

(d) Batch Size 1024

Fig. 2. (c,d) Number of multiplies in Fq, where r and q are 256-bit values and d = 12

for Cases A and C of [12]. In Case A, the group order r is a 160-bit value, the
elliptic curve E is defined over Fq, where q is a 160-bit value, and the embedding
degree d = 6. In Case C, the group order r is a 256-bit value, q is a 256-bit value,
and the embedding degree d = 12. All costs are given in terms of the number of
multiplications (m) in Fq using the following estimates from Granger, Page and
Smart [12], and Granger and Smart [13].

– For Case A, 1 double product of pairings = 16, 355m, 1 multiplication in
Fq6 = 15m, 1 inverse in Fq6 = 44m (assuming 1 inverse in Fq = 10m),
1 elliptic curve addition = 11m, and an elliptic point multiplication by a
160-bit value is 1614m and by an 80-bit value is 827m.
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– For Case C, 1 double product of pairings = 62, 797m, 1 multiplication in
Fq12 = 45m, 1 inverse in Fq12 = 104m, 1 elliptic curve addition = 11m, and
an elliptic point multiplication by a 256-bit value is 2535m and by an 128-bit
value is 1299m.

6 Conclusion

We have presented two new methods, Single Pruning Search and Paired Single
Pruning Search, for identifying invalid signatures in pairing-based batch signa-
ture schemes using the small exponents test, and have analyzed their average case
performance. These new methods require O(w) product of pairings computations
and O(w

√
N) and O(wN) number of multiplications in Fqd . The methods are

described for Cha-Cheon signatures, but are applicable to other batch verified
signature schemes such as the batch verifiers presented in [8].

These new methods, like BQS and earlier divide-and-conquer methods, can
be used when there is uncertainty in the number of invalid signatures in a batch.
As shown in the figures in Section 5.3, the new methods significantly outperform
the Binary Quick Search method when w � N , and perform as well as or better
than the exponentiation methods except when N and w are small. Unlike the
exponentiation methods, with the new methods a batch verifier is not forced to
switch methods when tests for small w fail.

In [14] the authors suggested that the exponentiation methods can be used
with BQS to provide improved performance after tests for small values of w
fail. While this is certainly true, the result can be expensive. For example, with
N = 64, a batch verifier that assumes that the number of invalid signature in
the batch is small would start with the Exponentiation Method, but if the tests
for w = 1 and w = 2 both fail, the verifier would switch to Exponentiation with
Sectors Method to test if w = 3. If the test for w = 3 fails, then the verifier
would switch to BQS. If w = 4, the cost of this sequence for Case A (ignoring
the common cost of signature component validation and α0 computation) is at
least ≈ 3.70×105 multiplications in Fq, compared to ≈ 2.73×105 multiplications
if only BQS was used, and ≈ 1.16 × 105 multiplications with the Paired Single
Pruning Search Method.

Ideally, we would have a single efficient method for finding the invalid signa-
tures in a batch that always has the lowest expected cost no matter how many
signatures are invalid. Such a method would be especially useful when an adver-
sary is occasionally able to inject bursts of several invalid signatures into some
batches. Short of that ideal, but a practical alternative, would be a small set of
methods, each of which for some range of batch sizes of interest always provides
the lowest expected cost. Currently the Paired Single Pruning Search, provides
the lowest expected cost when the batch size is in the range 128 to 512. For
batches larger than 512, we would expect batch verifiers to utilize the bucket
test for Cha-Cheon and related signature schemes rather than the small expo-
nents test. Finding such a minimal cost method for batches smaller than 128
is as an open problem. Another open problem is to find more efficient methods
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than the generic DC verifiers of [20] for identifying the invalid signatures in a
batch when an initial bucket test verifier fails.
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A Auxiliary Algorithms for SPS and PSPS

The algorithms in Section 4 for the SPS and PSPS methods call Get0(X) to
obtain α0 (and α−1

0 ) for X , and Get1(X) to obtain α1 (and α−1
1 ) for X . In this

section we describe these algorithms for Cha-Cheon signatures. Get0(X) and
Get1(X) use the following algorithms:

1. Lowerindex(X) – returns the index within the batch B of the message /
signature pair in the lowest position in X .

2. Upperindex(X) – returns the index in B of the pair in the highest position
in X .

Algorithm. Get0(X) (Obtain α0 (and α−1
0 ) for Cha-Cheon)

Input: X a list of message / signature pairs.
Output: None.
Return: The value α0,[X] for X .

P ← Parent(X); L ← Left(P ); R ← Right(P )
if (α0,[X]) then

return (α0,[X])
elseif (X = R) then

α0,[R] ← α0,[P ] · invα0,[L]
invα0,[R] ← invα0,[P ] · α0,[L]
return (α0,[R])

elseif (X = L) then
l ← Lowerindex(X); u ← Upperindex(X)
α0,[L] ← e (V Bl − V Bu+1, S) · e (V Dl − V Du+1,−T )

if ( α0,[L] �= α0,[P ]) then
invα0,[L] ← α−1

0,[L]
else

invα0,[L] ← invα0,[P ]
endif
return (α0,[L])

else
V Blen(X) ← Blen(X)
V Dlen(X) ← Dlen(X)
for i = Len(X) − 1 downto 1 do

V Bi ← V Bi+1 + Bi

V Di ← V Di+1 + Di

endfor
α0,[B] ← e (V B1, S) · e (V D1,−T )
return (α0,[B])

endif

When X is a left child, the cost is at most 2·CstSubG1 +CstDblPair+CstInvGT. If
X is a right child, the cost is at most 2CstMultGT. Since CstDblPair � CstSubG1
and CstDblPair � CstMultGT, we estimate the cost of Get0 for pair of siblings
as CstDblPair+CstInvGT in Section 5.
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Algorithm. Get1(X) (Obtain α1 (and α−1
1 ) for Cha-Cheon)

Input: X a list of message / signature pairs.
Output: None.
Return: The value α1,[X] for X .

P ← Parent(X); L ← Left(P ); R ← Right(P )
if (α1,[X]) then

return (α1,[X])
elseif (α0,[X] = α0,[P ]) then

α1,[X] ← α1,[P ]
invα1,[X] ← invα1,[P ]
return (α1,[X])

elseif (X = R) then
α1,[R] ← α1,[P ] · invα1,[L]
invα1,[R] ← invα1,[P ] · α1,[L]
return (α1,[R])

elseif (X = L) then
l ← Lowerindex(X); u ← Upperindex(X)

WBl,u ← UBu − (u · V Bu+1 + WB1,l−1)
WDl,u ← UDu − (u · V Du+1 + WD1,l−1)
if (l �= 1) then

WB1,u ← WB1,l−1 + WBl,u

WD1,u ← WD1,l−1 + WDl,u

endif
α1,[L] ← e (WBl,u, S) · e (WDl,u,−T )
if ( α1,[L] �= α1,[P ]) then

invα1,[L] ← α−1
1,[L]

else
invα1,[L] ← invα1,[P ]

endif
return (α1,[L])

else
WB1,0 ← ∞
WD1,0 ← ∞
UB1 ← V B1
UD1 ← V D1
for i = 2 upto len(X) do

UBi ← UBi−1 + V Bi

UDi ← UDi−1 + V Di

endfor
α1,[B] ← e

(
UBlen(X), S

) · e (
UDlen(X),−T

)
return (α1,[B])

endif

To compute α1s and its inverse for a left child node costs no more than 4 ·
CstAddG1 +2 · CstSubG1 +2 · CstMultG1(t1)+CstInvGT +CstDblPair with t1 =
�log2(Len(X))�<�log2(N)�. If X is a right child, the cost is at most 2CstMultGT.
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We estimate the cost of Get1 for pair of siblings as CstDblPair+CstInvGT in
Section 5.

B | PT(2) | < 2w − 1

We show that |PT(2) | < 2w−1 whenever N = 2i for i = 1, 2, . . .. Let S(2)(i, w) =
|PT(2) | for N = 2i and 0 ≤ w ≤ N . Note that S(2)(i, w) = 0 when w = 0, 1, and
S(2)(1, 2) = 1. Assume that S(2)(i, w) < 2w − 1.

For w = 2

S(2)(i + 1, 2) =
2∑

j=0

( 2i

2−j

)(2i

j

)(2i+1

2

) (S(2)(i, 2 − j) + S(2)(i, j) + 1)

<
2
(2i

2

)(2i

0

)(2i+1

2

) (4) +

(2i

1

)(2i

1

)(2i+1

2

) (1)

< 2 +
2i − 2

2i+1 − 1
< 3.

For w ≥ 3

S(2)(i + 1, w) =
w∑

j=0

( 2i

w−j

)(2i

j

)(2i+1

w

) (S(2)(i, w − j) + S(2)(i, j) + 1)

<
2
(2i

w

)(2i

0

)(2i+1

w

) ((2w) +
2
( 2i

w−1

)(2i

1
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w
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( 2i
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j

)(2i+1

w

) (2w − 1)

< 2w − 1 − 2
( 2i

w−1

)
w

(2i+1

w

) (
(2i + 1)(w − 1)

)
< 2w − 1.
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