
Implementation and Evaluation of a Protocol for

Recording Process Documentation in the
Presence of Failures

Zheng Chen and Luc Moreau

School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, UK

{zc05r,L.Moreau}@ecs.soton.ac.uk

Abstract. The provenance of a particular data item is the process that
led to that piece of data. Previous work has enabled the creation of
detailed representation of past executions for determining provenance,
termed process documentation. However, current solutions to recording
process documentation assume a failure free environment. Failures result
in process documentation not being recorded, thereby causing the loss of
evidence that a process occurred. We have designed F-PReP, a protocol
to guarantee the recording of process documentation in the presence
of failures. This paper discusses its implementation and evaluates its
performance. The result reveals that it introduces acceptable overhead.

1 Introduction

The provenance of a data product refers to the process that led to that data prod-
uct [6]. Previous work [6] has enabled a computer-based representation of a past
process for determining provenance, i.e., process documentation. A dedicated
repository, provenance store, is used to persistently maintain process documen-
tation. For scalability reasons, process documentation may end up distributed in
multiple stores, linked by pointers. Using the pointer chain, distributed process
documentation can be retrieved from one store to another.

A generic recording protocol, PReP [6], has been developed to record process
documentation in Grids. It has been used in many applications, e.g., aerospace
engineering [8], fault tolerance in distributed systems [15], and biodiversity [14].
Grids are large-scale heterogeneous environments, where failures may happen.
Failure rates as high as 30% have been reported [13]. In this context, reliable
recording of process documentation can become very challenging, given that the
documentation produced in a process can be of the order of terabytes [5].

PReP, however, does not specify a well-defined behavior to record process
documentation in the presence of failures. For example, a provenance store may
not be available and network connection may be broken. The consequences are
that documentation fails to be recorded in provenance stores and the pointer
chain is broken, separating distributed documentation into isolated islands in
provenance stores. A scientific application, to be described in this paper, used

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 92–105, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementation and Evaluation of a Protocol 93

PReP to record process documentation in the presence of simulated failures.
By analyzing the contents of provenance stores after the application completes,
we find that the quality of documentation recorded using PReP is poor, as
demonstrated in Fig. 1 and Fig. 2. In Fig. 1, as failure rate increases, a large
proportion of process documentation fails to be recorded. Fig. 2 reveals the
increase in the number of dangling links, i.e., pointers to other provenance stores
that were supposed to record part of process documentation but did not, and in
the number of isolated documentation islands.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50S
uc

ce
ss

fu
lly

 R
ec

or
de

d
D

oc
um

en
ta

tio
n

(%
)

Failure Rate (%)

Using PReP

Fig. 1. Loss of documentation records in
provenance stores

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

N
um

be
r

of
 E

nt
iti

es

Failure Rate (%)

Dangling Links
Isolated Documentation Islands

Fig. 2. Dangling links and isolated islands
in provenance stores

Process documentation of poor quality cannot be utilized by applications. We
now draw a parallel between the documentation of a process and a particular
type of evidence in a legal setting, testimony. The absence of testimony from
eyewitnesses to a crime scene makes it difficult for juries to make a judgment
about whether to believe the claims provided by a suspect. Similarly, poor quality
process documentation is not acceptable in the applications that rely on process
documentation to verify the provenance of their data products, as key evidence
that a process occurred may have been lost.

To guarantee the recording of high quality, i.e., complete and connected, pro-
cess documentation in Grids where failures may occur, we have extended PReP
and designed a recording protocol, F-PReP. F-PReP provides remedial actions
and a novel component, Update Coordinator. It has been formalized as an ab-
stract state machine and its correctness has been proved in [4].

The contribution of this paper is the extensive evaluation of this novel proto-
col. Our evaluation is conducted at several levels. First, we measure the through-
put of the provenance store and update coordinator. We demonstrate that the
update coordinator is not a performance bottleneck. Second, we benchmark the
recording performance of F-PReP. The results show that its remedial actions
introduce small overhead (below 10%). Third, we investigate the performance
impact on the execution time of a scientific application. We find that PReP and
F-PReP have similar impact on application execution when there is no failure.
In tests with failures, the recording overhead of F-PReP varies depending on
configurations. Lessons are learned on achieving good performance in the case

94 Z. Chen and L. Moreau

of failures. Our results also show that the problems in Fig. 1 and Fig. 2 do not
exist when using F-PReP to record process documentation.

2 Protocol Outline

2.1 Terminology

A process is modeled as a set of interactions between actors [6]. Each interaction
is concerned with one application message exchanged between two actors, i.e.,
the sender and the receiver. An actor documents an interaction by making p-
assertions. A kind of p-assertion, relationship p-assertion, is used to capture the
internal causal connections between interactions within the scope of an actor,
i.e., the interaction where an output message is sent (effect interaction) and the
interaction where an input message is received (cause interaction). There can be
multiple cause interactions related to one relationship p-assertion.

For scalability reason, an actor can use various stores to record p-assertions
about different interactions. A notion of link, i.e., a pointer to a provenance
store, has been introduced to connect distributed documentation [6].

There are two types of links: viewlink and causelink. If the two actors in an
interaction use two different stores, each actor records a viewlink that points to
the provenance store where the opposite party recorded its p-assertions about
that interaction. Therefore, both views of an interaction can be retrieved by
navigating from one store to the other. The causelink is used in relationship
p-assertion. If the p-assertions that represent a cause interaction are recorded
in a different provenance stores, a causelink is embedded in the relationship p-
assertion, indicating which provenance store the p-assertions representing the
cause interaction are stored in. A relationship p-assertion is recorded in the
context of its effect interaction, describing the causes that led to the effect.

2.2 Failure Assumptions

Provenance stores may crash, i.e., they halt and stop any further execution, and
can be restarted from their latest consistent state1; messages to/from provenance
stores can be lost, reordered but not duplicated in communication channels;
an actor has several alternative provenance stores to use. We do not consider
the failures of actors and the exchange of application messages, since they are
application dependant and the application should provide its own fault tolerance
mechanisms to ensure its availability and reliable communication.

2.3 Protocol Outline

F-PReP[4] has been designed to meet the following requirements:

– Guaranteed Recording. After a process finishes execution, the entire documen-
tation of that process must eventually be recorded in provenance store(s).

1 The provenance store has been implemented as a stateless web service with a
database storage system. Hence the latest consistent state refers to the initial state
of the service and the latest checkpointed state of the database.

Implementation and Evaluation of a Protocol 95

– Viewlink Accuracy. Viewlinks recorded for each interaction of a process must
eventually be accurate. Each must point to the store where the other actor
in the same interaction recorded p-assertions documenting that interaction.

– Causelink Accuracy. Causelinks recorded during a process must eventually
be accurate. Each must point to the store where p-assertions about the
corresponding cause interaction were recorded.

– Efficient Recording. Recording p-assertions and taking remedial actions
should be efficient and introduce minimum overhead.

Fig. 3 demonstrates an example of message exchanges in F-PReP. The default
provenance stores that the sender and receiver use are PS1 and PS2, respec-
tively. The sender and receiver create p-assertions documenting the interaction
where an application message app is exchanged (Step 1). Asynchronously, they
submit all their p-assertions about the interaction and a viewlink2 in a single
message, record, to their provenance store. Before delivering a record message,
an actor checks all the relationship p-assertions in the message and updates
incorrect causelinks in order to meet Causelink Accuracy requirement.

���������

������

���		

�����	�
�

���������

	���	����

��
��
���������

��������
��������

��� ���� ���

��
���
����
������

������

�������

 ��������

Fig. 3. An example of message exchanges in F-PReP

An actor sets a timeout when waiting for an acknowledgement ack immedi-
ately after it sends a record to a provenance store (Steps 2, 8). A provenance store
acknowledges a record by means of an ack message, only after it has successfully
recorded the content of record in its persistent storage. If an ack is not received
before a timeout, an actor can conclude that failures may have occurred; it can
then resend the same record to the actor’s default store or an alternative store
(Step 3). However, the use of an alternative store leads to incorrect causelinks
or viewlinks, hence requiring an update. In the example of Fig. 3, the receiver’s
viewlink to PS1 becomes incorrect.

We introduced an update coordinator to facilitate viewlink updating. An up-
date coordinator is necessary since both sender and receiver may issue a repair

2 We assume the sender and receiver know their viewlink to PS2 and PS1, respec-
tively, by means of built-in knowledge.

96 Z. Chen and L. Moreau

request in an interaction. This cannot be achieved by direct update of the other
actor’s provenance store, because at that moment, one does not know which
store the opposite actor is actually using. In Fig. 3, the sender requests the co-
ordinator (Step 5) to help update the receiver’s viewlink in PS2 (Step 6). After
updating a viewlink, PS2 returns an acknowledgement message uack (Step 7).

We assume the update coordinator does not crash. We can use the traditional
fault-tolerance mechanisms such as replication to ensure its availability. This is
feasible since a coordinator maintains only a small amount of information, as
illustrated later. However, it is not feasible to replicate provenance stores which
usually maintain a large amount of process documentation. Because replication,
although sophisticated, comes with a significant cost due to the preservation of
the one-copy equivalence property [11].

3 Implementation

The implementation of F-PReP involves three parts: Provenance Support Li-
brary (F-PSL), Provenance Store (PS), and Update Coordinator.

F-PSL includes a set of Application Programming Interfaces to create and
record p-assertions into a provenance store. F-PSL extends the PReP-oriented
PSL with the following novel functionalities:

(1) Remedial actions that cope with failures. First, F-PSL resubmits record
messages according to the policies specified by a configuration file, including a
list of alternative stores. Second, it maintains a history of the use of alternative
stores during an actor’s participation in a process. This information is currently
maintained in memory and deleted when an application completes. Third, F-
PSL checks an actor’s causelinks when recording relationship p-assertions and
updates them according to the history information. Fourth, F-PSL requests a
coordinator to update viewlinks.

(2) Multithreading for the creation and recording of p-assertions. F-PSL en-
ables the concurrent creation and recording of p-assertions during application
execution. An application’s requests for creating p-assertions are queued to be
processed by a creation thread. Created p-assertions are also kept in a queue (in
the form of record messages) before being submitted to a store by a recording
thread. Basic flow control is provided in the form of queue management.

(3) A local file store for temporarily maintaining p-assertions. If recording p-
assertions significantly degrades an application’s performance, p-assertions can
be maintained locally and submitted later. We employ Berkeley DB Java Edition
database (BDB) as the local file store for its ease of installation.

PS has been implemented as a Java Servlet and deployed in the Apache Tom-
cat Servlet container[1]. It supports several types of backend data stores. Our
implementation and experiments were based on BDB. We extend the current
implementation of PS in terms of the following aspects:

Implementation and Evaluation of a Protocol 97

(1) Disk cache. A PS persistently caches a received record message to disk
before providing an acknowledgement3, and at a later stage processes the record
message and stores p-assertions. This caching mechanism delays actual message
processing and hence saves on the overhead of processing messages.

(2) Update Plug-In. PS has been designed to facilitate convenient integration
of new features through the use of plug-ins. A new plug-in, Update Plug-In, is im-
plemented to receive update requests from the coordinator and update requested
view links.

Update Coordinator is implemented as a Java Servlet and deployed in the
Tomcat container. It receives a repair request from an actor and maintains the
requested information in a local file store before sending an update message to
a provenance store to update a requested view link.

Only minimum information is maintained for each repair request: the iden-
tity of the destination store that needs to be updated, and the identity of the
store that successfully recorded the requesting actor’s record message for a given
interaction. The maintained information is used to cope with the case where
both actors in an interaction request to update the other’s viewlink in that
interaction. The internal behavior of the coordinator and the management of
maintained request information are detailed in [4].

Similarly to PS, the coordinator persistently caches received repair requests
in its local file store, and at a later stage processes these requests to save on the
overhead of processing messages. An actor continues its execution after receiving
a response indicating its repair request has been cached in the coordinator. BDB
is also employed as the file store.

An application can utilize multiple coordinators in its process. When using
more than one, any two actors exchanging an application message must share the
same one in order to ensure Viewlink Accuracy requirement. The identifier
of a coordinator can be built in actors or exchanged to other actors in the
application message app.

4 Performance Evaluation

Our experiments were run on the Iridis Computing Cluster at the University of
Southampton. Iridis contains several sets of nodes (i.e. computers). Nodes used
in the experiments each have two Single Core AMD Opteron processors running
at 2.2 GHz and 2 GB of RAM. Provenance store and update coordinator were
run on nodes each with 4 Dual Core AMD Opteron processors running at 2.4
Ghz and 2 GB of RAM. In the experiments with failures, one coordinator was
employed, installed on a node of the cluster. All nodes are connected by Gigabit
Ethernet. All applications used in the evaluation were written in Java and were
run using the Java 1.5.0 05 64-bit Server Virtual Machine.

3 The PS in PReP, though caching a record message into BDB before replying an
acknowledgement, does not force the message into disk by flushing operating system’s
buffers, thus having a risk of losing p-assertions if operating system fails.

98 Z. Chen and L. Moreau

Since failures are non-deterministic in nature and typically very hard to pre-
dict, a generator was used on an actor’s side to inject random failure events,
i.e, failure to submit a record message to a provenance store or failure to receive
an acknowledgement from a provenance store before a timeout. The presence
of such an event triggers an actor to take remedial actions. The generator gen-
erates a failure event based on a failure rate, i.e., the number of failure events
that occur during a total number of recordings. Given a timeout, the generator
postpones generating a failure event until the timeout expires. The advantage
of using a failure generator is that it enables us to fully control the number of
failures that may occur so as to investigate the correlation between recording
performance and failure rate.

Our evaluation was conducted at three levels. First, we measured the through-
put of the provenance store and update coordinator. We also investigated how
the contention for the coordinator affects an actor’s recording performance when
the number of recording actors increases. Then, we benchmarked the recording
performance of F-PReP without considering contention. Third, we investigated
F-PReP’s impact on the execution time of a scientific application. In each level,
we performed two experiments: failure-free experiment and experiment with fail-
ures. A comparison with PReP was made in the failure-free experiment. In our
evaluation, when we say recording p-assertions using F-PReP or PReP, we mean
their respective client side library, F-PSL or PSL, was used, and the provenance
store was configured with or without disk cache, respectively.

4.1 Throughput Experiment

Provenance Store. In Section 3, a disk cache mechanism is introduced as the
default setup of a provenance store in F-PReP. This means the store forces every
received record message into disk before providing an acknowledgement in order
to maintain the durability of p-assertions. However, this mechanism may sacrifice
a provenance store’s throughput (i.e. the number of p-assertions accepted in a
period of time).

We performed two failure-free tests with and without disk cache enabled,
respectively. On each node, we created up to 16 threads (i.e., clients) recording
10k p-assertions at the same time. An MPI based test harness was used in
the experiments to guarantee that all clients were run in parallel. Given that
an experiment is allowed to use up to 32 nodes in the Iridis environment, we
can have 512 clients simultaneously recording p-assertions into a provenance
store. P-assertions are recorded with a new record message created for each p-
assertion. All p-assertions were directly created and submitted to a provenance
store without using threading.

Fig. 4 shows the results. In both setups, the provenance store’s throughput
levels off, where about 212,200 and 176,000 10k p-assertions are accepted in a 10
minute period in the setup without disk cache and with disk cache, respectively.
This means a store’s throughput decreases by 20% due to enabling disk cache.

Update Coordinator. We also measured the coordinator’s throughput (i.e.
the number of repair requests accepted in a period of time) with up to 512

Implementation and Evaluation of a Protocol 99

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

10
k

p-
as

se
rt

io
ns

/1
0m

in
)

Number of Clients in Parallel

PS Throughput (10k p-assertions/10min)

without disk cache
with disk cache

Fig. 4. Provenance Store Throughput

 0

 10000

 20000

 30000

 40000

 50000

 0 100 200 300 400 500 600T
hr

ou
gh

pu
t (

10
0

re
pa

ir
re

qu
es

ts
/1

0m
in

)

Number of Clients in Parallel

Coordinator Throughput (100 repair requests/10min)

Fig. 5. Coordinator Throughput

clients simultaneously sending repair messages to an update coordinator. To
save on the cost of network connection, 100 repair requests were sent to a co-
ordinator in a single message. Fig. 5 shows that a coordinator can accept up
to around 30,000*100 repair requests in a 10 minute period. This means there
were 30,000*100 recording failures in 10 minutes, which is unlikely to see in
applications.

4.2 Throughput Experiment with Failures

This experiment investigated: (1) the impact of contention for a coordinator on
a client’s recording performance4; (2) the tradeoff between resending a record
message to the same provenance store and to an alternative store.

We conducted two experiments where a single client and 128 clients kept
recording 10k p-assertions into one provenance store in a 10 minute period. Var-
ious failure rates (5%, 10%, 16%, 20%, 25%, 33% and 50%) were considered. We
did not consider failure rates beyond 50% because it is not realistic [13]. An-
other provenance store was employed as the alternative store. One coordinator
was used in the experiments and 100 repair requests were sent in a single batch.
Since the more failures the more repair requests5, failure events were immedi-
ately generated without considering timeouts to maximize the number of repair
requests that could be sent to the coordinator within 10 minutes.

There exists a tradeoff between using the same provenance store or an al-
ternative one when resubmitting a record message. Retransmitting messages to
the same provenance store can tolerate transient failures, such as message loss.
However, if a provenance store has crashed and is to be recovered after a long
period of time, resending messages to the same store is not a good solution.
On the other hand, the use of an alternative store, though provides guaranteed
recording, ends up with an actor’s causelinks or another actor’s viewlink incor-
rect. This introduces additional cost of updating links. We compared the two
approaches in our experiments.
4 The impact of contention for a provenance store has been studied in [6].
5 Recall that a repair request is produced after a record message is successfully recorded

into an alternative store.

100 Z. Chen and L. Moreau

Fig. 6 shows the result in the experiment with a single client. The result was
averaged from five runs of the experiment. We have two observations. First,
when using the alternative store in each retransmission, up to about 20,000
repair requests are produced (because about 40,000 p-assertions are recorded
when failure rate is 50%). This means the coordinator, in the worst case, receives
200 batches, each containing 100 repair requests, from a single client within 10
minutes. According to coordinator’s throughput experiment in Section 4.1 and
the fact that the 200 repair batches are received by the coordinator from a single
client all across 10 minutes, we can imply that with about 100 clients, each having
its own provenance store and alternative stores, the impact of contention for a
coordinator on a client’s recording performance would be very small.

The second observation is that resending messages to the same provenance
store can record more p-assertions than to an alternative store, assuming that
only transient failures are present. This is because the use of an alternative store
requires extra actions to update links.

 0

 20000

 40000

 60000

 80000

 100000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
k

p-
as

se
rt

io
ns

/1
0m

in
)

Failure Rate (%)

Using same PS
Using alternative PS

Fig. 6. Throughput experiment (single
client)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
k

p-
as

se
rt

io
ns

/1
0m

in
)

Failure Rate (%)

Sending repair requests
Without sending repair requests

Using same PS

Fig. 7. Throughput experiment (128
clients)

Fig. 7 shows the result when 128 clients record p-assertions into one prove-
nance store in the presence of failures. This experiment considers the contention
for a provenance store as well as potential contention for a coordinator. We
also have two observations. First, communicating with the coordinator does not
affect total throughput. This implies that the contention for a coordinator is
negligible (It can be calculated that up to about 750 repair batches are sent to
the coordinator from 128 clients in 10 minutes.). Second, using an alternative
store, in general, results in more p-assertions recorded than using a same store
to resend p-assertions. This is because the use of an alternative store helps to
balance the load of recording p-assertions (especially when failure rate is 25%),
though introducing additional cost of updating links.

From these experiments, we have two conclusions. First, the coordinator is
scalable and the impact of its contention on a client’s recording performance is
very small or negligible. Since our implementation supports the use of multiple
coordinators, we believe the introduced component, update coordinator, does
not affect an application’s recording performance. Second, to achieve a better

Implementation and Evaluation of a Protocol 101

recording performance, an alternative store should be employed after resending
messages to a same provenance store has failed for certain times.

4.3 Benchmark Experiments

We now investigate the recording performance of a single actor without con-
sidering contentions. All the benchmark experiments were run with one client
recording p-assertions into one provenance store. All p-assertions were directly
created and submitted to a provenance store without using threading.

Failure-free Experiment. The experiment compares F-PReP to PReP in
a failure-free environment. We measured the time to record 10,000 10k
p-assertions. To minimize the impact of network connection overhead, 100 p-
assertions were shipped in a same record message. Measurements were taken
after recording a record message. Fig. 8 summarizes the record time. The graph
displays an average from ten trials. From the figure, we have two observations:

(1) The provenance store without using disk cache, i.e., in the setup using
PReP, periodically flushes 900 p-assertions from its operating system buffers
into disk. This means if the provenance store’s operating system crashes, up to
900 10k p-assertions may be lost.

(2) The average time to record 100 10k p-assertions is 198.8ms and 174.4ms
using F-PReP and PReP, respectively. Therefore, F-PReP has an overhead of
13.8% compared to PReP. We note that in an application, the impact of F-
PReP on the application’s performance is similar to that of PReP, as illustrated
later in the application experiment. This similarity benefits from the use of
multithreading to asynchronously record p-assertions.

Experiment with Failures. In Section 4.2, we measured a client’s recording
performance in the presence of failures in terms of throughput. However, we did
not consider the overhead of updating causelinks. Updating causelinks matters
only when a relationship p-assertion is to be recorded. In this experiment, we

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(m

ill
is

ec
on

ds
)

Number of P-assertions Recorded (Provenance Store Size)

Using F-PReP
Using PReP

Fig. 8. Time to record 100 10k p-assertions

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

O
ve

rh
ea

d
(%

)

Failure Rate (%)

cause num = 10
cause num = 30
cause num = 50

cause num = 100

Fig. 9. Overhead of taking remedial actions

102 Z. Chen and L. Moreau

approximated the maximum overhead of taking remedial actions by measuring
the record time of relationship p-assertions.

In F-PReP, the more causes a relationship p-assertion has, the longer it takes
to check and update causelinks. Therefore, we increased the number of causes
from 10 to 100.

Given a number of causes, several tests were conducted with various failure
rates (5%, 25% and 50%). For each failure rate, the p-assertions about cause
interactions of a relationship p-assertion were recorded prior to measuring the
recording time for the relationship p-assertion itself. In order to measure the
actual cost of remedial actions by means of record time, failure events were
immediately generated without considering timeouts. We deployed another store
as an alternative store, which was used in the retransmission of a relationship
p-assertion. Repair requests were sent to a coordinator in batch sizes of 100.

Fig. 9 summarizes the results in terms of overhead. The measurements were
taken after recording 100 relationship p-assertions. We can observe a maximum
overhead of 10% for taking remedial actions, when compared to the record time
when no failure occurred. Broadly speaking, the overhead increases linearly with
the increase in failure rate. We note that since it takes much longer time to
record a relationship p-assertion with larger number of causes, the overhead of
taking remedial actions becomes relatively small in the settings with more causes.
Therefore, we observe the smallest overhead in the setting with 100 causes.

4.4 Application Experiment

This experiment aims to investigate F-PReP’s recording performance in a sci-
entific application, the Amino Acid Compressibility Experiment (ACE), which
has been detailed in [6]. ACE attempts to find possible new relationships be-
tween amino acids by investigating the information theoretic properties (e.g.,
information efficiency) of their computational representations.

ACE is chosen because of its general properties representing a range of work-
flow applications. First, it can be used to answer a range of provenance queries.
Second, it is high performance and fine grained, which implies that p-assertion
recording may be difficult. Therefore, the evaluation result obtained from this
difficult application can imply a worst case complexity of that obtained from a
large set of applications with less demanding requirements.

One run of ACE consisted of 20 parallel jobs6. Each job involved 54, 000 in-
teractions between seven actors7 in order to produce 4,500 information efficiency
values. Actors used five provenance stores to record process documentation and
these provenance stores were also employed as the alternative stores known by
each actor. The process documentation created by ACE was extremely detailed;

6 There is no dependency between jobs.
7 A local method is instrumented as a recording actor using F-PReP. Actors exchange

messages by means of method calls without network connections. They record p-
assertions documenting the messages they receive and send to contribute to the
process documentation of an information efficiency value.

Implementation and Evaluation of a Protocol 103

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

R
ec

or
di

ng
 O

ve
rh

ea
d

(%
)

Failure Rate (%)

timeout = 2s
timeout = 1s
timeout = 0s

Fig. 10. Recording overhead of F-PReP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

F
re

qu
en

cy
 (

%
)

Failure Rate (%)

timeout = 2s
timeout = 1s
timeout = 0s

Fig. 11. The frequency of a queue in full
capacity

the steps used to compute each result were recorded. The recorded process doc-
umentation could effectively answer all the use case questions in [6].

Each job produced 108,000 record messages, each containing about 10Kb p-
assertions on average. To minimize network connection overhead, both record
messages and repair requests were sent in batches of 100 each. Multithreading
for creation and recording p-assertions was used in all tests. Various failure rates
(5%, 10%, 16%, 20%, 25%, 33% and 50%) were considered. When taking remedial
actions, a randomly selected alternative store was used in each resubmission.

We also investigated the impact of timeout on an application’s performance.
We studied three timeouts, 0s, 1s and 2s. The timeout, 0s, provides an extreme
case, where a failure event occurs (or is detected) very quickly.

The application runtime is the average of the runtime of all parallel jobs
from five runs of ACE. The runtime of an application without recording p-
assertions is 22:24 (in the format mm:ss). When no failure occurs, the application
runtime using PReP and F-PReP are 24:58 and 25:07, respectively. Therefore,
the recording overheads of PReP and F-PReP are similar (about 12%). This
benefits from the use of multithreading to asynchronously record p-assertions8.

The asynchronous approach allows an application’s p-assertions to be queued
before being shipped to a provenance store. F-PReP has provided a flow con-
trol mechanism in queues to avoid exhausting memory. P-assertions cannot be
queued until there is space in the queue. This may however affect the applica-
tion’s performance, since the application is postponed occasionally in order to
reduce the speed of creating p-assertions when the queue becomes full frequently.

Our results in Fig. 10 and Fig. 11 demonstrate the correlations among appli-
cation performance, failure rate, timeout and queue utilization. In Fig. 10, the
recording overhead slightly increases as the failure rate increases in all timeout
setups. However, it is sharply increased at certain points. Fig. 11 shows how
often a queue is in a full capacity when a new batch of record messages is to be
enqueued. It clearly reveals that the sharp increase in the recording overhead in
Fig. 10 results from the flow control mechanism.

8 Multithreading was also used in the tests of PReP.

104 Z. Chen and L. Moreau

From this application experiment, we can draw several general conclusions:

(1) Both PReP and F-PReP have similar recording overhead when there is no
failure (around 12% in ACE);
(2) If the recording queue’s size is large enough, F-PReP introduces a small
recording overhead in the presence of failures (below 20% in ACE);
(3) The timeout for receiving an acknowledgement from a provenance store can
affect an application’s performance. An appropriate timeout should be chosen.
(4) By monitoring the utilization of queues, we can detect if an application’s
performance has been severely degraded and then take actions to improve the
performance. For example, the local file store introduced in F-PSL can be au-
tomatically employed for temporarily maintaining p-assertions9, when the fre-
quency of the queue in maximum capacity reaches a certain threshold, e.g., 40%.

Query. After each run of ACE in the presence of failures, we also queried the
provenance stores to further verify the quality of documentation recorded by
F-PReP. The results showed an equal number of documentation records in the
stores and records produced in ACE. In addition, no isolated island or dan-
gling link is found, and distributed documentation of the process that led to an
information efficiency value can always be retrieved in its entirety.

5 Related Work and Conclusion

Several provenance frameworks have emerged in the past a few years, e.g., Karma
[12], PASOA [6]. Some workflow systems also provide provenance collection func-
tionalities, e.g., Kepler [2]. From an analysis of these works, the issue of recording
process documentation in the case of failures has not been discussed. Xu et. al.
[15] have proposed a framework to tolerate failures occurring in service-oriented
systems. Their approach relies on provenance information recorded in the pres-
ence of failures, which would benefit from F-PReP.

There is not much work on performance study related to provenance. Per-
formance evaluations of PReP are presented in [7,6]. A detailed comparison on
recording and querying performance between Karma and PReServ is seen in [12].
Extensive performance evaluations have been made on techniques to reduce the
amount of storage required for process documentation [3]. There has been a
performance study on PASS [10], an automatic provenance collection and main-
tenance storage system at the operating system level. None of these evaluations
considers failures.

In this paper, we have evaluated a protocol, F-PReP, for recording process
documentation in the presence of failures. In a failure-free environment, it has
similar impact on an application’s performance as PReP does. Although it in-
troduces overhead in the presence of failures, we believe the overhead is still
acceptable given that it can record high quality process documentation.

We are currently investigating how to create process documentation when
an application has its own fault tolerance schemes to tolerate application level
9 When using a local file store, the recording overhead was about 42% in our test.

Implementation and Evaluation of a Protocol 105

failures. In future work, we plan to make use of the process documentation
recorded in the presence of failures to diagnose failures.

References

1. Apache tomcat. User guide,
http://tomcat.apache.org/tomcat-5.5-doc/index.html

2. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: Moreau and Foster [9], pp. 118–132

3. Chapman, A., Jagadish, H.V.: Efficient provenance storage. In: SIGMOD Confer-
ence (June 2008)

4. Chen, Z., Moreau, L.: Recording process documentation in the presence of failures.
In: Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.) Methods,
Models and Tools for Fault Tolerance. LNCS. Springer, Heidelberg (accepted, 2008)

5. Gagliardi, F., Jones, B., Grey, F., Bgin, M.E., Heikkurinen, M.: Building an in-
frastructure for scientific grid computing: Status and goals of the egee project.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 363(1833), 1729–1742 (2005)

6. Groth, P.: The origin of data: Enabling the determination of provenance in multi-
institutional scientific systems through the documentation of processes. Phd thesis,
University of Southampton (2007)

7. Groth, P., Miles, S., Weijian Fang, S. C. Wong, K.-P. Zauner, and L. Moreau.
Recording and using provenance in a protein compressibility experiment. In: Pro-
ceedings of 14th IEEE International Symposium on the High Performance Dis-
tributed Computing (HPDC), pp. 201–208 (2005)

8. Kloss, G.K., Schreiber, A.: Provenance implementation in a scientific simulation
environment. In: Moreau and Foster [9], pp. 37–45

9. Moreau, L., Foster, I. (eds.): IPAW 2006. LNCS, vol. 4145. Springer, Heidelberg
(2006)

10. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-
aware storage systems. In: USENIX Annual Technical Conference, General Track.
USENIX, pp. 43–56 (2006)

11. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

12. Simmhan, Y.L., Plale, B., Gannon, D., Marru, S.: Performance evaluation of the
karma provenance framework for scientific workflows. In: Moreau and Foster [9],
pp. 222–236.

13. Tierney, B., Schopf, J.: The cedps troubleshooting architecture and deployment on
the open science grid. Journal of Physics: Conference Series 78 (2007)

14. Wootten, I., Rajbhandari, S., Rana, O.F., Pahwa, J.S.: Actor provenance capture
with ganglia. In: CCGRID, pp. 99–106 (2006)

15. Xu, J., Townend, P., Looker, N., Groth, P.: Ft-grid: a system for achieving fault
tolerance in grids. Concurrency and Computation: Practice and Experience 20(3),
297–309 (2008)

http://tomcat.apache.org/tomcat-5.5-doc/index.html

	Implementation and Evaluation of a Protocol for Recording Process Documentation in the Presence of Failures
	Introduction
	Protocol Outline
	Terminology
	Failure Assumptions
	Protocol Outline

	Implementation
	Performance Evaluation
	Throughput Experiment
	Provenance Store.
	Update Coordinator.

	Throughput Experiment with Failures
	Benchmark Experiments
	Experiment with Failures.

	Application Experiment

	Related Work and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

