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Abstract. This paper introduces a new method of Photomosaic. In this
method, we propose to use tiled images that can be rotated in a restricted
range. The tiled images are selected from a database. The selection of
an image is done by a hashing method based on principal component
analysis of a database. After computing the principal components of the
database, various kinds of hash tables based on the linear combination
of the principal component are prepared beforehand. Using our hash-
ing method, we can reduce the computation time for selecting the tiled
images based on the approximated nearest neighbor searching in con-
sideration of a distribution of data in a database. We demonstrate the
effectiveness of our hashing method by using a huge number of data in
high dimensional space and better looking results of our tiling in exper-
imental results.

1 Introduction

Mosaic is one of the traditional arts in which a large image is generated by tiling
small pieces of colored glass, stone and so on. The tiling ways are determined
depending on a shape and a texture of the image and pieces. Recently, computer-
generated mosaics are studied as a non-photorealistic rendering [1,2].

Photomosaic is an image that has packed with many smaller images called
tiles by using a reference image [3]. In a Photomosaic image, pixel colors are
replaced with small tiled images that approximate pixel colors in local regions in
the reference image. Then small tiled images can be seen by observing in close-
up, while the approximated reference image can be seen by observing from the
distance. The applications of Photomosaic have already been available in [4,5].

In Photomosaic, research topics can be divided into two aspects as follows:

– To find optimized arrangement of tiled images that provides better approx-
imation of the reference image

– To select tiled images that represent local regions in a good approximation
from a database of tiled images

In the first research topic, previous tiling methods replace a pixel or local
square region in a reference image with an image without overlapping and rotat-
ing [3,4,5]. As a result, some parts of the Photomosaic image are not matched
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with the reference image because the color of the image in a database is not
always matched with the color of the local region in the reference image.

In the second research topic, the selection of tiled images from a database
is addressed as an approximate nearest neighbor searching problem. Previous
researches described the method for evaluating color difference between a square
region in a reference image and every image in a database to find the best match-
ing image. However, the searching problem is also very important in Photomosaic
for reducing the computation for generating a Photomosaic image.

As an extended approach of Photomosaic, Videomosaic which generates a
video composed of many smaller videos has been proposed [6]. A method called
Jigsaw Image Mosaics (JIM) is another tiling method by using an arbitrary
shape image. The images can be deformed for packing into an arbitrary area
[7]. Puzzle Image Mosaics (PIM) is an improved method of JIM for reducing
the computation cost and generating better result visually by enhancing edges
of shapes [8]. However, JIM and PIM are applied to only less textured images.
In addition, the small pieces cannot be sometimes observed in close-up because
they may be deformed and upside down [7,8].

In this paper, we propose a Photomosaic method with two following contri-
butions:

– Tiling method using rotated images
– Approximate nearest neighbor searching method based on hashing by com-

binations of principal components

In our tiling method, images for tiling are not deformed because deformed im-
ages cannot be sometimes recognized as a small image due to loss of the original
appearance. Instead of deforming, our method allows images to be rotated and
overlapped. The use of rotated images increases the possibility of a region in a
reference image to match with an image in a database. Our method has tem-
plates for several rotated images beforehand. In a local region, the best template
matched with the region is selected. As a result, a Photomosaic image with tiled
images is generated.

Approximate nearest neighbor searching is one of the important techniques
for example based pattern recognition. In Photomosaic, the searching tiled im-
ages from a database needs much computation cost. As mentioned above, the
quick searching is important. Many works discussed in Section 2 have already
proposed for reducing computation cost. However there is still a problem for
accelerating the search of nearest data from huge number of data in high dimen-
sional space. We adopt a hashing method based on principal component analysis
for considering the distribution of data in a database. In our method, various
kinds of hash tables are generated by combination of principal components of a
database for clustering neighbors. In the retrieval phase, the candidates of the
nearest neighbor of a query are collected from every hash table and the nearest
neighbor is selected from the candidates by distance computation.

The rest of this paper is organized as follows: Section 2 discusses the related
works about nearest neighbor searching problems. Section 3 presents our ap-
proximate nearest neighbor searching method based on combination of principal
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component hashing. Section 4 presents Photomosaic method allowing rotation
and overlap of images. In Section 5, our methods are evaluated for proving the
effectiveness and Section 6 concludes this paper with discussions and possible
future works.

2 Nearest Neighor Searching

In nearest neighbor searching problem, we divided the solutions into two cate-
gories, tree based approach [9,10] and hash based approach [11,12,13,14].

2.1 Approximate Nearest Neighbor

In tree based approach, Approximate Nearest Neighbor (ANN) is a method
using a binary tree [9]. Each node of the tree represents a cell generated by
subdividing space. Each leaf is associated with a single point lying within the
bounding rectangle for the cell. In the searching, ANN gets candidates from tree
search first. Then, the nearest data of the query is selected from the candidates
by computing the distances between a query and each candidate.

In ANN, there is an important parameter ε for representing degree of ap-
proximation. ε = 0 means the nearest neighbor searching. The larger ε provides
smaller computation cost. However, the nearest neighbor may not be found in-
stead of reducing the computation cost.

2.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is one of approximate nearest neighbor search-
ing methods using a hash [12,13].

In the registration phase, a d-dimensional input vector is converted into L
sets of k-dimensional vector by L transform matrices. L is the number of hash
tables. Each k-dimensional vector is registered in a list of each hash tables by
computing a hash value from k-dimensional vector. In the retrieval phase, a d-
dimensional query vector is converted in the same way of the registration phase.
Candidates of nearest neighbor vectors are selected from L hash tables. Then,
the nearest data of the query is selected from the candidates by computing the
distances between a query and each candidate.

In LSH, L transform matrices should be prepared such as g1(v ), . . . , gL(v).
gi(v ) has k transform matrices for converting a d-dimensional vector into a
natural number such as gi(v ) = (h1(v ), . . . , hk(v)). hj(v )) is

ha,b(v) =
⌊
a · v + b

w

⌋
(1)

where a is a d-dimensional vector, b adjusts bias in [0, w] and �·� is a floor
function. Each element of a is determined from normal random number.

The relationship between the relative error ratio and complexity of calculation
is clearly defined in LSH. However, the searching of the nearest neighbor may
not work because the transform matrices are prepared without considering the
distribution of data in a database.
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2.3 Principal Component Hashing

Principal Component Hashing (PCH) is inspired from LSH [14]. Compared with
LSH, a in Eq.2 is an eigenvector of a database in PCH. Each eigenvector is
segmented into several buckets by making the density of each bucket be equiva-
lent for clustering neighbors. The candidates are selected by sum of bucket sets
on several eigenvectors. In the distance computation, the approximated near-
est neighbor can be selected by cutting off the candidates effectively from first
eigenvector’s bucket.

In PCH, the nearest neighbor searching of a query starts from the buckets
of the first eigenvector by computing a hash value of the query. The query is
searched on a range of buckets on each eigenvector. However, the size of the
range influence the accuracy of the nearest neighbor.

3 Combination of Principal Component Hashing

In Photomosaic, the selection of tiled images from a database should be ad-
dressed. A tiled image may be more than thousand dimension vector. In addi-
tion, the database may have more than ten thousand images. For this reason,
we propose a quick searching method.

Our method is inspired by PCH and LSH. Our hash function is extended
from that of PCH. This means that we adapt principal component analysis for
converting a input space into lower dimensional space. The registration data by
a hash and data retrieval are close to those of LSH. The transform matrices in
Section 2.2 is composed of eigenvectors by PCA.

3.1 Registration

In LSH, a data is transformed into a hash key by using a uniform discretization
step w in Eq.2. On the other hand, a · v is discretized based on distribution of
data in PCH. We adopt the method of PCH.

In Figure 1, discretized value hi(v) from a data v on i-th eigenvector is
shown. First, a discretization level d is determined beforehand (in this case,
d = 3, 0 ≤ hi(v) ≤ 2). Thresholds for segmenting the eigenvector into several
buckets are determined by making the number of elements in each bucket be
same. In retrieval phase, a query is discretized by using the same thresholds.
This process is done for the selected number of eigenvectors.

Fig. 1. Discretization Fig. 2. Product Sets of Buckets
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In PCH, an eigenvector corresponds to a hash table as hi(v) is a hash value.
Candidates for the nearest neighbors of a query are collected from union of
buckets on each eigenvector. The union sometimes provides the huge number of
the candidates. Distance computation between a query and the candidates takes
most time in approximated nearest neighbor searching. To reduce the number
of the candidates, our method generates new buckets by product sets of buckets
on several eigenvectors.

Figure 2 briefly shows our method in 2 dimension, where B ij is a bucket
of discretized value j on i-th eigenvector. New buckets are generated by every
product set of 2 buckets such as B11 ∩ B21. In PCH, one bucket is put on an
eigenvector. On the other hand, one bucket is composed of several eigenvectors
by product set.

Next, we explain the details in n dimension. Important parameters in our
method are as follows: n is the number of selected eigenvectors, m is the number
of eigenvectors for computing a product set (less than n) and d is a discretization
level on each eigenvector. n and m define the number of hash tables because the
number is a combination of m out of n (nCm). The case of 2 dimension as
mentioned above has one hash table because of n = 2 and m = 2. In the hash
table, a bucket is inserted into a list by computing a hash value from discretized
values on each eigenvector. The number of lists in each hash table is dm.

Figure 3 explains the case of n = 4 and m = 3. The number of generated hash
tables is 4. A product set by each bucket of m eigenvectors is stored in a list. A
data v is registered in x-th hash table by computing a hash value Hx:

Hx =
m−1∑
y=0

hcxy(v )dy (2)

where cxy represents the eigenvector number in Figure 4. One data is registerd
in nCm hash tables by computing each hash value.

Our method is merged with PCH and LSH. The discretized value hi(v ) comes
from PCH. L and k in LSH correspond to nCm and m of our method respectively.
Our main contribution is the way of making hash tables based on combination of
principal components. Therefore, we call our method Combination of Principal
Component Hashing (CPCH). In Section 5, the influence by the sizes of n, m
and d for searching results is evaluated.

3.2 Retrieval

In retrieval phase, the candidates of a query q are collected from hash tables
generated in Section 3.2. The nearest neighbor is selected from the candidates
by distance computation.

First, a query q is transformed into nCm hash values by using Eq.2. Data
in each list are collected by the hash values as candidates. Each data may be
counted several times because the date is stored in several lists. After candidates
are collected, the candidates are sorted depending on the counts. Since the best
count’s candidate is not always the nearest neighbor of a query, the distance
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Fig. 3. Generation of Hash Tables Fig. 4. Combination Patterns
(cxy in Eq.2)

computation is done against several candidates. We use top b % in the distance
computation as PCH used for reducing the number of candidates. The number
of candidates and the influence of b are discussed in Section 5.

Next, we explain the details of collecting the candidates in Figure 5. In t-
th list of s-th hash table, the new bucket B′

st generated by a product set of
several buckets Bij is stored. In our retrieval phase, the candidates of the nearest
neighbors of a query C (q) are collected by

C =
nCm−1⋃

s=0

B′
sHs

(3)

The equation represents that the candidates are collected from union of product
sets of buckets. On the other hand, the candidates are collected from union of
buckets in PCH.

After collection of the candidates, the distance computation between a query
and each candidate is done by

D =

√√√√ d∑
i=1

(xi − yi) (4)

where xi and yi are d-dimensional vector and D is a distance. Finally, the ap-
proximate nearest neighbor of a query is found.

Fig. 5. Collection of Candidates
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4 Photomosaic with Rotated Images

In previous Photomosaics, a tile corresponds to a pixel or a small square region.
Our method can treat a rotated square region as a tile. In a database, square
images are stored, which are collected from the Internet. Their size is transformed
into same size in Figure 6(a).

In Photomosaic processing, a square region represented in Figure 6(c) are
extracted at a target pixel as shown in Figure 6(b). Our method has several
templates including rotated regions for making rotated squares be a tile. By
preparing many templates, the range of the rotation is changeable. In addition,
many sizes of images can be tiled by preparing their templates.

In our method, selection of a tiled image at each pixel is done first. At each
pixel, the regions corresponding to each template are extracted. The similarities
between the regions and images in a database are computed for determining the
best matched template. After the similarity computation at each pixel finished,
the tiling starts from the least similarity image.

For the region extracted by each template in a reference image, the nearest
image is searched from a database by using CPCH described in Figure 3. In
Figure 6(c), the number of templates is 4 and 4 images are searched at each pixel.
For selecting one nearest image from 4 images, the similarities RSSD between
the regions of each template T and searched images I are computed from

RSSD =
∑

i

∑
j

∑
c

(T (i, j, c) − I(i, j, c))2 (5)

(a) Database (b) Processing on a Reference Image

(c) Templates (d) Photomosaic Result

Fig. 6. Tiling Overview
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where (i, j) is a pixel and c is color channel. As a result, best similarity image is
selected at each pixel.

This process is not performed in every pixel because many overlaps are oc-
curred. For reducing the overlaps, we empirically set the interval of target pixels
for this process. In case that the size of a square image in a database is M ×M
and the maximum degree of the rotation is θ, the interval is M × sin θ.

In the previous process, one best similarity’s image is selected from several
templates at each target pixel. The order of tiling images starts from the least
similarity’s image. This causes less possibilities of higher similarity’s image to
be overlapped by another image.

Usually, a Photomosaic image has higher resolution than the reference image
because the larger size of the square image in a database is tiled. The size of
Figure 6(d) is five times larger than that of Figure 6(b).

5 Experimental Results

All parts of our algorithm are implemented in C++ and following experiments
are carried out on Intel Core 2 Duo 2.2 GHz and 3GB RAM with Windows XP.

5.1 Perfomance Evaluation of CPCH

Our method has four parameters as n, m, d and b. We report the influence of
these parameters for the searching results.

Fig. 7. n vs rank and candidates Fig. 8. m vs rank and candidates

Fig. 9. d vs rank and candidates Fig. 10. b vs rank and candidates
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(a) Lenna (b) Mandrill

Fig. 11. Reference Images

Table 1. Averages of absolute dif-
ference

b g r
Fig.12(a) 27 35 35
Fig.13(a) 24 31 31
Fig.12(b) 34 35 34
Fig.13(b) 32 32 31

In a database, 10000 color images which size is 20 × 20 are stored. We handle
an image as a 1200 dimensional vector. 500 images which are not included in the
database are prepared as queries. In each query image, the distances with 10000
images are computed for making the rank order of the nearest as a ground truth
beforehand.

In this experiment, the nearest neighbor image of each query image is searched
from 10000 images by our method. For evaluating the accuracy of the searched
image, the rank of the image is drawn out from the pre-computed rank order.
If the rank is 0, the searched image is the nearest neighbor image. After the
searching is done for every query image, the average rank is computed (Rank
in Figure.7-10). In addition, the average number of candidates described in Sec-
tion 3.2 is evaluated (Candidates in Figure.7-10) because the number influence
computation time. The parameter in Figure.7-10 are as follows: m = 3, d = 10,
b = 100 (in Figure 7). n = 7, d = 7, b = 100 (in Figure 8). n = 7, m = 3, b = 100
(in Figure 9). n = 7, m = 3, d = 5 (in Figure 10).

Since the number of hash tables is nCm, the number of candidates increases
when n increases and m decreases in Figure 7 and 8. n, m should be determined

(a) Lenna (b) Mandrill

Fig. 12. Tiling without rotated images
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(a) Lenna

(b) Mandrill

Fig. 13. Tiling with rotated images
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by considering nCm for reducing the candidates. d influences the number of lists
and the number of elements in each list of a hash table. In Figure 9, the average
number of candidates is 284 and the average rank is 3.2 at d = 10. In this case,
the searched image can be the approximate nearest neighbor image because the
average rank is still 3. From this result, larger d may provide better approximate
nearest neighbor searching. In Figure 10, the average rank is still 2.5 even if the
top 20% candidates are used for the nearest neighbor searching. This represents
that neighbor images of a query get more counts. d can be small for reducing
the candidates.

By determining n, m, d and b appropriately, the candidates are reduced with
keeping the better searching results. The way of determining n, m, d and b
automatically will be a next research topic.

5.2 Tiling Results

We report comparisons between a method with rotated images and without
rotated images. 3500 square images in our database are collected by using Google
Image Search and their size is transformed into 10×10. Two images (200×200)
are prepared as shown in Figure 11. We set the parameters of CPCH as n = 10,
m = 3, d = 5 and b = 100.

In our tiling method, shapes of tiled images depend on prepared templates
as described in Section 4. Our method can be applied to the previous method
with no rotated image as shown in Figure 12. Figure 13 is generated by using 5
templates which rotation degrees are −30◦, −15◦, 0◦, 15◦, 30◦. When searched
images are tiled, their size is converted from 10 × 10 to 40 × 40 for making the
result be 800 × 800.

For comparing the result of two methods, average of absolute difference be-
tween a reference image and a generated image is computed. The size of the
generated images is converted into 200 × 200 to be matched with that of the
reference images. Table 1 represents that the result of rotated images provided
less average of absolute difference in each reference image. From this result, the
use of rotated images provides a better visual result.

6 Conclusions and Future Works

This paper presents Photomosaic method with rotated images and approximate
nearest neighbor searching method called combination of principal component
hashing. In our Photomosaic method, the templates for rotated images are pre-
pared. At each pixel, the best template is selected. The order of the tiling starts
from the least similarity images. The experimental results represent that Pho-
tomosaic with rotated images provides better visual result than that without
rotated images. In our nearest neighbor searching, a hashing by combination of
principal component is proposed. By clustering neighbors with a product set of
eigenvectors, various hash tables are generated. In our retrieval, the candidates
are collected from the hash tables. In the experimental results, the influence of
n, m, d and b for searching result is presented.
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In our tiling method, we didn’t consider salient area in a tiled image and the
area was sometimes overlapped by another image. For remaining the salient area
steadily, the salient area is extracted using visual attention model [15] and the
method for avoiding the overlap should be considered. In searching method, we
will discuss how to determine appropriate n, m, d and b automatically in the
next research topic. After that, comparison between CPCH and other nearest
neighbor searching method should be done on the same environment.
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