
T.S. Dillon et al. (Eds.): Advances in Web Semantics I, LNCS 4891, pp. 374–395, 2008.
© IFIP International Federation for Information Processing 2008

Semantic Web Services for Satisfying SOA Requirements

Sami Bhiri1, Walid Gaaloul1, Mohsen Rouached2, and Manfred Hauswirth1

1 Digital Enterprise Research Institute (DERI), National University of Ireland, Galway
IDA Business Park, Galway, Ireland

2 LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France

{sami.bhiri,walid.gaaloul,manfred.hauswirth}@deri.org,
rouached@loria.fr

Abstract. Service oriented modeling is gaining acceptance among academia
and industry as a computing paradigm for business and systems integration. Its
strong decoupling between service provision and consumption enables much
more flexible and cost-effective integration, within and across organizational
boundaries, than existing middleware or workflow systems do. However, it also
creates new requirements for handling effective service discovery, dynamic
service interoperation and automation support for service composition. Web
services have been emerging as the lead implementation of SOA upon the Web.
The related technologies define common standards that ensure interoperability
between heterogeneous platforms. Nevertheless, they fail in satisfying SOA
requirements. Semantic Web services initiatives have then emerged with the
objective of providing the foundation to overcome these requirements. The
main idea is extending service description with machine interpretable
information that software programs can reason over it. This chapter discusses
how far Web services and semantic Web services initiatives satisfy SOA
requirements.

Keywords: SOA, Web services, Semantic Web services, WSMO, OWL-S,
IRS-III, METEOR-S.

1 Introduction

Service oriented modeling has been emerging as a paradigm for business and systems
integration. Evolving from oriented object programming and component based
modeling; it enables much more flexible and cost-effective integration, within and
across organizational boundaries, than existing middleware or workflow systems do.

In recent years, Web services (a.k.a WS) have been emerging as the lead
implementation of SOA upon the Web. WS have added a new level of functionality
for service description, publication, discovery, composition and coordination
extending the role of the Web from a support of information interaction to a
middleware for application integration.

Nevertheless, current Web service technologies focus only on a syntactic level
which hampers automation support for capability-based discovery, and dynamic

 Semantic Web Services for Satisfying SOA Requirements 375

service composition and invocation. A common agreement is the need to semantically
enrich WS description. Similar to the Semantic Web vision, the idea is making WS
description more machine interpretable. A new breed of WS, called Semantic Web
Services (a.k.a SWS), has then emerged with a promising potential to satisfy SOA
requirements. The machine interpretable description of SWS provides the basis for
capability-based service discovery, automatic service composition and dynamic
service interoperation.

This chapter consists of three parts. First, we depict the concepts and principles of
SOA. We highlight the dynamicity and flexibility it ensures and we discern the
challenges it poses. In the second part, we present Web services as the key technology
implementing SOA principles. We state in particular the main standards and
technologies. And we investigate how far they satisfy SOA requirements. Finally, we
exhibit SWS initiatives conceptual models and execution environments and inspect
their capability to overcome SOA challenges.

2 Service Oriented Architecture

Service-oriented architecture (SOA) is a hot topic in enterprise computing as many IT
professionals see the potential of SOA is dramatically speeding up the application
development process. Gartner reports that "By 2008, SOA will be a prevailing
software engineering practice, ending the 40-year domination of monolithic software
architecture" [1] and that "Through 2008, SOA and web services will be implemented
together in more than 75 percent of new SOA or web services projects." [1]. Thus,
SOA has received significant attention recently as major computer and software
companies such as HP, IBM, Intel, Microsoft, and SAP, have all embraced SOA, as
well as government agencies such as DoD (US Department of Defense) and NASA.

In this section, we first remind the SOA genesis. After that, we describe SOA
principles, terms and benefits. Thereafter we discuss SOA design and implementation
requirements. Indeed, our aim is to explore how successful existing Web services
and semantic Web services implementation are to fulfill these requirements (i.e.
SOA requirements).

2.1 SOA Genesis

SOA can be viewed as an evolutionary computing architecture that closely mirrors the
history of the industrial revolution. With SOA, computing architectures are expanding
beyond object oriented self-sufficiency and now allowing for highly specialized and
interoperable computing consumer/producer relationships [2]. Pre 1980, structured
procedural programming was prevalent for assembling well structured software code
into a software system. Procedural style APIs focus on the natural ability to solve
problems via a functional process. The focus is primarily on how to get from point A
to point B. This functional way of solving a problem is often a necessary first step
when exploring an unfamiliar problem domain. Between 1980 and 1990, Object
Oriented Programming (OOP) evolved and established its dominance in the software
industry. OOP focuses on combining elements of the problem domain in the form of
objects containing data and methods which help to solve the problem of how to get
from point A to point B in a way that will also be good to get to point C (reusability).

376 S. Bhiri et al.

However, OOP evolved prior to the common distributed computing environments
that we have today. Between 1990 and 2000, enterprise tiered architectures evolved
and demonstrated that combining methods with data between tiers worked against
scalability and loose coupling of the enterprise system, thus the use of data transfer
objects between tiers and the focus on the data model for communication between
tiers of the enterprise system. Up to the year 2000, individual computing systems
remained relatively self-sufficient.

The pre SOA tiered enterprise architectures and implementations did not provide a
good solution for computing specialization and computing interdependence at a
business or government level. SOA exploded from the evolution of the tiered
enterprise architectures and pressures to provide specialized B2B interoperability.
Only under the realm of SOA are the concepts of visibility, service descriptions,
interaction, contracts and policies, real world effects, execution contexts, etc.
combined to provide the architectures and implementations for the automated
computing needs of modern computing consumer/producer relationships. SOA is a
computing architecture that allows for complex relationships and specializations of
computing services on a global scale.

In other words, service-orientation is a way of sharing functions (typically business
functions) in a widespread and flexible way. Thanks to the high level dynamicity and
flexibility it promises, SOA has been gaining ground as the key architecture for many
kinds of applications like B2B interactions, enterprises application integration and
grid computing. Indeed, in B2B applications for instance, enterprises can encapsulate
and externalise their business processes as services. They can dynamically look for
and interact with other services. They can collaborate on the fly to achieve common
goals. And they can even establish dynamically virtual enterprises and create new
services from existing ones.

2.2 SOA: Terms and Concepts

Service-orientation, as a means of separating things into independent and logical
units, is a very common concept. A service-oriented architecture represents an
abstract architectural concept defining an information technology approach or strategy
in which applications make use of (perhaps more accurately, rely on) services
available in a network such as the World Wide Web. It is an approach to building
software systems that is concerned with loose coupling and dynamic binding between
components (services) that have been described in a uniform way and that can be
discovered and composed. Implementing a service-oriented architecture can involve
developing applications that use services, making applications available as services so
that other applications can use those services, or both. In fact, one way of looking at
an SOA is as an approach to connecting applications (exposed as services) so that
they can communicate with (and take advantage of) each other.

The fundamental elements of this computing approach are loosely coupled
software components, called services. Services are autonomous platform-independent
computational elements that can be described, published, discovered and accessed
over network-accessible software module. Loosely coupling means that services
interactions are neither hard coded (like in Object Oriented Programming), nor
specified at design time (like in Component Based Modelling). On the contrary,

 Semantic Web Services for Satisfying SOA Requirements 377

services are defined out of any execution context and interact on the fly without prior
collaboration agreement.

A service provides a specific function, typically a business function, such as
analyzing an individual's credit history or processing a purchase order. It is a
mechanism to enable access to one or more capabilities, where the access is provided
using a prescribed interface and is exercised consistent with constraints and policies
as specified by the service description. A service is provided by an entity – the service
provider – for use by others, but the eventual consumers of the service may not be
known to the service provider and may demonstrate uses of the service beyond the
scope originally conceived by the provider. A service is accessed by means of a
service interface, where the interface comprises the specifics of how to access the
underlying capabilities. There are no constraints on what constitutes the underlying
capability or how access is implemented by the service provider. Thus, the service
could carry out its described functionality through one or more automated and/or
manual processes that themselves could invoke other available services.

SOA uses the find-bind-execute paradigm as shown in Fig. 1. In this paradigm,
service providers register their service in a public registry. This registry is used by
consumers to find services that match certain criteria. If the registry has such a
service, it provides the consumer with a contract and an endpoint address for that
service. In general, entities (people and organizations) offer capabilities and act as
service providers. Those with needs who make use of services are referred to as
service consumers. In a typical service-based scenario, a provider hosts a network-
accessible software module—an implementation of a given service—and defines a
service description through which a service is published and made discoverable. A
client discovers a service and retrieves the service description directly from the
service, possibly from a registry or repository through metadata exchange. The client
uses the service description to bind to the provider and invoke the service.

Fig. 1. Find-Bind-Execute paradigm

A service is opaque in that its implementation is typically hidden from the service
consumer except for (1) the information and behavior models exposed through the
service interface and (2) the information required by service consumers to determine
whether a given service is appropriate for their needs. The consequence of invoking a
service is a realization of one or more real world effects. These effects may include: (i)
information returned in response to a request for that information, (ii) a change to the

378 S. Bhiri et al.

shared state of defined entities, or (iii) some combination of (i) and (ii). Summarizing
up, the following features are intrinsic for services in SOA in the sense that:

1. Services are software components with well-defined interfaces that are
implementation-independent. An important aspect of SOA is the separation
of the service interface (the what) from its implementation (the how). Such
services are consumed by clients that are not concerned with how these
services will execute their requests.

2. Services are self-contained and autonomous: The logic governed by a service
resides within an explicit boundary. The service has control within this
boundary and is not dependent on other services for it to execute its
governance. Underlying logic, beyond what is expressed in the descriptions
that comprise the contract, is invisible and irrelevant to service requesters.

3. Services are loosely coupled: Services are designed to interact without the
need for tight, cross-service dependencies. What distinguishes SOA from
other architecture paradigms is loose coupling. Loose coupling means that
the client of a service is essentially independent of the service. The way a
client (which can be another service) communicates with the service does not
depend on the implementation of the service. Significantly, this means that
the client does not have to know very much about the service to use it. For
instance, the client does not need to know what language the service is coded
in or what platform the service runs on.

2.3 SOA: Implementation Challenges

SOA-based integration provides a consistent way to access all applications within a
company, and potentially outside the company. However, the value of SOA has
perhaps been oversold as a methodology and has often been mistakenly promoted as a
technology that will solve almost all IT problems. In this section, we present common
design requirements and implementation challenges to ensure an efficient SOA
implementation. Implementation solutions to handle these requirements will be
discussed in the following Web services and semantic Web services sections.

In order to enable dynamic and seamless cooperation between different systems
and organizations, implementing SOA poses new challenges to overcome. The largest
barriers to adoption of SOA tend to be establishing effective SOA standards fulfilling
the expected promises. Understandably, SOA-based technologies are seeking
implementation solutions to help them meet the above promises in the most cost-
effective way. The challenge represented by implementing an SOA is the actual
implementations may fail to reach some design requirements. More explicitly, these
challenges concern mainly (i) the dynamic service interoperation without prior
collaboration agreement, (ii) dynamic service discovery and selection based on
requester needs, (iii) and automatic service composition to achieve added-value
business requirements [1].

Implementation standards developing services in SOA have to consider not simply
for immediate benefit, but also for long-term and board benefit. Unlike objects or
databases, a service is developed for use by its consumer, which may not be known at
the time. To put it in another way, the existence of an individual service is not of
much interest unless it is part of a larger collection of services that can be consumed

 Semantic Web Services for Satisfying SOA Requirements 379

by multiple applications, and out of which new services can be composed and
executed. Any collection of services needs common design, discovery, composition,
and binding principles since they are typically not all developed at the same time.
Thus, any SOA implementation MUST take into account the following design
requirements to ensure the described set of SOA benefits and promises:

- Service Discovery: Service description should be visible to be discovered
and understood by service consumers. Visibility refers to the capacity for
those with needs and those with capabilities to be able to see each other [3].
It is the relationship between service consumers and providers that is
satisfied when they are able to interact with each other. This is typically done
by providing descriptions for such aspects as functions and technical
requirements, related constraints and policies, and mechanisms for access or
response. This is true for any consumer/provider relationship – including in
an application program where one program calls another: without the proper
libraries being present the function call cannot complete. In the case of SOA,
visibility needs to be emphasized because it is not necessarily obvious how
service participants can see each other. Thus, the initiator in a service
interaction must be aware of the other parties. Visibility is promoted through
the service description which contains the information necessary to interact
with the service and describes this in such terms as the service inputs,
outputs, and associated semantics. The service description also conveys what
is accomplished when the service is invoked and the conditions for using the
service. The service description allows prospective consumers to decide if
the service is suitable for their current needs and establishes whether a
consumer satisfies any requirements of the service provider. The descriptions
need to be in a form (or can be transformed to a form) in which their syntax
and semantics are widely accessible and understandable. Discovering
services need not necessarily be fully automated (one can find many non-
technical objections to fully automated discovery), but support for some
richer discovery is than necessary. The main challenge of service discovery
is using automated means to accurately discover services with minimal user
involvement. This requires explicating the semantics of both the service
provider and requester. It also involves adding semantic annotations to
service definitions. Achieving automated service discovery requires
explicitly stating requesters’ needs—most likely as goals that correspond to
the description of desired services—in some formal request language.

- Service composition: SOA provides a new way of application development
by composing services. The service-oriented paradigm builds on the notion
of composing virtual components into complex behavior. Thus, a consumer
can use the functionality offered by multiple providers without worrying
about the underlying differences in hardware, operating systems,
programming languages, etc. Each service should be designed to satisfy a
business task while possibly collaborating with applications or services
provided by other entities. For services to interact, they need not share
anything but a formal contract that describes each service and defines the
terms of information exchange. Therefore a service composition task

380 S. Bhiri et al.

involves the selection, and interoperation of Web services given a high-level
semantic description of an objective using a formal contract.

- Interoperability for semantic heterogeneity: SOA is applied in an
environment where the number of involved actors is more and more
heterogeneous and distributed. Consumers and providers communicate and
exchange data which may lead to interoperability problems on top of the data
mismatch (in structure and meaning). There are three important facts about
services that set the basis for their information processing requirements.
First, services, especially at the business level, exchange information in the
form of messages. Secondly, the information in those messages needs to
conform to the enterprise information model and semantics. Third, there is
often a transformation between the enterprise semantics and the internal
information model of the service. So, the SOA platform must provide:
message processing capabilities, integration with existing enterprise
information models, definition of messages based on the information model,
and information transformation capabilities.

Unlike OOP paradigms, where the focus is on packaging data with operations, the
central focus of SOA is the task or business function getting something done. This
distinction manifests itself by the fact that an object exposes structure but there is no
way to express semantics other than what can be captured as comments in the class
definition. SOA emphasizes the need for clear semantics. Especially, in the case of
service interaction where the message and information exchanges are across
boundaries, a critical issue is the interpretation of the data. This interpretation must be
consistent between the participants involved in service interaction. Consistent
interpretation is a stronger requirement than merely type (or structural) consistency –
the attributes of the data itself must also have a shared basis. For successful exchange
of address information, all the participants must have a consistent view of the
meaning of the address attributes. The formal descriptions of terms and the
relationships between them provide a firm basis for making correct interpretations for
elements of information exchanged. Note that, for the most part, it is not expected that
service consumers and providers would actually exchange descriptions of terms
during their interaction but, rather, would reference existing descriptions – the role of
the semantics being a background one – and these references would be included in the
service descriptions. Specific domain semantics are beyond the scope of SOA
reference model; but there is a requirement that the service interface enable providers
and consumers to identify unambiguously those definitions that are relevant to their
respective domains [3].

3 Realizing SOA with Web Services

People often think of Web services and Service-Oriented Architecture (SOA) in
combination, but they are distinct in an important way. As discussed in the previous
section, SOA represents an abstract architectural concept. It’s an approach to building
software systems that is based on loosely coupled components (services) that have
been described in a uniform way and that can be discovered and composed. Web

 Semantic Web Services for Satisfying SOA Requirements 381

services represent one important approach to realizing SOA. The World Wide Web
Consortium (W3C), which has managed the evolution of the SOAP and WSDL
specifications, defines Web services as follows:

A software system designed to support interoperable machine-to machine
interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages, typically conveyed using HTTP
with XML serialization in conjunction with other Web-related standards.

Although Web services technology is not the only approach to realizing an SOA, it
is one that the IT industry as a whole has enthusiastically embraced. With Web
services, the industry is addressing yet again the fundamental challenge that distributed
computing has provided for some considerable time: to provide a uniform way of
describing components or services within a network, locating them, and accessing
them. The difference between the Web services approach and traditional approaches
(for example, distributed object technologies such as the Object Management Group –
Common Object Request Broker Architecture (OMG CORBA), or Microsoft
Distributed Component Object Model (DCOM)) lies in the loose coupling aspects of
the architecture. Instead of building applications that result in tightly integrated
collections of objects or components, which are well known and understood at
development time, the whole approach is much more dynamic and adaptable to
change. Another key difference is that through Web services, the IT industry is
tackling the problems using technology and specifications that are being developed in
an open way, utilizing industry partnerships and broad consortia such as W3C and the
Organization for the Advancement of Structured Information Standards (OASIS), and
based on standards and technology that are the foundation of the Internet.

3.1 Scope of the Architecture

Web services had its beginnings in mid to late 2000 with the introduction of the first
version of XML messaging—SOAP, WSDL 1.1, and an initial version of UDDI [4]
as a service registry. This basic set of standards has begun to provide an accepted
industry-wide basis for interoperability among software components (Web services)
that is independent of network location, in addition to specific implementation details
of both the services and their supporting deployment infrastructure. Several key
software vendors have provided these implementations, which have already been
widely used to address some important business problems.

Developers are looking for enhancements that raise the level and scope of
interoperability beyond the basic message exchange, requiring support for
interoperation of higher-level infrastructure services. Most commercial applications
today are built assuming a specific programming model. They are deployed on
platforms (operating systems and middleware) that provide infrastructure services in
support of that programming model, hiding complexity, and simplifying the problems
that the solution developer has to deal with. For example, middleware typically
provides support for transactions, security, or reliable exchange of messages (such as
guaranteed, once-only delivery). On the other hand, there is no universally agreed
standard middleware, which makes it difficult to construct applications from

382 S. Bhiri et al.

components that are built using different programming models (such as Microsoft
COM, OMG CORBA, or Java 2 Platform, Enterprise Edition (J2EE) Enterprise Java
Beans). They bring with them different assumptions about infrastructure services that
are required, such as transactions and security. As a consequence, interoperability
across distributed heterogeneous platforms (such as .NET and J2EE) presents a
difficult problem.

The Web services community has done significant work to address this
interoperability issue, and since the introduction of the first Web services, various
organizations have introduced other Web services–related specifications. Fig. 2
illustrates a population of the overall SOA stack with current standards and emerging
Web services specifications that IBM, Microsoft, and other significant IT companies
have developed. The remainder of this part provides a high-level introduction to these
Web services specifications that realize more concretely the capabilities that are
described in the SOA framework.

Fig. 2. Web services technologies

3.2 Web Service Transport

Web services are basically an interoperable messaging architecture, and message
transport technologies form the foundation of this architecture. Web services are
inherently transport neutral. Although you can transport Web services messages by
using the ubiquitous Web protocols such as HyperText Transport Protocol (HTTP) or
Secure HTTP (HTTPS) to give the widest possible coverage in terms of support for
the protocols, you can also transport them over any communications protocol, using
proprietary ones if appropriate. Although transport protocols are fundamental to Web

 Semantic Web Services for Satisfying SOA Requirements 383

services and clearly are a defining factor in the scope of interoperability, the details
are generally hidden from the design of Web services.

3.3 Web Service Messaging

The messaging services layer contains the most fundamental Web services
specifications and technologies, including eXtensible Markup Language (XML),
SOAP, and WS-Addressing [4]. Collectively, these specifications form the basis of
interoperable messaging between Web services. XML provides the interoperable
format to describe message content between Web services and is the basic language in
which the Web services specifications are defined.

SOAP, one of the significant underpinnings of Web services, provides a simple and
relatively lightweight mechanism for exchanging structured and typed information
between services. SOAP is designed to reduce the cost and complexity of integrating
applications that are built on different platforms.

WS-Addressing provides an interoperable, transport-independent way of
identifying message senders and receivers that are associated with message exchange.
WS-Addressing decouples address information from the specific transport used by
providing a mechanism to place the target, source, and other important address
information directly within the Web service message. This specification defines XML
elements to identify Web services endpoints and to secure end-to-end endpoint
identification in messages. This specification enables messaging systems to support
message transmission through networks that include processing nodes such as
endpoint managers, firewalls, and gateways in a transport neutral manner. WS-
Addressing defines two interoperable constructs that convey information that
transport protocols and messaging systems typically provide. These constructs
normalize this underlying information into a uniform format that can be processed
independently of transport or application. These two constructs are endpoint
references and message information headers.

3.4 Web Service Description

Service description defines metadata that fully describes the characteristics of services
that are deployed on a network. This metadata is important, and it is fundamental to
achieving the loose coupling that is associated with SOA. It provides an abstract
definition of the information that is necessary to deploy and interact with a service.
Web Service Description Language (WSDL) [4] is perhaps the most mature of
metadata describing Web services. It allows developers to describe the “functional”
characteristics of a Web service—what actions or functions the service performs in
terms of the messages it receives and sends. WSDL offers a standard, language-
agnostic view of services it offers to clients. It also provides non-invasive future-
proofing for existing applications and services and allows interoperability across the
various programming paradigms, including CORBA, J2EE, and .NET.

3.5 Web Service Discovery

The Universal Description and Discovery Interface (UDDI) is a widely acknowledged
specification of a Web service registry. It defines a metadata aggregation service and

384 S. Bhiri et al.

specifies protocols for querying and updating a common repository of Web services
information. Application developers can query UDDI repositories at well-known
locations at design time to ascertain those services that might be compatible with their
requirements. After they locate a directory, they can send a series of query requests
against the registry to acquire detailed information about Web services (such as who
provides them and where they are hosted) and bindings to the implementation. They
can then feed this information into an assortment of development time tools to
generate the appropriate runtime software and messages required to invoke the
required service. Applications can also query UDDI repositories dynamically at
runtime. In this scenario, the software that needs to use a service is told at execution
time the type of service or interface it requires. Then it searches a UDDI repository
for a service that meets its functional requirements, or a well-known partner provides
it. The software then uses this information to dynamically access the service. Service
discovery (publish/find) plays an important role in an SOA. It is possible to achieve
this in other ways, but within a Web services world, UDDI provides a highly
functional and flexible standard approach to Web service discovery.

WS-Policy proposes a framework that extends the service description features that
WSDL provides. Having more refined service descriptions, qualified by specific WS-
policies, supports much more accurate discovery of services that are compatible with
the business application that is to be deployed. In a service registry (such as a UDDI
registry), queries of WS-Policy-decorated services enable the retrieval of services that
support appropriate policies in addition to the required business interface. For
example, a query might request all services that support the credit Authorization
WSDL interface (port type), use Kerberos for authentication, and have an explicitly
stated privacy policy. This allows a service requester to select a service provider
based on the quality of the interaction that delivers its business contracts.

3.6 Web Service Composition

Business Process Execution Language for Web services (WS-BPEL) [4] provides a
language to specify business processes and how they relate to Web services. This
includes specifying how a business process uses Web services to achieve its goal, and
it includes specifying Web services that a business process provides. Business
processes specified in BPEL are fully executable and are portable between BPEL-
conformant tools and environments. A BPEL business process interoperates with the
Web services of its partners, whether these Web services are realized based on BPEL
or not. Finally, BPEL supports the specification of business protocols between
partners and views on complex internal business processes. BPEL supports the
specification of a broad spectrum of business processes, from fully executable,
complex business processes over more simple business protocols to usage constraints
of Web services. It provides a long-running transaction model that allows increasing
consistency and reliability of Web service applications. Correlation mechanisms are
supported that allow identifying statefull instances of business processes based on
business properties. Partners and Web services can be dynamically bound based on
service references.

 Semantic Web Services for Satisfying SOA Requirements 385

3.7 SOA and Web Services: Need for Semantics

It is clear that Web services standards, both the core and extended specifications,
contribute significantly to the ability to create and maintain service-oriented
architectures on which to build new enterprise applications. However, despite their
success, there still remain important challenges to be addressed in current SOA-based
solutions. Service discovery, interoperation and composition are typically part of any
development process based on SOA but, nothing is prescribed for effectively
supporting these activities.

Discovery: To discover a Web service, the infrastructure should be able to represent
the capabilities provided by a Web service and it must be able to recognize the
similarity between the capabilities provided and the functionalities requested.

UDDI is the most well-known specification for an XML-based registry of service
descriptions on the Web but the descriptions are syntactic only - the meaning is still
open to interpretation by the user. Indeed, companies adopting UDDI for internal use
have to define their own naming conventions and categorization structure and
metadata, which inhibit adoption. Currently keyword-based search is the only means
of finding relevant services. UDDI does not allow capability-based discovery of Web
services. Support for some richer discovery than keyword-based search is necessary.
Semantics bring closer the possibility of switching services dynamically by
discovering them at runtime.

WSDL is less suitable for describing the semantics of a Web Service capability.
This drawback affects not only the service discovery procedure but also service
composition, invocation and interoperation. Indeed, WSDL files contain no
information on the semantics of the described operations. It is up to the programmer
or engineer to interpret the semantics from available descriptions in natural language.
This type of interpretation becomes a challenge because the human factor inhibits
automation of service discovery, selection, invocation and composition. Additionally,
natural language descriptions are informal and can lead to different interpretations or
even to failure to understand. This challenge can be overcome if formal and
declarative semantic mark-up is used to complement service descriptions.

Composition: Similarly, service composition is mainly based on the syntactic
descriptions provided by WSDL, which are necessary but not sufficient, since the
semantics remain implicit and cannot be automatically processed. A number of
approaches exist for modeling Web Service composition. Although these Web service
composition languages are more suitable than the proprietary languages used in
traditional workflow products, they lack the possibility to dynamically bind to Web
services at run time. For example, WSCI and WS-BPEL describe how multiple Web
services could be composed together to provide a more complex Web service.
However, their focus remains on composition at the syntactic level and therefore,
does not allow for automatic composition of Web services.

Service requesters have to bind specific services at design time which means they
cannot take advantage of the large and constantly changing amount of Web services
available. The services have to interoperate with each other seamlessly so that the
combined results are a valid solution. Web services must be described and understood
in a semantically consistent way in order to resolve terminological ambiguities and

386 S. Bhiri et al.

misunderstandings, and to avoid the constant revision and redefinition of terms,
concepts, and elements of the business. Such inconsistencies make applications not
able to talk to each other, and subsequently result in slower response times when
changes are needed. Business managers cannot get a clear view of their organization
through these multiple un-integrated "languages".

Interoperation: The current Web services infrastructure focuses on syntactic
interoperability. Syntactic interoperability allows Web services to identify only the
structure of the messages exchanged, but it fails to provide an interpretation of the
content of those messages. Indeed, Current standards like XML and XML Schema
only solve the mismatch on the syntactical and structural level; solving the mismatch
on the semantic level is usually handled on a case-by-case basis (for instance using
custom adapters). Mismatches between interaction protocols are not dealt within
current standards; semantics of the message exchange sequences are necessary to
solve the mismatches on that level.

4 Realizing SOA with Semantic Web Services

4.1 Introduction

Web Services technology based on WSDL, SOAP and UDDI, define common
standards that ensure interoperability between heterogeneous platforms. However,
although low level interoperability is essential, SOA challenges as discussed in
section 1 go beyond data formats and communication protocols interoperability. The
purely syntactic focus of WS technologies makes service description non interpretable
by the machine which hampers the automation of operations, inherent to SOA, such
as service discovery, composition and invocation.

SWS initiatives have emerged with the objective of complementing the inter-
operability ensured by Web services to deal with data and behavioral heterogeneity
along with automation support for capability-based service discovery, and dynamic
service composition and invocation. The basic and common principle of these
initiatives is extending syntactic service descriptions with a semantic layer the
machine can interpret and reason over it. Ontologies play a central role for defining
this semantic extension. An ontology is a formal explicit specification of a shared
conceptualization [5]. Ontologies define a common vocabulary and formal semantics
by providing concepts, and relationships between them. Using a common vocabulary
for describing services capability and behaviors ensures interoperability at data level.
Formal semantics enables the application of powerful and well proven reasoning
based techniques in order to enable capability-based service discovery and automatic
service composition.

There are four main SWS initiatives namely WSMO/L/X Framework [6], OWL-S
[7], IRS-III framework [8] and METEOR-S system [9]. The first three initiatives
separate explicitly between the semantic and syntactic descriptions of a Web service and
link them using the concept of grounding that maps abstract concepts and data types of
the semantic description to concrete data formats and communication protocols at the

 Semantic Web Services for Satisfying SOA Requirements 387

Fig. 3. Two approaches to semantically extend syntactic Web service descriptions

syntactic level (see Fig. 3 (a)). METOER-S, however, semantically annotate WSDL
files by linking their elements to ontology concepts and relations (see Fig. 3 (b)).

While METEOR-S is agnostic as regards to the ontologies used for the semantic
annotation, WSMO/L/X, OWL-S and IRS-III can be seen as fully fledged framework
with three layers (see Fig. 4): (i) a conceptual model for describing Web services and
related information, (ii) a formal language used for defining the conceptual model
concepts, relations and axioms, and (iii) an execution environment, as a proof of
concepts, showing the use of semantic description for carrying out goal-based service
discovery and invocation, and automatic service composition. In the following, we
present the conceptual model of each of these initiatives and give an overview of their
execution environments.

OWLWSML

WSMO

WSMX

OWL-S

Loose set of
individual tools

OCML

IRS-III Service
Ontology

IRS-III Server

WSMO/L/X
Framework [6]

IRS-III
Framework [7]

OWL-S
Initiative [15]

Ontology
Language

Conceptual
Model

Execution
Environment

Fig. 4. WSMO/L/X, IRS-III and OWL-S constituent layers

4.2 WSMO/L/X Framework

WSMO [10] is an ontological conceptual model for describing various aspects related
to SWS. WSMO refines and extends the Web Service Modeling Framework (WSMF)
[11], by developing a set of formal ontology languages. WSMF is based on two
complementary principles that WSMO inherits: strong decoupling between the
various resources and a strong mediation to ensure the interoperation between these
loosely coupled components. While WSMO provides the conceptual model for
describing core elements of SWS, WSML [12] provides a formal language for
writing, storing and communicating such descriptions.

388 S. Bhiri et al.

4.2.1 Conceptual Model: WSMO
Following the main concepts identified in the WSMF, WSMO identifies four top level
elements as the main concepts for describing several aspects of SWS, namely
ontologies, Web services, goals and mediators (see Fig. 5).

Fig. 5. WSMO top level elements [10]

Ontologies are used as the data model throughout WSMO. All resource descrip-
tions as well as all data interchanged during service usage are based on ontologies.
The core elements of an ontology are concepts (the basic entities of the agreed
terminology), relations (model interdependencies between several concepts, and
instances), instances, and axioms (define complex logical relations between the other
elements defined in the ontologies) [6].

WSMO Service description consists of non-functional, functional, and behavioral
aspects [10]. A service capability describes the provided functionality. A capability is
described in terms of preconditions, assumptions, postconditions and effects. A
service interface describes the behavioral aspects of the service in terms of
choreography and orchestration. A service choreography details how to interact with
the service from a user’s perspective. An orchestration describes how the service
works from the provider’s perspective [10].

A WSMO goal is a high level description of a task required to be solved by Web
services. Similar to a WSMO service, a goal consists of non functional properties, a
capability describing the user objective and an interface reflecting the user behavior
requirements.

Mediation in WSMO aims at resolving mismatches that may arise between
different used terminologies (data level), or interaction protocols (process level).
WSMO ensures dynamic interoperability by defining mediators during design time
that will be used by mediation components during run time to resolve heterogeneity
on the fly. A WSMO mediator can be seen as an adapter between WSMO elements
defining the necessary mappings and transformations between the linked elements [6].
WSMO defines four types of mediators: OO mediators that resolve terminological
mismatches between two ontologies, GG, WG and WW mediators that resolve
mismatches respectively between two goals, a service and a goal, and two Web
services.

 Semantic Web Services for Satisfying SOA Requirements 389

4.2.2 Execution Environment: WSMX
WSMX [13] is an execution environment for dynamic discovery, selection, mediation,
invocation and inter-operation of SWS. WSMX is the reference implementation of
WSMO and therefore relies on it as conceptual model. A provider can register its service
using WSMX in order to make it available to the consumers. A requester can find the
Web Services that suit their needs and then invoke them in a transparent way [6].

WSMX exploits semantic service description to support capability-based discov-
ery, not possible to perform having pure syntactic service description. In addition to
the classical keyword-based discovery, WSMX supports functional, instance based
and Quality of Service (a.k.a QoS) based discovery. Functional discovery reasons
over service capabilities by matching them to the user goal capability. WSMX
distinguishes different degrees of matching with the required goal [6]. Instance-based
discovery considers instance level service descriptions and can dynamically fetch
additional information during the discovery process. A Quality of Service based
discovery provides a framework which matches specific QoS requirements of the
requester with provided SWS.

WSMX implements data and process mediation as distinct components. The Data
Mediation component in WSMX deals with heterogeneity problems that can appear at
data level. Process level mediation deals with solving interaction protocols mismatches.
Both components handle heterogeneity problems by applying the set of mappings rules,
between the source and target WSMO element, defined during design-time.

WSMX conceptual architecture defines a distinct component for composition.
However, no automatic composition is implemented yet as part of WSMX. Neverthe-
less, WSMO provides the required foundation for automatic service composition.
Indeed, SUPER project [14] has released a composer component enabling automatic
WSMO service composition by applying Artificial Intelligence (a.k.a AI) planning
techniques.

4.3 OWL-S Initiative

4.3.1 Conceptual Model: OWL-S
OWL-S [7, 15] is an upper ontology for service description based on the Web
Ontology Language (OWL) [16]. As shown in Fig. 6, an OWL-S service description
consists in three interrelated parts: the service profile, the process model and the
grounding. The service profile is used to describe what the service does; the process
model is used to describe how the service is used; and the grounding is used to
describe how to interact with the service. The service profile and process model are

Fig. 6. Top level elements of OWL-S service ontology [7]

390 S. Bhiri et al.

abstract descriptions of a service, whereas the grounding specifies how to interact
with it by providing the concrete details related to message formats, and
communication protocols.

A service profile describes functional, classification and non functional aspects of
a service. Similar to WSMO, the capability of a Web service is represented as a
transformation from the inputs and the preconditions of the Web service to the set of
outputs produced, and the effects that may result from the execution of the service
[15]. The classification aspect describes the type of service as specified in a domain-
specific taxonomy. Non-functional aspects include service parameters like security,
privacy requirements, and Quality of Service properties. OWL-S provides an
extensible mechanism that allows the providers and the consumers to define
additional service parameters.

The process model provides a more detailed view on how the service is carried
out in terms of control and data flow. OWL-S distinguishes between atomic,
composite and simple processes. An atomic process corresponds to a single
interchange of inputs and outputs between a consumer and a provider. A composite
process consists of a set of component processes linked together by control flow and
data flow structures. The control flow is described using programming language or
workflow constructs such as sequences, conditional branches, parallel branches, and
loops. Data flow is the description of how information is acquired and used in
subsequent steps in the process [15]. Simple processes can be used to provide
abstracted, non invocable views of atomic or composite processes.

The grounding specifies the details of how a service can be accessed. Service
grounding allows separating the abstract information described by the process model
from the implementation details. Fig. 7 illustrates how the grounding is achieved in
OWL-S. It specifies mapping atomic processes into WSDL operations. In addition, it
specifies how to translate the messages described as OWL classes and instances to
WSDL messages.

Fig. 7. Grounding in OWL-S [15]

 Semantic Web Services for Satisfying SOA Requirements 391

4.3.2 OWL-S Tools
Unlike WSMO, OWL-S does not have a reference implementation like WSMX.
Instead, there exists a collection of individual tools like OWL-S Editor [17], OWL-
S/UDDI Matchmaker [18], OWL-S Virtual Machine [19], WSDL2OWL-S converter
[20] and OWL-S2UDDI converter [18]. In the following we focus on the tools
enabling dynamic service discovery and interoperation, and automatic service
composition.

The OWL-S/UDDI matchmaker integrates OWL-S capability matching into the
UDDI registry. OWL-S2UDDI converter converts OWL-S profile descriptions into
corresponding UDDI advertisements, which can then be published in a UDDI
registry. The OWL-S/UDDI registry enhances UDDI registry with OWL-S
matchmaking functionalities. The matching engine contains five different filters for
namespace comparison, word frequency comparison, ontology similarity matching,
ontology subsumption matching, and constraint matching [6].

The OWL-S Virtual Machine enables to control the interaction between Web
services according to their process models. Unlike WSMO and WSMX, OWL-S
conceptual model and implementation do not consider mediators as first class
citizens. OWL-S assumes the existence of external mechanisms that can handle
heterogeneity at data and process level [6].

Several approaches have been proposed for automatic service composition based on
OWL-S description [15]. [21] considers OWL-S process model as abstract workflow
which is expanded and refined using automated reasoning machinery. [22, 23] use
Hierarchical Task Network (HTN) planning to perform automated Web Service
composition. Other planning techniques that have been applied to the composition of
OWL-S services, are classical STRIPS-style planning [24], extended estimated-
regression planning [25], and Planning as Model Checking [26].

4.4 IRS-III Framework

IRS-III (Internet Reasoning Service) is a framework for creating and executing SWS
[8]. It acts as a semantic broker between a client application and deployed Web
services by supporting capability-based invocation. A client sends a request
encapsulating the desired goal and, by exploiting the semantic description of Web
services, IRS-III framework: (a) discovers potentially relevant Web services; (b)
selects the set of Web services which best fit the incoming request; (c) mediates any
mismatches at the conceptual level; and (d) invokes the selected Web services whilst
adhering to any invocation constraints.

4.4.1 Conceptual Model: Service Ontology
IRS-III service ontology defines the conceptual model of IRS-III framework. It
extends the core epistemological framework of its previous IRS-II framework [27] by
incorporating WSMO conceptual model. Different from WSMO, IRS-III service
ontology uses its own ontology language, OCML [28]. While there are some
differences between IRS-III and WSMO conceptual models, IRS-III service ontology
defines the same concepts for describing SWS namely goals, Web service capability
and interface (choreography and orchestration), and mediators.

392 S. Bhiri et al.

4.4.2 Execution Environment: IRS-III Server
IRS-III server is the main element of IRS-III framework handling capability-based
discovery and dynamic invocation. IRS-III framework includes also IRS-III
publishing platform, IRS-III browser and IRS-III API. The publishing platform
enables ease publication and deployment of Web services. IRS-III browser provides a
goal-centric invocation mechanism to end users. IRS-III API facilitates the integration
of IRS-III framework with other SWS platforms.

Similar to WSMX, IRS-III mediation approach consists of defining mediators
which provide declarative mappings for solving different types of conceptual
mismatches. These mediator models are created at design time and used at runtime.
The mediation handler (part of IRS-III server) interprets each type of mediator
accordingly during selection, invocation and orchestration of Web services [8].

Like WSMX, IRS-III does not support explicitly automatic service composition;
however, it shares with it the same results of SUPER project about automatic service
composition by applying AI planning techniques since both of them rely on the same
conceptual model WSMO.

4.5 METEOR-S

METEOR-S project addresses the usage of semantics to support the complete
lifecycle of Semantic Web processes [9] using four kinds of semantics - data,
functional, non-functional and execution semantics. The data semantics describe the
data (inputs/outputs) of the Web services. The functional semantics describe the
functionality of a Web services (what it does). The non-functional semantics describe
the non-functional aspects like Quality of Service and business rules. The execution
semantics model the behavior of Web services and processes. Unlike above
initiatives, METEOR-S does not define a fully fledged conceptual model for SWS
description. It rather follows a light-weight approach by extending WSDL files with
semantic annotation. The semantic annotation is achieved by mapping WSDL
elements to ontological concepts. WSDL-S [29], METEOR-S specification for WSDL
annotation, was one of the main works that influenced SAWSDL [30] the W3C
standard for WSDL and XML schema semantic annotation.

METEOR-S framework provides a tool for creating SWS [31], a publication and
discovery module [32], a composition module [33] and an execution environment. The
GUI based tool provides support for semi-automatic and manual annotation of existing
Web services or source code with domain ontologies. The publication and discovery
module provides support for semantic publication and discovery of Web services. It
provides support for discovery in a federation of registries as well as a semantic
publication and discovery layer over UDDI. The composition module consists of two
main sub-modules - the constraint analysis and optimization sub-module that deal with
correctness and optimization of the process on the basis of QoS constraints. METEOR-
S framework doesn’t define components dedicated to deal with data and behavioral
heterogeneity problems that may arise during services interactions.

4.6 SOA and Semantic Web Services: A Step Forward

The objective of SWS initiatives is providing the means to automate capability-based
service discovery, service composition and invocation. The main idea is extending

 Semantic Web Services for Satisfying SOA Requirements 393

syntactical service description with additional information which can be understood
and processed by the machine. Ontologies play a central role in the semantic service
description. Using ontologies does not only bring user requirements and service
advertisements to common conceptual space, but also helps to apply reasoning
mechanisms [9]. Thus software programs are able to understand service descriptions
and reason over them.

Indeed, as regards to service discovery ontology-enhanced search engine can
exploit semantic service descriptions to implement matchmaking techniques, much
more powerful than keyword-based ones, based on information retrieval, AI, and
software engineering to compute both the syntactical and semantic similarity among
service capability descriptions. Regarding dynamic service interoperation, software
agents can leverage the computer-interpretable service description to understand what
input is necessary to the service call, what information will be returned, and how to
execute the service automatically. Mediation is a pillar for solving heterogeneity
problems on the fly. Data and process mediators have been recognized as first class
citizens within WSMO and IRS-III. Concerning dynamic service composition,
semantic markup of Web services provides the necessary information to select and
compose services. Software programs, based on AI planning, software synthesis and
model checking, can be written to manipulate these representations, together with a
specification of the objectives of the task, to achieve the task automatically [7].

In spite of the undeniable advancement realized by SWS, some issues still remain to
be addressed. Indeed the great success of SWS is due to their semantic descriptions
that rely on ontologies. However, service providers and requesters may use different
terminologies to describe their requirements and services. Therefore, mediation is a
key point in all SWS operations (discovery, composition, invocation) in order to
resolve the terminological mismatches. Mediators can be seen as adapters at an
ontological level enabling to migrate from one conceptualization to another.
Consequently SWS initiatives have the same drawbacks as any adapter-based solution.
Mediators are often defined at design time manually. In addition mapping between two
conceptualizations is not always straightforward. Furthermore, mediators must be
maintained each time one or both of the involved ontologies change. Another problems
SWS face concerns the computing complexity, especially in terms of response time, of
machine reasoning techniques which hamper the application of these techniques in
context where soft real-time response is required for user interactions. Furthermore,
plans generated by AI planning techniques are relatively simple compared to real
composition models, defined by BPEL for instance.

5 Conclusion

In this chapter, we discussed how far Web services technologies and SWS initiatives
satisfy SOA requirements. Loose coupling between service provision and
consumption has led to new challenges for ensuring seamless and cost effective
integration. These challenges concern effective service discovery, dynamic service
interoperation, and automation support for service composition. By defining a set of
standards, Web services technologies ensure low level interoperability, an essential
first step yet not enough. Indeed, human intervention is still heavily required to

394 S. Bhiri et al.

resolve data and behavioral mismatches, to find the right services, and to select and
compose appropriate services. SWS initiatives extend the level of interoperability to
deal with data and behavioral heterogeneity using the concept of mediation. They also
provide the foundation for (i) capability-based service discovery which is much more
efficient than keyword-based one, (ii) dynamic service interoperation and (iii)
automatic service composition. In spite of the remarkable results achieved by these
initiatives, some open issues still need to be resolved. These issues are mainly related
to mediator definition and update, and the computing complexity of machine
reasoning techniques.

Acknowledgments. This work was supported by the Lion project supported by
Science Foundation Ireland under grant no. SFI/02/CE1/I131, and by SUPER project
funded by the EU under grant no. FP6-026850.

References

1. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

2. Service Oriented Architecture Modeling, http://www.soamodeling.org
3. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.:

OASIS Reference Model for Service Oriented Architecture V 1.0, http://www.oasis-
open.org/committees/download.php/19361/soa-rm-cs.pdf

4. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web services
platform architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice-Hall, Englewood Cliffs (2005)

5. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5, 199–220 (1993)

6. Roman, D., de Bruijn, J., Mocan, A., Lausen, H., Bussler, C., Fensel, D.: WWW: WSMO,
WSML, and WSMX in a nutshell. In: 1st Asian Semantic Web Conference, pp. 516–522.
Springer, Beijing (2006)

7. Martin, D., Burstein, M., McDermott, D., et al.: OWL-S 1.2 Release,
http://www.daml.org/services/owl-s/1.2/

8. Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Carlos, P.:
IRS-III: A broker-based approach to semantic Web services. J. Web Sem. 6(2), 109–132
(2008)

9. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S Approach
for Configuring and Executing Dynamic Web Processes. LSDSIS technical report,
http://lsdis.cs.uga.edu/projects/meteor-s/

10. Roman, D., Lausen, H., Keller, U., et al.: Web Service Modelling Ontology,
http://www.wsmo.org/TR/d2/v1.4/

11. Fensel, D., Bussler, C.: The Web Service Modeling Framework (WSMF). Electronic
Commerce Research and Applications 1(2), 113–137 (2002)

12. Steinmetz, S., Toma, I.: Web Service Modeling Language,
http://www.wsmo.org/TR/d16/d16.1/v1.0/

13. Shafiq, O., Moran, M., Cimpian, E., Mocan, A., Zaremba, M., Fensel, D.: Investigating
Semantic Web Service Execution Environments: A comparison between WSMX and
OWL-S tools. In: 2nd International Conference on Internet and Web Applications and
Services. IEEE Computer Society, Mauritius (2007)

 Semantic Web Services for Satisfying SOA Requirements 395

14. Semantic Utilised for Process Management within and between Enterprises,
http://www.ip-super.org

15. David, L., Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M.,
Sycara, K.P., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing Semantics to Web
Services with OWL-S. World Wide Web Journal 10(3), 243–277 (2007)

16. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview,
http://www.w3.org/TR/2004/REC-owl-features-20040210/

17. Elenius, D., Denker, G., Martin, D., et al.: The OWL-S Editor—A development tool for
semantic web services. In: 2nd European Semantic Web Conference, pp. 78–92. Springer,
Heraklion (2005)

18. Srinivasan, N., Paolucci, M., Sycara, K.: An efficient algorithm for OWL-S based
semantic search in UDDI. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS,
vol. 3387, pp. 96–110. Springer, Heidelberg (2005)

19. Paolucci, M., Ankolekar, A., Srinivasan, N., et al.: The DAML-S virtual machine. In: 2nd
International Semantic Web Conference, pp. 335–350. Springer, Sanibel Island (2003)

20. Paolucci, M., Srinivasan, N., Sycara, K., et al.: Toward a semantic choreography of web
services: From WSDL to DAML-S. In: 1st International Conference on Web Services, pp.
22–26. CSREA Press, Las Vegas (2003)

21. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In: 8th
International Conference on Principles of Knowledge Representation and Reasoning, pp.
482–493. Morgan Kaufmann, Toulouse (2002)

22. Sirin, E., Parsia, B., Wu, D., et al.: HTN Planning for Web Service Composition using
SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)

23. Nau, D., Au, T.C., Ilghami, O., et al.: SHOP2: An HTN planning system. J. Artif.
Intell. 20, 379–404 (2003)

24. Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing services described in
DAML-S. In: Workshop on Web Services and Agent-Based Engineering, Melbourne
(2003)

25. McDermott, D.: Estimated-regression planning for interactions with web services. In: 6th
International Conference on Artificial Intelligence Planning Systems, Toulouse (2002)

26. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with
interactive composition techniques. IEEE Intell. Syst. 19(4), 42–49 (2004)

27. Motta, J., Domingue, L., Cabral, M.: IRS-II: a framework and infrastructure for semantic
Web services. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 306–318. Springer, Heidelberg (2003)

28. Motta, E.: An overview of the OCML modelling language. In: 8th Workshop on
Knowledge Engineering Methods and Languages, Karlsruhe, pp. 21–22 (1998)

29. Miller, J., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R., Sivashanmugam, K.:
WSDL-S: Adding Semantics to WSDL - White Paper,
http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf

30. Kopecky, J., Vitvar, T., Bournez, C., Farrell, F.: SAWSDL: Semantic Annotations for
WSDL and XML Schema. IEEE Internet Computing 11, 60–67 (2007)

31. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: METEOR-S Web service Annotation
Framework. In: 13th International World Wide Web Conference, pp. 17–22 (2004)

32. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: METEOR-
S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and
Discovery of Web Services. J. Inf. Technol. and Management 6(1), 7–39 (2005)

33. Cardoso, J., Sheth, A.O.: Semantic E-Workflow Composition. J. Intell. Inf. Syst. 21(3),
91–225 (2003)

	Semantic Web Services for Satisfying SOA Requirements
	Introduction
	Service Oriented Architecture
	SOA Genesis
	SOA: Terms and Concepts
	SOA: Implementation Challenges

	Realizing SOA with Web Services
	Scope of the Architecture
	Web Service Transport
	Web Service Messaging
	Web Service Description
	Web Service Discovery
	Web Service Composition
	SOA and Web Services: Need for Semantics

	Realizing SOA with Semantic Web Services
	Introduction
	WSMO/L/X Framework
	OWL-S Initiative
	IRS-III Framework
	METEOR-S
	SOA and Semantic Web Services: A Step Forward

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

