
E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 258–267, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Validation Aspects of Automatic Service Composition

Mazen Malek Shiaa and Jan Ove Fladmark

Department of Telematics, NTNU university
malek@item.ntnu.no, janovefl@online.no

Abstract. The paper studies the validation aspects of service composition, in
particular the goal-based aspects. By service composition we are targeting the
automated composition of service components that fit certain demands from a
portfolio of available service components – typically referred to as service re-
pository. It is arguable that the use of ontologies and semantic annotations of
service components constitute an intelligent way to enhance service discovery
and service composition mechanisms. However, validating the intention of a
certain composition – goals – and verifying its requirements is still a topic for
research development. This paper presents a simple approach to validate service
compositions based on goal annotations. The effectiveness of this approach is
highlighted through a simplified service example.

Keywords: semantic annotations, automatic service composition, validation,
service platforms.

1 Introduction

The main focus of this paper is to study, and develop validation functionality for the
service creation environment, which is part of the SPICE service platform being de-
veloped by the SPICE consortium [1]. SPICE (Service Platform for the Innovative
Communication Environment) is a research project aimed at addressing the design,
developing and putting into operation efficient and innovative mobile service crea-
tion/execution platforms for networks beyond 3G. The SPICE project vision is to
design, develop and prototype an extendable overlay architecture that supports easy
and quick service creation/execution of intelligent and ambient-aware services for the
above mentioned networks.

The SPICE service platform supports the composition of services from simple ser-
vice components and from other composite services. The SPATEL language is used
to describe both the structure and behaviour of the services. This language does also
support annotation of functional and non-functional descriptions of the services like
goals, effects, preconditions, Input/Output parameters, and QoS attributes. These
annotations are central to SPICE services and used both by the service creation and
execution environment. The service validation in this paper will therefore focus
mainly on how these annotations, and the goal annotation in particular, can be used
when validating a service. The target of this work will be an Eclipse plug-in for vali-
dating certain aspects of a SPICE service. The service example used in this paper will

 Validation Aspects of Automatic Service Composition 259

be the main service scenario of the E-tourism scenario being widely experienced and
demonstrated within the SPICE project.

The work accomplished in [2 and 3] is very important with regard to validation as-
pects and goal-based analysis. [2] has focused on expressing and validating basic
safety properties, while [3] focused on modeling and validating services using service
roles and service goals – thereby liveness properties. The approaches presented in [2
and 3] have helped us to establish our vision of a goal-based validation approach.
However, as the SPICE initial architecture and the applied service composition para-
digm brings a lot of new concepts and practices in the service development lifecycle
these approaches cannot be applied – fundamentally they use different service model
with different service properties and features. After establishing our approach, which
is presented here in this paper, we have the perception that certain features of these
approaches may be applied. The work of [3] with regard to goal assignments and goal
sequencing could in particular give a hand to whatever goal-based expressions and
sequencing to be applied in the SPICE platform.

The paper will be structured in the following way. Sec. 2 will provide a short over-
view of the service development in the SPICE platform, while Sec. 3 will look at the
main core of this paper; the validation aspects. Sec. 5 will look with some details at
the example service system we handle. Sec. 6 will briefly explain the how the demon-
stration of our approach is being carried out, before giving some conclusion remarks
in Sec. 7.

2 Service Development in SPICE

The Service Creation Environment (SCE) in SPICE is a set of tools for automating as
much as possible the service creation process [4]. The creation process is defined
from different view points: the basic component developer, the service developer and
the end user. In this paper we will only consider the service developer view point.
Eclipse is the proposed platform on which SCE will be built. The rationale for this is
because it is widely used, and extensible by means of a plug-in architecture.

SPATEL (SPICE advanced service description language for telecommunication
services) is a specialized service description language used to describe and develop
services for the SPICE platform [5]. SPATEL cover both functional and non-
functional aspects of a service. In a service creation environment this language will
make the developer able to refer to both abstract and running services by these de-
scriptions, and in the future also by the means of ontology. The semantic notations are
an important part of SPATEL. Services (service components), service methods and
parameters etc, can all have a number of annotations describing them such as:

• Input/Output parameters for a service
• Goals describe the overall objective of services or methods exposed by the service
• Effects describe outcome of methods with regard to state of the component
• Preconditions describe conditions that must be satisfied in order to allow execu-

tion of a method
• Non-functional features describe features like QoS, cost etc.

260 M.M. Shiaa and J.O. Fladmark

Ontologies are used to give a semantic description of these annotations. The semantic
description will help the developer in building services, and can also be used by the
Service Execution Environment [6] in automating the usage of service components.

Annotations on goals describe the overall objective of a service (e.g. goal:Flight-
Booking) and/or the specific objective of a method (e.g. goal: CancelBooking); they
enable semantic service discovery [5]. Annotations on goals could reside both at the
service level and at the method level. The goal of a service component with regard to a
composite service is widely denoted as sub-goal. Annotations on goals are always re-
quired and if an annotation on goal lacks for an operation it is implicitly assumed that it
coincides with the service one (that in this case MUST exist).

3 Validation Aspects

Service, or protocol, validation is a rather wide area of research and a lot of ap-
proaches and solutions exist. There has been a lot of influence of Web Services and
the Service Oriented Architecture (SOA) [7] concepts in the SPICE project and its
methodology. One should look into the specification and the validation efforts, if any,
in these fields. At first glance it seems that the focus of these service architectures is
on the observable, or consumable, inputs and outputs of the service, e.g. those defined
by the WSDL document of the service. WSDL documents describe the ports and
operations of the web service, however it is less descriptive when it comes to the
behaviour of the web service. Hence when considering validating a web service based
on the WSDL, or whether a client can successfully consume a web service, the focus
is on the static interface of the service.

In telecommunication there has been more focus on validating the behaviour of the
services. Due to the distributed nature of telecommunication there has been a long
history of using methods and languages like MSC and SDL (lately roles, goals col-
laborations and semantic interfaces in UML have also been used) for describing inter-
actions between entities and the state machines of entities in the system. Simulation
can then be used to validate the systems. Other methods of validating the services or
interaction between the entities are by using state space exploration (using state tran-
sition graphs) as well as safety (e.g. no system deadlock and no unspecified reception
occur) and liveness (i.e. something good inevitably happens) analysis [8 and 9].

Validation in system development is the process of ensuring that we are building
the right system in terms that the system is meeting the requirements and expectations
of the owner and users of the system. Validation is a process that encompasses the
whole development process, including requirements, design, implementation, and
testing (see [10] and [11]). The process of testing whether the system meets is specifi-
cation is often called verification. The term validation is often used instead of verifi-
cation for these system tests - we use the definitions for these terms as listed in [11]:

Verification: To establish the truth of correspondence between a software product
and its specification

Validation: To establish the fitness or worth of a software product for its opera-
tional mission

 Validation Aspects of Automatic Service Composition 261

Safety and liveness property validation is fundamental to any validation functional-
ity of state machine specifications1. The behaviour of a SPICE component is defined
by the means of a SPATEL state machine which describes the full behaviour of the
component towards the environment and possibly other service components used in
the composition. The service components used in the composition have their own
state machines which again can interact with other service components. In the classi-
cal sense performing a safety or liveness analysis, through the construction of the
global state space and then by certain reachability analysis, could quickly build up the
so-called state space explosion and therefore complicates the validation process.

Our discussion on validation aspects in this paper will only focus on the composite
services in SPICE and the required service goals. We look at a composite service as a
SPATEL description, and hence a goal annotation is provided for it. This goal annota-
tion is the goal of the service which might be reached when a user or another compo-
nent is interacting with the service. Further the composite service is interacting with
other SPICE services through its orchestration. These other SPICE services have their
own goals that might be reached through the collaboration with the orchestration (or
the orchestrator component – note that a SPATEL composite service specification
always include such an orchestrator component). Validation of the composite service
will look at whether the goal of the composite service could be reached through the
orchestration. A number of questions need to be answered during the course of the
validation:

1. How can the goal of the composite service be expressed in terms of the goals
of service components involved in the orchestration?

2. How to verify that the sub-goals are reached in the composition?
3. How to verify that the sub-goals are reached in the correct order and with the

correct parameters? 2

4 Goal-Based Validation Approach

We are proposing a simple approach as a basis to answer the questions presented in
the previous section. This approach will further enhance the automatic composition in
the SPICE service platform. Our approach consists of three main phases:

1. Semantic analysis phase: during this phase a given service request will be
semantically analyzed. This phase results in a list of goals to be achieved
by a composition – we call this list GoalList. This analysis phase may be
performed automatically, on the natural-language request provided by the
end-user, or manually by the service developer.

1 Safety properties can be formalized as properties on states or assertions about conditions to be

met, while liveness properties are most conveniently formalized as invalid temporal se-
quences of events [8].

2 Even though the discussion will focus on composite services, the tasks involved in validating
whether a single goal is reached during the collaboration between a user or component and a
single SPICE service component is similar to validating whether a single sub-goal is reached
in the composition.

262 M.M. Shiaa and J.O. Fladmark

2. Pre-validation phase: in this phase the designer provides a list of goal-
based expressions to be validated by the validation tool.

3. Validation phase: this phase will reason about the expressions provided
by the user assuming a set of composition alternatives and goal ontology
are given.

In Fig. 1 a simple diagram illustrates our approach to goal-based validation of
automatic service composition. Basically the validation tool in our SPICE platform
(which is considered an add-on to the service creation environment) obtains two sets
of inputs: composition alternatives (specified in SPATEL) and certain goal expres-
sions to be validated. The tool refers to the used goal ontology and produces valida-
tion results that show whether a goal expression is met by these composition
alternatives or not.

Fig. 1. Goal-based validation of automatic service composition

Goal expressions could be denoted using various mathematical/algebraic notations,
e.g. regular expressions. We choose to use simple Boolean and pseudo-code expres-
sions. The following examples give quick look:

• GoalA = GoalB AND (GoalC OR GoalD)
• GoalA = GoalB THEN GoalC
• GoalA = 2(GoalB) THEN LOOP (1..Max) GoalC
• NOT {GoalB, GoalC}
• etc.

These expressions are self-explanatory and are being constantly worked out and
experienced with in our demonstration platform. In these expressions GoalA stands
for the goal of a composite service.

In this paper we are arguing that reasoning about goals of a given composition
needs to be approached with goal sequences (sequencing) in mind – this is obvious
given the fact that goal-based analysis is aiming for liveness properties. Goal se-
quence means an expression of how several goals to be achieved in sequence. If a list
of goals (or sub-goals of the service components constituting a composite service) is
assumed to comprise the overall goal of a composite service then their ordering is
equally crucial. These goals may be achieved either interleaved, sequential or both.

 Validation Aspects of Automatic Service Composition 263

Based on this argument, we propose to further annotate the goals of a composite ser-
vice with goal sequences. The annotation of goal sequences is basically a UML activ-
ity graph that shows the alignment of goals with respect to a SPATEL specification.
The next section will present a simple example of such diagram.

5 The Service Example

Our service example is a simple service that finds restaurants of certain types at cer-
tain locations. A typical service request to trigger the composition process is:

“Find a Chinese restaurant at MyLocation”

Such request could be generated by the end-user in natural language or could be
considered by the service developer – in both cases we assume the semantic analysis
phase to produce a list of goals that constitute a subset of the used goal ontology.

In Fig. 2 we show a subset of the used goal ontology that corresponds to the goals
that correspond to the service request shown above. Generally, such ontologies (ex-
pressed in OWL in our case) define concepts, e.g. FindRestaurant, and relationships
between them necessary in the reasoning process.

Fig. 2. Subset of the used goal ontology – our example GoalList would be: {FindRestaurant,
FindRestaurantByType, FindRestaurantByServedCuisine, GetLocation, GetGSMLocation,
GetNearest}

These goals mostly have association with finding the proper restaurant – all the
sub-goals under FindRestaurant. GetLocation and GetGSMLocation are goals that
reflect obtaining the location of the user via the used device, e.g. mobile terminal. The
last goal in this ontology subset is GetNearest, which achieves the exploration of a
nearest choice out of a list, e.g. restaurant list, given the user location.

The service platform is supposedly built around a set of mechanisms that facilitate
the process of (automatic) service discovery. The essential part of such process is how
to search the repository of existing (and available) service components – note that we
are assuming the SPICE architecture and its discovery facility [4].

In Fig. 3 we show a very simplified set of service components and their semantic
annotations as suggested by the SPATEL notation. This set of service components is

264 M.M. Shiaa and J.O. Fladmark

only shown for demonstration purpose – some of them have been implemented as part
of the E-tourism scenario. As shown in the figure the semantic annotation is limited to
the goals of the methods of these service components. Each public method has some
goal, which exists in the subset of the used goal ontology shown above, annotated to
it. It is assumed that the user has certain subscription constraints possibly included in
the user profile – again we are considering the SPICE architecture where such user
context information is maintained and handled [4]. A user with a PREMIUM sub-
scription has unrestricted access to all these service components – accordingly an
automatic service composition module may use whatever service component in the
composition. Other users have restriction with regard to using RestaurantFinder
component. This component in particular has a general method, findRestaurant,
which achieves three goals based on what parameters it is provided. The other find
restaurant components, RestaurantLocator, RestaurantDB, and RestaurantCatalog,
happen to have the same method name – findRestaurant – with different invocation
parameters, achieve only one goal each. We assume there exists an ontology for in-
puts and outputs where certain parameters are classified. For instance Cuisine is some
sort of Type and Language is some sort of Property, where Type and Property are
also used as goals. NearstCalculator component has two methods: getNearest1 that
finds the nearest restaurant to the current user’s location, while getNearest2 only
performs that given a certain location parameter. GSMLocator is straightforward
finding the location of the user’s mobile terminal.

The following listing shows few possible service compositions for this service ex-
ample. These compositions may be obtained from an automatic service composition
implementation3. In this listing only the invoked methods are shown with the corre-
sponding service components (these methods are separated by “-->” to show the order
of invocation), details such as the invocation parameters are not depicted.

1. GSMLocator.getLocation --> RestaurantFinder.findRestaurant
2. GSMLocator.getLocation --> RestaurantDB.findRestaurant --> NearestCalculator.getNearest2
3. RestaurantDB.findRestaurant --> NearestCalculator.getNearest1

The SPATEL representation of the first and the second compositions are shown in
a diagram in Fig. 4. In the same figure a representation of the proposed goal diagram is
illustrated also. It is important to notice that given this particular list of compo-
nents/methods and the service request the RestaurantLocator and RestaurantCatalog
components would not be usable in any service composition (there could be some
work-around – e.g. performing a localized search on the restaurant list obtained from
RestaurantLocator.findRestaurant – to be implemented within the composition logic
itself, however this is not considered in our case). Certain composition alternatives are
totally out of question. For instance the RestaurantCatalog component would return a
restaurant that provides the Chinese language to its customers, and in extreme cases
RestaurantLocator component would return a list of restaurants in China if the user is
accessing SPICE platform from there.

3 SPICE service platform is also considering an Automatic Composition Engine (ACE) module

to be responsible for such automatic composition scenarios.

 Validation Aspects of Automatic Service Composition 265

Fig. 3. Service components and their semantic annotations

Fig. 4. An example SPATEL service composition, and its corresponding goal diagram

266 M.M. Shiaa and J.O. Fladmark

The validation runs for this simple service example have been performed to show
that the resulting compositions: achieve certain goals (e.g. FindRestaurantByType),
obey certain Boolean expressions on goals (e.g. FindRestaurantByServedCuisine
AND GetNearest), and that it does not achieve certain goals (e.g. FindRestaurant-
BySpokenLanguage).

6 Demonstration Using Eclipse Plug-in

A tool for demonstrating our approach has been developed as a validation wizard that
interactively reason about the required service goals (as goal expressions). The tool is
implemented as an Eclipse plug-in that asks the user for these required service goals
and validates them. The plug-in checks the selected SPATEL model (which is saved
as an xmi file – in SPATEL format) for goals in the composition and compares them
to the required service goals. This plug-in has been integrated into the existing SPA-
TEL Eclipse-EMF development environment as a menu item. A context menu called
Validate Goal is one of the menus displayed when right clicking on a *.spatel file.
There are three main use cases for the plug-in:

• Describe the expected service goals.
• Parse a model definition for service goals.
• Validate the found goals with the expected goals.

Currently the tool has the following limitations:
• Only Boolean expressions are accepted (e.g. GoalA = GoalB AND

(GoalC OR GoalD))
• No handling of goal ordering or goal sequences
• No handling of multiple usage of goals (e.g. GetGSMLocation goal is

achieved twice to find location of two users)
• No specification of loops (i.e. a goal could be reached several times – 1..*

– until a specified state is reached)

7 Conclusion

The paper has demonstrated how it is possible to perform simple validation analysis
or checks on service composition based on goal annotations. The presented approach
is quite simple to understand and implement, yet easily extendable and make broaden
to include other aspects. The goal expressions used so far have been fairly simple, but
covered most of the validation aspects of the simple service examples we experi-
mented with. These expressions need to be elaborated further. The goal diagram, or
the annotation of goal sequences, as presented in this paper is just an activity diagram
that has no strict connection, or semantics, with a SPATEL specification. It is impor-
tant to consider a more coherent way of linking these two items – a goal sequence and
a SPATEL specification diagram, e.g. using assignments of goal values and assertions
in SPATEL specifications.

As a continuation of this work we are considering a more reachability-like analysis
of the goal ontology. Such analysis would make the following objectives possible:

 Validation Aspects of Automatic Service Composition 267

• Make sure that certain classes of goals never been considered. Such goals
could be obtained by service components that require certain class of sub-
scription, could use roaming, etc.

• Make sure that the given compositions are the only possibilities to achieve
certain combinations of goals.

We are also considering extending our work to involve other SPATEL annotations,
particularly effects, which has strong connection to service component states.

References

1. SPICE Consortium, the SPICE project website, http://www.ist-spice.org/
2. Floch, J.: Towards Plug-and.-Play Services: Design and Validation, Ph.D. thesis 2003:47

NTNU (2003)
3. Sanders, R.T.: Collaborations, Semantic Interfaces and Service Goals: a way forward for

Service Engineering. Ph.D. thesis 2007:68 (NTNU (2007)
4. SPICE Consortium, Initial Architecture Design – SPICE Architecture, SPICE Deliverable

D1.3, Goix, W. (ed.), SPICE Internal Document
5. SPICE Consortium, Advanced Language for Value added services composition and crea-

tion (SPATEL) SPICE Deliverable D5.1, Belaunde, M. (ed.), SPICE Internal Document
6. SPICE Consortium, Distributed Multiplatform Execution Engine, SPICE Deliverable

D5.2, Kovacs, E. (ed.), SPICE Internal Document
7. OASIS, Reference Model for Service Oriented Architecture 1.0, http://

www.oasisopen.org/committees/tc_home.php?wg_abbrev=soa-rm
8. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall, Englewood

Cliffs (1991)
9. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21, 181–

185 (1985)
10. Pehrson, B.: Protocol Verification for OSI. Computer Networks and ISDN systems 18,

185–201 (1989/1990)
11. Bræk, R., Haugen, Ø.: Engineering Real Time Systems. Hemel Hempstead, Prentice Hall

International 0-13-034448-6 (1993)

	Validation Aspects of Automatic Service Composition
	Introduction
	Service Development in SPICE
	Validation Aspects
	Goal-Based Validation Approach
	The Service Example
	Demonstration Using Eclipse Plug-in
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

