
J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 18–35, 2008. 

Combining Human Error Verification and Timing 
Analysis 

Rimvydas Rukšėnas1, Paul Curzon1, Ann Blandford2, and Jonathan Back2 

1 Department of Computer Science, Queen Mary, University of London 
{rimvydas,pc}@dcs.qmul.ac.uk 

2 University College London Interaction Centre 
{a.blandford,j.back}@ucl.ac.uk 

Abstract. Designs can often be unacceptable on performance grounds. In this 
work, we integrate a GOMS-like ability to predict execution times into the ge-
neric cognitive architecture developed for the formal verification of human  
error related correctness properties. As a result, formal verification and GOMS-
like timing analysis are combined within a unified framework. This allows one 
to judge whether a formally correct design is also acceptable on performance 
grounds, and vice versa. We illustrate our approach with an example based on a 
KLM style timing analysis. 
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1   Introduction 

The correctness of interactive systems depends on the behaviour of both human and 
computer actors. Human behaviour cannot be fully captured by a formal model. How-
ever, it is a reasonable, and useful, approximation to assume that humans behave “ra-
tionally”: entering interactions with goals and domain knowledge likely to help them 
achieve their goals. If problems are discovered resulting from rational behaviour then 
such problems are liable to be systematic and deserve attention in the design. Whole 
classes of persistent, systematic user errors may occur due to modelable cognitive 
causes [1, 2]. Often opportunities for making such errors can be reduced with good 
design [3]. A methodology for detecting designs that allow users, when behaving in a 
rational way, to make systematic errors will improve such systems. In the case of 
safety-critical interactive systems, it is crucial that some tasks are performed within 
the limits of specified time intervals. A design can be judged as incorrect, if it does 
not satisfy such requirements. Even for everyday systems and devices, the time and/or 
the number of steps taken to achieve a task goal can be an indication of the usability 
or otherwise of a particular design. 

We previously [4, 5] developed a generic formal user model from abstract cogni-
tive principles, such as entering an interaction with knowledge of the task and its 
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subsidiary goals, showing its utility for detecting some systematic user error. So far 
we have concentrated on the verification of functional correctness (user achieving a  
task goal) and usability properties (the absence of post-completion errors). Also, the 
cognitive architecture was recently used to verify some security properties – detecting 
confidentiality leaks due to cognitive causes [6]. However, none of this work ad-
dressed the timing aspects of user interaction. For example, a successful verification 
that a task goal is achieved only meant that it is eventually achieved at some unspeci-
fied point in the future. This is obviously insufficient, if the goal of verification is to 
give evidence that a system satisfies specific timing requirements. 

Timing analysis is one of the core concerns in the well-established GOMS meth-
odology [7]. A GOMS model predicts the trace of operators and task completion time. 
However, since GOMS models are deterministic, this prediction assumes and applies 
to a single, usually considered as expert or optimal, sequence of operators. Such as-
sumptions may be invalid for everyday interactive systems whose average users do 
not necessarily know or are trained to follow optimal procedures, or they simply 
might choose a less cognitively demanding method. Moreover, under pressure, even 
the operators (expert users) of safety-critical systems may choose sub-optimal and 
less likely plans of action. This suggests that a timing analysis of interactive systems 
should include a broader set of cognitively plausible behaviours. 

The main goal of this paper is to add into our verification methodology, based on a 
generic cognitive architecture, a GOMS-like ability to predict execution times.  For 
this, we intend to use timing data provided by HCI models such GOMS. It should be 
noted of course that such timings are only estimates so “proofs” based on such tim-
ings are not formal guarantees of a particular performance level. They are not proofs 
of any real use, just proofs that the GOMS execution times are values within a par-
ticular range. Provided that distinction is remembered they can still be of use. 

Using the SAL verification tools [8], we combine this ability to prove properties of 
GOMS timings with the verification of human error related correctness properties 
based on the traversal of all cognitively plausible behaviours as defined by our user 
model. This way, rather than considering a single GOMS “run,” a whole series of runs 
are analyzed together, automatically generating a range of timings depending on the 
path taken. Such a setting allows one to do error (correctness) analysis first and then, 
once an error free design is created, do a broad timing analysis within a single inte-
grated system. An advantage of doing so is that the GOMS timings can be used to ar-
gue that a systematically possible choice is “erroneous” on course performance 
grounds: the user model does achieve the goal but very inefficiently. If one potential 
method for achieving a goal was significantly slower, whilst the task completion 
would be proved, this might suggest design changes to either disable the possibility of 
choosing that method or change the design so that if it was taken then it would be eas-
ier to accomplish the goal. Similarly, a design chosen on performance grounds to 
eliminate a poor path might be rejected by our GOMS-like analysis due to its poten-
tial for systematic error discovered by the integrated human error analysis. 

Many GOMS models support an explicit hierarchy of goals and subgoals. Our pre-
vious cognitive architecture was “flat” allowing only atomic user goals and actions. 
This meant that any hierarchy in user behaviour (task or goal structures) could be  
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specified only implicitly. In this work, we take a step towards supporting hierarchical 
specifications of user goals. When needed (e.g., to capture an expert behaviour within 
a complex interactive system), these can be structured in an appropriate way. Note 
however that this extension to our cognitive architecture does not necessarily impose 
hierarchical goal structures on specific user models. To represent unstructured goals, 
one can simply choose a “flat” hierarchy, as is done in this paper. 

One indication of cognitively plausible behaviour is choosing options that are rele-
vant to the task goals when there are several alternatives available. Currently our cog-
nitive architecture is fully non-deterministic in the sense that any user goal or action 
that is possible according to the principles of cognition, and/or prompted by the inter-
face might be selected for execution. Here we introduce a facility for correlating, in 
such situations, user choices and task goals, thus ensuring that the user model ignores 
available but irrelevant alternatives. 

Summarising, the main goal and contribution of the work presented in this paper is 
the integration of user-centred timing analysis with formal verification approach orig-
inally developed for reasoning about human error. Our aim here is to demonstrate 
how this can be done and to indicate the potential of combining the approaches in this 
complementary way to analyse the behaviour of the interactive system in terms of 
timing and timing-related errors. More specifically: 

− It provides a way of creating GOMS-like cognitively plausible variations of meth-
ods of performing a task that emerge from a formal model of behaviour. 

− It provides a way of detecting methods that have potential for systematic human er-
ror occurring using the same initial GOMS-like specification. 

− The GOMS-like predictions of timings open the possibility of detecting some 
(though not all) classes of specific errors that could occur due to those timings, 
whilst still doing in parallel time-free error analysis based on the verification of 
various correctness properties. 

− It allows our concept of systematic error to be extended in an analysis to include 
“erroneous” choices in the sense of choosing an alternative that, whilst eventually 
achieving the result, is predicted to be slower than acceptable. 

− It introduces into our cognitive architecture a correlation between task goals and 
user choices thus refining the notion of cognitive plausibility captured by the for-
mal user model. 

1.1   Related Work 

There is a large body of work on the formal verification of interactive systems. Spe-
cific aims and focus vary. Here we concentrate on the work most directly linked to 
our work in this paper. 

Whilst GOMS assume error-free performance, this does not preclude them from 
being used in a limited way to analyse erroneous performance. As noted by John and 
Kieras [9], GOMS can be used for example to give performance predictions for error 
recovery times. To do this one simply specifies GOMS models for the task of recover-
ing from error rather than the original task, perhaps comparing predictions for differ-
ent recovery mechanisms or determining whether recovery can be achieved with  
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minimal effort. With these approaches the analysis does not identify the potential for 
human error: the specific errors considered must be decided in advance by the  
analyst. 

Beckert and Beuster [10] present a verification environment with a similar archi-
tecture to our user model – connecting a device specification, a user assumption mod-
ule and a user action module. They use CMN-GOMS as the user action module. The 
selection rules of the GOMS model are driven by the assumption model and the ac-
tions drive the device model. This gives a way of exploring the effect of errors made 
by the user (incorrect selection decisions as specified in the user assumption module). 
However, the assumption module has no specific structure, so the decision of what 
kind of errors could be made is not systematic or formalized but left to the designers 
of the system. This differs from our approach where we use a cognitive model com-
bined with aspects of a GOMS model. This allows us to reason about systematic error 
in a way that is based on formalised principles of cognition. They also have not spe-
cifically focused on predicting performance times using GOMS, but rather are using it 
as a formal hierarchical task model. 

Bowman and Faconti [11] formally specify a cognitive architecture using the proc-
ess calculus LOTOS, and then apply a temporal interval logic to analyse constraints, 
including timing ones, on the information flow and transformation between the differ-
ent cognitive subsystems. Their approach is more detailed than ours, which abstracts 
from those cognitive processes. 

In the area of safety-critical systems, Rushby et al [12] focus on mode errors and 
the ability of pilots to track mode changes. They formalize plausible mental models of 
systems and analyse them using the Murφ verification tool. The mental models 
though are essentially abstracted system models; they do not rely upon structure pro-
vided by cognitive principles. Neither do they attempt timing analysis. Also using 
Murφ, Fields [13] explicitly models observable manifestations of erroneous behav-
iour, analysing error patterns. A problem of this approach is the lack of discrimination 
between random and systematic errors. It also implicitly assumes there is a correct 
plan, from which deviations are errors. 

Temporal aspects of usability have also been investigated in work based on the 
task models of user behaviour [14, 15]. Fields et al [14] focus on the analysis of situa-
tions where there are deadlines for completing some actions and where the user may 
have to perform several simultaneous actions. Their approach is based on Hierarchical 
Task Analysis and uses the CSP formalism to specify both tasks and system con-
straints. Lazace et al [15] add quantitative temporal elements to the ICO formalism 
and use this extension for performance analysis. Both these approaches consider spe-
cific interaction scenarios which contrasts to our verification technique supporting the 
analysis of all cognitively plausible behaviours. The efficiency of interaction, albeit 
not in terms of timing, is also explored by Thimbleby [16]. Using Mathematica and 
probabilistic distributions of usage of menu functions, he analyses interface complex-
ity. The latter is measured as the number of actions needed to reach desired menu  
options. 
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2   HUM-GOMS Architecture 

Our cognitive architecture is a higher-order logic formalisation of abstract principles 
of cognition and specifies a form of cognitively plausible behaviour [17]. The archi-
tecture specifies possible user behaviour (traces of actions) that can be justified in 
terms of specific results from the cognitive sciences. Real users can act outside this 
behaviour of course, about which the architecture says nothing. However, behaviour 
defined by the architecture can be regarded as potentially systematic, and so errone-
ous behaviour is similarly systematic in the design. The predictive power of the archi-
tecture is bounded by the situations where people act according to the principles  
specified. The architecture allows one to investigate what happens if a person acts in 
such plausible ways. The behaviour defined is neither “correct” nor “incorrect.” It 
could be either depending on the environment and task in question. We do not attempt 
to model the underlying neural architecture nor the higher-level cognitive architecture 
such as information processing. Instead our model is an abstract specification, in-
tended for ease of reasoning. 

2.1   Cognitive Principles 

In the formal user model, we rely upon abstract cognitive principles that give a know-
ledge level description in the terms of Newell [18]. Their focus is on the internal goals 
and knowledge of a user. These principles are briefly discussed below. 

Non-determinism. In any situation, any one of several cognitively plausible behav-
iours might be taken. It cannot be assumed that any specific plausible behaviour will 
be the one that a person will follow where there are alternatives. 

Relevance. Presented with several options, a person chooses one that seems relevant 
to the task goals. For example, if the user goal is to get cash from an ATM, it would 
be cognitively implausible to choose the option allowing one to change a PIN. A per-
son could of course press the wrong button by accident. Such classes of error are be-
yond the scope of our approach, focussing as it does on systematic slips. 

Mental versus physical actions. There is a delay between the moment a person men-
tally commits to taking an action (either due to the internal goals or as a response to 
the interface prompts) and the moment when the corresponding physical action is tak-
en. To capture the consequences of this delay, each physical action modelled is asso-
ciated with an internal mental action that commits to taking it. Once a signal has been 
sent from the brain to the motor system to take an action, it cannot be revoked after a 
certain point even if the person becomes aware that it is wrong before the action is 
taken. To reflect this, we assume that a physical action immediately follows the com-
mitting action. 

Pre-determined goals. A user enters an interaction with knowledge of the task and, in 
particular, task dependent sub-goals that must be discharged. These sub-goals might 
concern information that must be communicated to the device or items (such as  
bank cards) that must be inserted into the device. Given the opportunity, people may 
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attempt to discharge such goals, even when the device is prompting for a different  
action. Such pre-determined goals represent a partial plan that has arisen from  
knowledge of the task in hand, independent of the environment in which that task is 
performed. No fixed order other than a goal hierarchy is assumed over how pre-
determined goals will be discharged. 

Reactive behaviour. Users may react to an external stimulus, doing the action sug-
gested by the stimulus. For example, if a flashing light comes on a user might, if the 
light is noticed, react by inserting coins in an adjacent slot. 

Goal based task completion. Users intermittently, but persistently, terminate interac-
tions as soon as their main goal has been achieved [3], even if subsidiary tasks gener-
ated in achieving the main goal have not been completed. A cash-point example is a 
person walking away with the cash but leaving the card. 

No-option based task termination. If there is no apparent action that a person can take 
that will help to complete the task then the person may terminate the interaction. For 
example, if, on a ticket machine, the user wishes to buy a weekly season ticket, but 
the options presented include nothing about season tickets, then the person might give 
up, assuming the goal is not achievable. 

2.2   Cognitive Architecture in SAL 

We have formalised the cognitive principles within the SAL environment [8]. It pro-
vides a higher-order specification language and tools for analysing state machines 
specified as parametrised modules and composed either synchronously or asynchro-
nously. The SAL notation we use here is given in Table 1. We also use the usual  
notation for the conjunction, disjunction and set membership operators. A slightly 
simplified version of the SAL specification of a transition relation that defines our 
user model is given in Fig. 1, where predicates in italic are shorthands explained later 
on. Below, whilst explaining this specification (SAL module User), we also discuss 
how it reflects our cognitive principles. 

Table 1. A fragment of the SAL language 

Notation Meaning 

x:T x has type T 
λ(x:T):e a function of x with the value e 
x’ = e an update: the new value of x is that of the expression e 
{x:T | p(x)} a subset of T such that the predicate p(x) holds 
a[i] the i-th element of the array a 
r.x the field x of the record r 
r WITH .x := e the record r with the field x replaced by the value of e 
g → upd if g is true then update according to upd 
c [] d non-deterministic choice between c and d 
[] (i:T): ci non-deterministic choice between the ci with i in range T 
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Guarded commands. SAL specifications are transition systems. Non-determinism is 
represented by the non-deterministic choice, [], between the named guarded com-
mands (i.e. transitions). For example, CommitAction in Fig. 1 is the name of a family 
of transitions indexed by g. Each guarded command in the specification describes an 
action that a user could plausibly take. The pairs CommitAction – PerformAction of 
the corresponding transitions reflect the connection between the physical and mental 
actions. The first of the pair models committing to a goal, the second actually taking 
the corresponding action (see below). 

Goals structure. The main concepts in our cognitive architecture are those of user 
goals and aims. A user aim is a predicate that partially specifies model states that the 
user intends to achieve by executing some goal. User goals are organised as a hierar-
chical (tree like) goal–subgoals structure. The nodes of this tree are either compound 
or atomic: 

Atomic. Goals at the bottom of the structure (tree leaves) are atomic: they consist of 
(map to) an action, for example, a device action. 

Compound. All other goals are compound: they are modelled as a set of task subgoals. 

In this paper, we consider an essentially flat goal structure with the top goal consisting 
of atomic subgoals only. We will explore the potential for using hierarchical goal 
structures in subsequent work. 

In SAL, user goals and aims are modelled as arrays, respectively, Goals and 
Aims, which are parameters of the User module. Each element in Goals is a record 
with the following fields: 

Guard. A predicate, denoted grd, that specifies when the goal is enabled, for exam-
ple, due to the relevant device prompts. 

Choice. A predicate (choice strategy), denoted choice, that models a high-level or-
dering of goals by specifying when a goal can be chosen. An example of the 
choice strategy is: “choose only if this goal has not been chosen before.” 

Aims. A set of records consisting of two fields, denoted aims, that essentially mod-
els the principle of relevance. The first one, state, is a reference to an aim 
(predicate) in the array Aims. The conjunction of all the predicates referred to in 
the set aims, defined by the predicate Achieved(g) for a goal g, fully specifies 
the model states the user intends to achieve by executing this goal. For the top 
goal, denoted TopGoal, this conjunction coincides with the main task goal. The 
second field, ignore, specifies a set of goals that are irrelevant to the aim speci-
fied by the corresponding field state. Note that the same effect could be 
achieved by providing a set of “promising” actions. However, since in our ap-
proach the relevance of a goal is generally interpreted in a very wide sense, we ex-
pect that the “ignore” set will be a more concise way of specifying the same thing. 

Subgoals. A data structure, denoted subgoals, that specifies the subgoals of the 
goal. It takes the form comp(gls) when the goal consists of a set of subgoals 
gls. If the goal is atomic, its subgoals are represented by a reference, denoted 
atom(act) to an action in the array Actions (see below). 
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TRANSITION 

 [](g:GoalRange,p:AimRange): CommitAction: 
NOT(comm) ∧ 
finished = notf ∧ 
atom?(Goals[g].subgoals) ∧
Goals[g].grd(in,mem,env) ∧
Goals[g].choice(status,g) ∧
(g ≠ ExitGoal ∧ Relevant(g,p) 
  ∨ 
  g = ExitGoal ∧ MayExit) 

→

commit'[act(Goals[g].subgoals)] 
  = committed; 
t' = t + CogOverhead; 
status' = status 
 WITH .trace[g] := TRUE 
 WITH .length := status.length + 1 

 
[]  
 [](a:ActionRange): PerformAction: 

commit[a] = committed → 
commit'[a] = ready; 
Transition(a)  

[]  
 ExitTask: 

Achieved(TopGoal)(in,mem) ∧ 
NOT(comm) ∧ 
finished = notf 

→ finished' = ok 

 
[]  
 Abort: 

NOT(EnabledRelevant(in,mem,env)) ∧
NOT(Achieved(TopGoal)(in,mem)) ∧ 
NOT(comm) ∧ 
finished = notf 

→ 

finished' = 
  IF Wait(in,mem) 
  THEN notf 
  ELSE abort ENDIF 

 
[]  
 Idle: 

finished = notf →   

Fig. 1. User model in SAL (simplified) 

Goal execution. To see how the execution of an atomic goal is modelled in SAL con-
sider the guarded command PerformAction for doing a user action that has been pre-
viously committed to: 

commit[a] = committed → 
commit’[a] = ready; 
Transition(a) 

The left-hand side of → is the guard of this command. It says that the rule will on-
ly activate if the associated action has already been committed to, as indicated by the 
element a of the local variable array commit holding value committed. If the rule 
is then non-deterministically chosen to fire, this value is changed to ready to indi-
cate there are now no commitments to physical actions outstanding and the user 
model can select another goal. Finally, Transition(a) represents the state updates as-
sociated with this particular action a. 

The state space of the user model consists of three parts: input variable in, output 
variable out, and global variable (memory) mem; the environment is modelled by a 
global variable, env. All of these are specified using type variables and are instanti-
ated for each concrete interactive system. The state updates associated with an atomic 
goal are specified as an action. The latter is modelled as a record with the fields 
tout, tmem, tenv and time; the array Actions is a collection of all user actions. 
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The time field gives the time value associated with this action (see Section 2.3). The 
remaining fields are relations from old to new states that describe how two compo-
nents of the user model state (outputs out and memory mem) and environment env 
are updated by executing this action. These relations, provided when the generic user 
model is instantiated, are used to specify Transition(a) as follows: 

t' = t + Actions[a].time; 
out’ ∈ {x:Out | Actions[a].tout(in,out,mem)(x)}; 
mem’ ∈ {x:Memory | Actions[a].tmem(in,mem,out’)(x)}; 
env’ ∈ {x:Env | Actions[a].tenv(in,mem,env)(x) ∧ possessions} 

Since we are modelling the cognitive aspects of user actions, all three state updates 
depend on the initial values of inputs (perceptions) and memory. In addition, each up-
date depends on the old value of the component updated. The memory update also 
depends on the new value (out’) of the outputs, since we usually assume the user 
remembers the actions just taken. The update of env must also satisfy a generic rela-
tion, possessions. It specifies universal physical constraints on possessions and their 
value, linking the events of taking and giving up a possession item with the corre-
sponding increase or decrease in the number (counter) of items possessed. For exam-
ple, it specifies that if an item is not given up then the user still has it. The counters of 
possession items are modelled as environment components. 

PerformAction is enabled by executing the guarded command for selecting an 
atomic goal, CommitAction, which switches the commit flag for some action a to 
committed thus committing to this action (enabling PerformAction). The fact that a 
goal g is atomic is denoted atom?(Goals[g].subgoals). An atomic goal g 
may be selected only when its guard is enabled and the choice strategy for g is true. 
For the reactive actions (goals), their choice strategy is a predicate that is always true. 
In the case of pre-determined goals, we will frequently use the strategy “choose only 
if this goal has not been chosen before.” When the user model discharges such a goal, 
it will not do the related action again without an additional reason such as a device 
prompt. 

The last conjunct in the guard of CommitAction distinguishes the cases when the 
selected goal is ExitGoal or not. ExitGoal (given as a parameter of the User 
module) represents such options as “cancel” or “exit,” available in some form in most 
of interactive systems. Thus, a goal g that is not ExitGoal may be selected only if 
there exists a relevant aim p in the set Goals[g].aims, denoted Relevant(g,p). 
We omit here the formal definition of the relevance condition. On the other hand, if g 
is ExitGoal then it can be selected only when either the task goal has been achieved 
(user does not intend to finish interaction before achieving main goal), or there are no 
enabled relevant goals (the user will try relevant options if such are available). Again, 
we omit the formal definition of these conditions here just denoting them MayExit. 

When an atomic goal g is selected, the user model commits to the corresponding 
action act(Goals[g].subgoals). The time variable t is increased by the value 
associated with “cognitive overhead” (see Section 2.3). The record status keeps 
track of a history of selected goals. Thus, the element g of the array status.trace 
is set to true to indicate that the goal g has been selected, and the counter of selected 
goals, status.length, is increased. In addition to time-based analysis, this coun-
ter provides another way of analysing the behaviour of the user model. 
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Task completion. There are essentially two cases when the user model terminates an 
interaction: (i) goal based completion when the user terminates upon achieving the 
task goal, and (ii) no-option based termination when the user terminates since there 
are no enabled relevant goals to continue. Goal based completion (finished is set 
to ok) is achieved by simply “going away” from the interactive device (see the Exit-
Task command). No-option based termination (finished is set to abort) models 
random user behaviour (see the Abort command). 

The guarded command ExitTask states that the user may complete the interaction 
once the predicate Achieved(TopGoal) becomes true and there are no commit-
ments to actions. This action may still not be taken because the choice between en-
abled guarded commands is non-deterministic. The value of finished being notf 
means that the execution of the task continues. 

In the guarded command Abort, the no-option condition is expressed as the nega-
tion of the predicate EnabledRelevant. Note that, in such a case, a possible ac-
tion that a person could take is to wait. However, they will only do so given some 
cognitively plausible reason such as a displayed “please wait” message. The waiting 
conditions are represented in the specification by predicate parameter Wait. If Wait 
is false, finished is set to abort to model a user giving up and terminating the 
task. 

2.3   Timing Aspects 

Following GOMS models, we extend our cognitive architecture with timing informa-
tion concerning user actions. On an abstract level, three GOMS models, KLM, CMN-
GOMS and NGOMSL, are similar in their treatment of execution time [7]. The main 
difference is that NGOMSL adds, for each user action, a fixed “cognitive overhead” 
associated with the production-rule cycling. In our model, this corresponds to the goal 
selection commands (CommitAction). Hence, the time variable is increased by the 
value CogOverhead which is a parameter of our user model. For KLM or CMN-
GOMS-like analysis, this parameter can be set to 0. In this case, the time variable is 
increased (PerformAction command) only by the value associated with the actual exe-
cution of action and specified as Actions[a].time. All three GOMS models dif-
fer in the way they distribute “mental time” among user actions, but this need only be 
considered when our cognitive architecture is instantiated to concrete user models. In 
general, any of the three approaches (or even their combination) can be chosen at this 
point. In this paper, we will give an example of KLM like timing analysis. 

3   An Example 

To illustrate how the extended cognitive architecture could be used for the analysis of 
execution time, we consider interaction with a cash machine. 

3.1   Cash Machine 

For simplicity of presentation, we assume a simple design of cash machine. After in-
serting a bank card, its user can select one of the two options: withdraw cash or  
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Fig. 2. A specification of the cash machine 

checkz balance (see Fig. 2). If the balance option is selected, the machine releases the 
card and, once the card has been removed and after some delay, prints a receipt with 
the balance information. If the withdraw option is selected, the user can select the de-
sired amount. Again, after some delay, the machine releases the card and, once it has 
been removed, provides cash. Note that users are allowed to cancel an interaction with 
our machine before entering the PIN, and selecting the withdraw option, balance op-
tion, or amount, i.e., while the machine is in the CARD, PIN, or WITHDRAW state. If 
they choose to do so, their card is released. 

3.2   User Model 

Next, we instantiate our cognitive architecture to model cash machine users. 

User aims. We assume there are two aims, denoted CashAim and BalanceAim, 
which might compel a person to use this cash machine. These predicates provide val-
ues for the array Aims. As an example, the predicate BalanceAim is as follows: 

λ(in,mem,env): env.Receipts ≥ 1 ∨ mem.BalanceRead 

It states that the balance is checked when either the user has at least one receipt (these 
are modelled as possession items), or they read the balance on the display and have 
recorded this fact in their memory. 

User goals. Taking account of the aims specified, we assume that the machine users, 
based on the previous experience, have the following pre-determined goals: Insert-
CardGoal, SelectBalanceGoal, SelectWithdrawGoal, and SelectA-
mountGoal. As an example, SelectBalanceGoal is the following record (the 
others are similar): 
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grd := λ(in,mem,env): in.OptionBalance 
choice := NotYetDischarged 
aims := {} 
subgoals := atom(SelectBalance) 

Thus, this goal may be selected only when a balance option is provided by the in-
terface. The choice strategy NotYetDischarged is a pre-defined predicate that al-
lows one to choose a goal only when it has not been chosen before. Since this is an 
atomic goal, the set aims is empty, whereas its subgoal is the actual action (an opera-
tor in GOMS terms) of selecting the balance option (see below). 

In response to machine signals, the user may form the following reactive goals:  
EnterPinGoal, TakeReceiptGoal, ReadBalanceGoal, RemoveCardGoal, 
TakeCashGoal, and SelectExitGoal. Their definitions are similar to those of the 
pre-determined goals, except that, in this case, the choice strategy always permits their 
selection. 

User actions. To fulfil these goals, users will perform an action referred to in the cor-
responding goal definition. Thus, we have to specify an action for each of the above 
user goals. As an example, the output update tout of the SelectBalance action 
is the following relation: 

λ(in,out0,mem):λ(out): out = Def WITH .BalanceSelected:=TRUE 

where Def is a record with all its fields set to false thus asserting that nothing else is 
done. The memory and environment updates are simply default relations. Finally, the 
timing of this action (field time) is discussed below. 

Task goals. So far we have introduced all the basic goals and actions of a cash ma-
chine user. Now we explain how tasks that can be performed with this cash machine 
are specified as a suitable TopGoal. Here we consider essentially flat goal structures, 
thus a top goal directly includes all the atomic goals as its subgoals. For the task 
“check balance and withdraw cash,” TopGoal is specified as the following record: 

grd := True 
choice := NotYetDischarged 
aims := {(# state := CashAim, 
           ignore := {SelectBalanceGoal,ReadBalanceGoal} #), 
         (# state := BalanceAim, 
            ignore := {SelectAmountGoal} #)} 
subgoals := comp({InsertCardGoal,EnterPinGoal,...}) 

The interesting part of this specification is the attribute aims. It specifies that, 
while performing this task, the user model will have two aims (partial goals) defined 
by the predicates CashAim and BalanceAim. Furthermore, when the aim is to 
check the balance, the user model will ignore the options for selecting the amount as 
irrelevant to this aim (similarly the balance option and reading balance will be ignored 
when the aim is to withdraw cash). Of course, this is not the only task that can be per-
formed with this machine. A simpler task, “check balance” (or “withdraw cash”) 
alone, is also possible. For such a task, the specification of TopGoal is the same as 
above, except that the set aims now only includes the first (or second) record. 
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Note that in this way we have developed an essentially generic user model for our 
cash machine. Three (or more) different tasks can be specified just by providing ap-
propriate attributes (parameters) aims. 

3.3   KLM Timing 

In this paper, we use KLM timings to illustrate our approach. For the cash machine 
example, we consider three types of the original KLM operators: K to press a key or 
button, H to home hands on the keyboard, and M to mentally prepare for an action or 
a series of closely related primitive actions. The duration associated with these types 
of operators is denoted, respectively, by the constants K, H and M. The duration values 
we use are taken from Hudson et al [19]. These can be easily altered, if research sug-
gests more accurate times as they are just constants defined in the model. 

Since our user model is more abstract, the user actions are actually sequences of 
the K and H operators, preceded by the M operator. As a consequence, the timing of 
actions is an appropriate accumulation of K, H and M operators. For example, In-
sertCard involves moving a hand (H operator) and inserting a card (we consider 
this as a K operator), preceded by mental preparation (M operator). The time attribute 
for this action is thus specified as M+H+K. We also use the same timing for the actions 
RemoveCard, TakeReceipt and TakeCash. On the other hand, SelectBal-
ance involves only pressing a button, since the hand is already on the keyboard. 
Thus its timing is M+K (similarly for SelectWithdraw, SelectAmount and 
SelectExit). EnterPin involves pressing a key four times (four digits of PIN), 
thus its timing is M+H+4*K. Finally, ReadBalance is a purely mental action, giv-
ing the timing M. 

In addition to the operators discussed, original KLM also includes an operator, R, 
to represent the system response time during which the user has to wait. Since an ex-
plicit device specification is included into our verification approach, there is no need 
to introduce into the user model time values corresponding to the duration of R. Sys-
tem delays are explicitly specified as a part of a device model. For example, in our 
ATM specification, we assumed that system delays occur after a user selects the de-
sired amount of cash and before the device prints a receipt (the WAIT state in Fig. 2). 

4   Verification and Timing Analysis 

So far we have formally developed both a machine specification and a (parametric) 
model of its user. Our approach also requires two additional models: those of user in-
terpretation of interface signals and effect of user actions on the machine (see [5]), 
connecting the state spaces of the user model and the machine specification. In this 
example, these connectors are trivial – they simply rename appropriate variables. Fi-
nally, the environment specification simply initialises variables that define user pos-
sessions as well as the time variable. Thus, the whole system to analyse is the parallel 
composition of these five SAL modules. Next we discuss what properties of this sys-
tem can be verified and analysed, and show how this is done. First we consider the 
verification of correctness properties. 
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4.1   Error Analysis 

In our previous work [4, 5], we mainly dealt with two kinds of correctness properties. 
The first one (functional correctness) aimed to ensure that, in any possible system be-
haviour, the user's main goal of interaction (as they perceive it) is eventually 
achieved. Given our model's state space, this is written in SAL as the following LTL 
assertion: 

F(Perceived(in,mem)) (1) 

Here F means “eventually,” and Perceived is the conjunction of all the predicates 
from the set Goals[TopGoal].aims as explained earlier. 

The second property aimed to catch post-completion errors – a situation when sub-
sidiary tasks are left unfinished once the main task goal has been achieved. In SAL, 
this condition is written as follows: 

G(Perceived(in,mem) ⇒ F(Secondary(in,mem,env))) (2) 

Here G means “always,” and Secondary represents the subsidiary tasks. In our ex-
ample, Secondary is a predicate stating that the total value of user possessions (ac-
count balance plus withdrawn cash) in a state is no less than that in the initial state. 

Both these properties can be verified by SAL model checkers. With the cash ma-
chine design from Fig. 2, the verification of both succeeds for each of the three tasks 
we specified. Note, however, that both properties only guarantee that the main and 
subsidiary tasks are eventually finished at some unspecified point in the future. In 
many situations, especially in the case of various critical systems, designs can be 
judged as “incorrect” on the grounds of poor performance. Next we show how effi-
ciency analysis is supported by our approach by considering execution times. 

4.2   Timing Analysis 

Model checkers give binary results – a property is either true or false. Because of this, 
they are not naturally suited for a detailed GOMS-like analysis of execution times. 
Still, if one is content with timing analysis that produces upper and/or lower limits, 
model checking is a good option. For example, if it suffices to know that both the 
main and the subsidiary tasks are finished between times Tlow and Thigh, one can verify 
the condition 

G(Perceived(in,mem) ⇒ 

   F(Secondary(in,mem,env) ∧ Tlow < time ∧ time < Thigh)) 
(3) 

The validity of both (1) and (3) predicts that Thigh is an upper limit for the user model, 
and thus for any person behaving according to the cognitive principles specified, to 
properly finish a task. If expert knowledge is needed for such performance, SAL 
would produce a counter-example (a specific sequence of actions and intermediate 
states) for property (3). This can be used to determine design features requiring expert 
knowledge. 

As an example, consider the task “check balance and withdraw cash.” Let the thre-
shold for slow execution times be 17 seconds (i.e. 17 000 milliseconds). The verifica-
tion of property (3) with Thigh equal to 17000 fails. The counter-example shows that 
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the execution time is slow since the user model goes through the whole interaction 
cycle (inserting a card, entering a PIN, etc.) twice. A design allowing the task to be 
performed in a single cycle would improve the execution times. In the next section, 
we consider such a design. 

By verifying property (3) for different Thigh and Tlow values, the estimates of the 
upper and lower time limits for a task execution can be determined. However, execu-
tion times given by counter-examples provide no clue as to how likely they are, in 
other words, whether there are many methods of task execution yielding these particu-
lar times. Neither do they give the duration of other execution methods. To gather 
precise timing information for possible execution methods, we use an interactive tool 
provided by the SAL environment, a simulator. It is possible to instruct the latter to 
run an interactive system so that the system states defined by some predicate (for ex-
ample, Perceived) are reached. In general, different system states are reached by 
different execution methods. Thus, one can determine the precise timing of a particu-
lar method simply by checking the variable time in the corresponding state. A more 
sophisticated analysis and comparison of timing information can be automated, since 
the SAL simulator is a Lisp-like environment that allows programming functions for 
suitable filtering of required information. We will explore this in future work. 

5   Modified Design 

An obvious “improvement” on the previous design is to free users from an early se-
lection of a task. Instead, while in the WITHDRAW state, the machine now displays the 
balance in addition to the amount choices (see Fig. 3). The user can read it and then 
choose an amount option as needed, thus achieving both task goals in one run. To 
check whether our expectations are valid, we run the simulator to reach system states 
where both predicates Perceived and Secondary are true. Checking execution 
time in these states indicates an improvement. To find out whether execution times 
improved for all possible paths reaching the above goal states, we model check prop-
erty (3) for the same Thigh. However, this verification fails again. SAL produces a 
counter-example where the user model chooses an amount option without first read-
ing the displayed balance and, to achieve both aims, is forced to restart interaction.  

 

Fig. 3. A specification of the modified design 
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Furthermore, while the new design is potentially more efficient, it can also lead to 
systematic user errors, as indicated by a failed verification of property (2). The SAL 
counter-example shows that the user model, after reading the displayed balance, 
chooses the exit option, thus forgetting the card. This failure illustrates the close in-
terdependence between correctness and timing properties and the usefulness of our 
combined approach to the analysis of interactive systems. 

In a traditional GOMS analysis this new design is apparently fine as expert non-
erroneous behaviour is assumed. However the HUM-GOMS analysis highlights two 
potentially systematic problems: an attention error and a post-completion error. The 
expert assumption is thus in a sense required here. Whilst it might be argued that an 
expert who has chosen that method for obtaining balance and cash would not make 
the mistake of failing to notice the balance when it was displayed, experimental data 
suggests that even experts find it hard to eliminate post-completion error in similar 
situations. Amongst non-expert users both errors are liable to be systematic. The 
HUM-GOMS analysis has thus identified two design flaws that if fixed would be sig-
nificant improvements on the design. 

A simple fix for both detected flaws is a cash machine similar to our second de-
sign, but which, instead of displaying the balance, prints this information and releases 
the receipt in the same slot and at the same time as the banknotes. 

6   Conclusion 

We have added support for timing analysis into our usability verification approach 
based on the analysis of correctness properties. This allows both timing analysis and 
human error analysis to be performed in a single verification environment from a sin-
gle set of specifications. For this, our cognitive architecture was extended with timing 
information, as in GOMS models. Our approach uses the existing SAL tools, both the 
automatic model checkers and the interactive simulator environment, to explore the 
efficiency of an interactive system based on the models provided. As in our earlier 
work the cognitive architecture is generic: principles of cognition are specified once 
and instantiated for a particular design under consideration. This differs from other 
approaches where a tailored user model has to be created from scratch for each device 
to be analysed. The generic nature of our architecture is naturally represented using 
higher-order formalisms. SAL's support for higher-order specifications is the primary 
reason for developing our verification approach within the SAL environment. 

The example we presented aimed to illustrate how our approach can be used for a 
KLM style prediction of execution times (our SAL specifications are available at 
http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/dsvis07.zip). A difference in our 
approach is that, if the goal is achieved, the user model may terminate early. Also, if 
several rules are enabled, the choice between them is non-deterministic. The actual 
execution time is then potentially a range, depending on the order – there is a maxi-
mum and a minimum prediction. These are not real max/min in the sense of saying 
this is the longest or shortest time it will take, however, just a range of GOMS-like 
predictions for the different possible paths. In effect, it corresponds to a series of 
KLM analyses using different procedural rules, but incorporated in HUM-GOMS into 
a single automated analysis. 
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Similarly as CCT models [20] and unlike pure GOMS, we have an explicit device 
specification that has its own timings for each machine response. It is likely that most 
are essentially instantaneous (below the millisecond timing level) and so approxi-
mated to zero time. However, where there are explicit R operators in KLM, the corre-
sponding times can be assigned to the device specification. 

Even though we illustrated our approach by doing a KLM style analysis, our exten-
sion of the cognitive architecture is also capable of supporting CMN-GOMS and 
NGOMSL approaches to timing predictions. We intend to explore this topic in future 
work, developing at the same time a hierarchical goal structure. 

Another topic of further investigation is timing-related usability errors. We have al-
ready demonstrated the capability of our approach to detect potential user errors  
resulting from the device delays or indirect interface changes without any sort of feed-
back [4]. The presented extension opens a way to deal with real-time issues (e.g., 
when system time-outs are too short, or system delays are too long). We also intend to 
investigate “race condition” errors when two closely fired intentions to action come 
out in the wrong order [21]. We expect that the inherent non-determinism of our cog-
nitive architecture can generate such erroneous behaviour in appropriate circum-
stances. Finally, since tool support allows experimentation be done more easily, we 
believe that our approach can address the scale-up issue and facilitate the analysis of 
trade-offs between the efficiency of multiple tasks. 
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Questions 

Helmut Stiegler: 
Question: From where is your human-error model derived which you consider in 
your specification? Usually, one comes across error processes only during practical 
use. 

Answer: We are not interested in all kinds of errors, but in errors which are systematic 
due to design decisions and can be eliminated by modifying them. 
  
Paula Kotzé: 
Question: Can you define the term “cognitive overload” which you defined but set to 
a value of zero? 

Answer: None recorded. 
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