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Abstract. In this paper, we propose a holistic classification scheme for
different room types, like office or meeting room, based on 3D features.
Such a categorization of scenes provides a rich source of information
about potential objects, object locations, and activities typically found
in them. Scene categorization is a challenging task. While outdoor scenes
can be sufficiently characterized by color and texture features, indoor
scenes consist of human-made structures that vary in terms of color and
texture across different individual rooms of the same category. Never-
theless, humans tend to have an immediate impression in which room
type they are. We suggest that such a decision could be based on the
coarse spatial layout of a scene. Therefore, we present a system that cat-
egorizes different room types based on 3D sensor data extracted by a
Time-of-Flight (ToF) camera. We extract planar structures combining
region growing and RANSAC approaches. Then, feature vectors are de-
fined on statistics over the relative sizes of the planar patches, the angles
between pairs of (close) patches, and the ratios between sizes of pairs of
patches to train classifiers. Experiments in a mobile robot scenario study
the performance in classifying a room based on a single percept.

1 Introduction

Context is a rich source of information for interpreting tasks in complex scenes.
This has already been recognized for a long time. Systems like CONDOR [1]
or SPAM [2] coded explicit contextual rules that triggered other image opera-
tions. The main drawback of such kind of models was the complex knowledge
engineering task and the semantic deficiencies of extensional systems dealing
with uncertainty. More recently, graphical models have been applied in order
to provide a more concise model relating objects and aspects of the scene [3,4].
Murphy, Torralba, and Freeman estimate global contexts, like persons, vehicles,
furniture and vegetation from low-level image features [3]. These provide con-
straints on object categories and object scales. Hoiem, Efros, and Herbert first
extract a 3D surface geometry from 2D images and relate the estimated local
geometries to object classes predicted by a window-based object detector [4].

The work discussed so far mainly deals with 2D image information. Murphy
et al. demonstrate that many different scene categories can be distinguished by
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purely considering 2D image statistics on texture and edges. There have also been
other approaches using additional features like color histograms that successfully
distinguished indoor/outdoor [5], sky/no-sky, vegetation/no-vegetation [6]. How-
ever, this does not necessarily extrapolate to more finely graded scene categories
like different types of rooms, e.g. office or meeting room. Here, typical furniture
like tables, chairs, and shelves reoccur, but in different layouts. Furthermore,
furniture in the same type of room may have changing colors and textures or be
viewed from different directions.

In these cases, a 3D description of the scene is much more invariant with
regard to inner-class variations. However, strategies that provide a complete
semantic interpretation of the 3D scene suffer from very constraint settings and
extensive modeling efforts. Therefore, we aim at a more holistic 3D approach to
scene classification in the spirit of the gist approach used by Torralba [7]. In the
following, we describe the scene by a collection of planar structures and analyze
whether it is possible to compute proper feature vectors for the classification of
different room types (here: office, hall, and meeting room). The challenge faced
is to categorize rooms only based on the information of one frame. Section 2
presents the 3D Time-of-Flight (ToF) sensor for acquiring 3D information in
real time and introduces preprocessing steps specialized on this data. Section 3
presents necessary steps for determining sets of planar structures in this data,
and in Section 4 and 5 features and classifiers are chosen and examined with
regard to their performance in categorizing room percepts to room types.

2 Acquiring and Preprocessing 3D ToF Data

(a) (b) (c)

Fig. 1. (a) Swissranger SR3000, (b) exam-
ple amplitude image, and (c) example 3D
point cloud preprocessed

Our system uses the Swissranger
SR3000 (Fig. 1(a)) provided by Swiss
Center for Electronics and Microtech-
nology (CSEM) [8] delivering a ma-
trix of distance measurements inde-
pendent from texture and lighting
conditions. It consists of 176 × 144
CMOS pixel sensors which are able to
determine actively the distance bet-
ween the optical center of the camera
and the real 3D world point via mea-

suring the time-of-flight of a near-infrared signal. Besides the distance value
matrix (Fig. 1(c)), the camera provides a matrix containing amplitude values
(Fig. 1(b)) for each frame. The amplitude value indicates the amplitude of the
reflected near-infrared signal received by the sensor and implies therefore the
amount of light reflected by a world point. A small amplitude corresponds to a
small amount of light reflected indicating a weak signal.

To deal with noise arising from the different reflection properties several
preprocessing techniques proposed in [9] are applied. The distance image is
smoothed with a distance-adaptive median filter, which uses a different mask
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size (e.g. 3 × 3, 5 × 5, or 7 × 7) depending on the distance value for each pixel.
As the amplitude value refers to the quality of the distance measurement, points
with a small amplitude value are removed from the final 3D point cloud. The
threshold needed adapts automatically to different reflection properties in dif-
ferent scenes. Further, edge points arising in the case when light from the fore-
and the background hits the same pixel simultaneously are rejected. Finally, 3D
coordinates are generated out of the distances with regard to a 3D camera coor-
dinate system. With the assumption of ideal perspective projection, the known
position of the principal point, pixel sizes, and focal length, the 3D coordinates
can be computed from the distances via ray proportions in triangles. As a re-
sult the computed 3D points are organized regularly in a 2D matrix. This 2D
arrangement enables us to apply 2D preprocessing and search methods nicely
to 3D data saving computation time and complexity. Nevertheless, all methods
proposed in the following are applicable on any type of 3D data.

3 Planes – Meaningful Structures

For many applications it is necessary to extract meaningful structures which
enable a meaningful description of complex scenes. As the Swissranger camera
provides 2 1

2D data from which 3D points are computed it can be focused on
geometric aspects. Human-made environments – like walls, floors, and furniture
– consist of large planar structures. Therefore, it is a reasonable step to find
planar surfaces within a given 3D point set. It is assumed that preceptions of
halls, offices, and meeting rooms can be categorized in a proper way using pla-
nar structures, because they provide more stable features compared to colors,
textures, and materials occurring in different indoor scenarios.

In principal there are three possibilities to extract planes from a 3D point set.
First, the Random Sample Consensus (RANSAC) algorithm [10] can be used to
fit robustly plane models in 3D data, possibly combined with the Iterative Clos-
est Points (ICP) algorithm [11] or SIFT features for refining the planes [12,13].
Second, the Expectation Maximization (EM) algorithm can be used to adjust
the number of planes and estimates the locations and orientations by maximiz-
ing the expectation of a log-likelihood function [14,15]. Finally, region growing
based approaches start from an initial triangle mesh and merge adjacent planar
triangles iteratively [16]. These methods mentioned have several disadvantages.
For example, RANSAC might lead to non-compact planes e.g. containing points
of a table and a wall, simultaneously, or the EM algorithm has to run every time
when the number of planes was updated.

In the following, a combination of seeded region growing [17] and RANSAC is
introduced based on special values holding the correlating arrangement of points.
This planar patch extraction works directly on 3D points instead on triangles
as proposed by Hähnel saving computation time needed for triangle generation.
The main idea is to decompose the point cloud into planarly connected regions
and to extract planes in these regions for refinement.
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Oriented Particles. First, oriented particles similar to Fua’s approach [18] are
defined for each point. A point’s normal nc is computed using a point set
{pi | pi ∈ N3×3 of pc} defined on the 8-neighborhood of the Swissranger im-
age plane. The normal nc of the current point pc is determind by the principal
component analysis of the points ({pi} ∈ Pc). The deviation σc of the point pc

to the fitted plane can be used as a measure of the quality of the fit. Points
with a deviation below a threshold θσ are classified as locally planar, otherwise
as nonplanar [19]. Each plane {Pc(nc, dc)} is described by the Hessian Normal
Form

Pc : nc · x − dc = 0 (1)

where dc is equal to the Euclidean distance between the centroid mc = 1
|{pi}|

∑
i pi

and the origin of the given world coordinate system.

Extracting Planar Patches. Here, the point cloud is decomposed into connected
regions using region growing. Iteratively, points are selected randomly as seed of
a region and extended with points of the 8-neighborhood N3×3 if four criteria
are fulfilled. Two criteria are defined on the particles themselves, which are the
validation of the points generated by the preprocessing and the local planarity
as defined above. The other two criteria are computed on pairs of particles like
the conormality and coplanarity measurement defined by Stamos and Allen [19].
Two points p1 and p2 are conormal, when their normals n1 and n2 hold:

α = cos−1(n1 · n2) < θα (2)

Fig. 2. (red) coplanar example of
two patches, (blue) non coplanar
pair of patches

Two points p1 and p2 are coplanar (Fig. 2)
when the distance d

d = max(| r12 · n1 |, | r12 · n2 |),
r12 = p1 − p2 (3)

is smaller than a threshold θd. The distance is
computed with respect to the orientation and
the distance of the oriented particles. As a re-
sult a set of mainly planar connected patches
is provided. On each of these regions several
runs of the RANSAC algorithm extract the
largest and smoothest planes. This step can

be seen as a postprocessing step where basically the parameters of the planes
{Pc | nc, dc} are refined.

Merging Planar Patches. Due to oversegmentation neighboring planar patches
which are close to each other (so-called close patches) and belong to the same
infinite plane have to be merged. In order to realize an efficient merging strategy,
first, a patch is chosen randomly and related patches fulfilling the angle condition
(Eq. 2) are determined. These selected patches are forwarded to the next step,
where around the current patch a region of interest (ROI) is determined. Patch
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(a) (b) (c)

(d) (e) (f)

Fig. 3. First, exemplary photos and 3D point clouds of the training set are shown: the
trained (a) office, (b) meeting room, and (c) hall. Second, the rooms for testing are
displayed: the tested (d) office, (e) meeting room, and (f) hall.

candidates for merging are those patches which contain points that are inside
this defined ROI. The candidates together with the current patch are merged
to one plane containing all points of these patches. The parameters (nc, dc) of
this new plane are recomputed using all 3D points. This merging procedure is
repeated until the number of planes becomes stable.

Figure 3 presents exemplary photos of the six room scenarios – two office, two
halls, and two meeting rooms – and planar patches produced by the algorithm
introduced above using 3D point clouds provided by the Swissranger SR3000.
The thresholds mentioned here were set to θα = 10◦, θd = 0.2 · zc (the absolute
Euclidean distances between neighboring pixel points vary over the distance to



Categorizing Perceptions of Indoor Rooms Using 3D Features 739

the camera), and θσ = σ̄ +
√

1
n

∑n
c=1(σc − σ̄)2 with n is the number of valid

points per frame and σ̄ = 1
n

∑n
c=1 σc the mean deviation.

4 Feature Extraction

For classification an extraction of meaningful features from the given planes is
required. The aim is to classify a perception of a room (here: one frame of the 3D
ToF sensor) while e.g. a robot enters the room. The result of the classification
should be a hypothesis which room type was entered, even if the robot has not
seen this specific room before.

As well defined feature vectors have to fulfill several conditions it is not suit-
able to use all plane parameters merged to one vector as features for classification
as proposed by Lourenco [20]. The features should not only be independent from
colors and textures in the scene, which is implemented by the extracted planar
structures, but they should also be invariant with respect to changes in the ab-
solute number of planes, changes in view angle and view direction of the camera,
and invariant to in-class variation of the furniture configuration. In the following,
different aspects of the planar patches {Pi} are examined as first simple features
for classification concerning the conditions listed above.

(i) Number of Points per Patch. First, a feature vector is computed that en-
codes the size of patches in a frame, e.g. whether it contains large patches
or a lot of small planar structures: ∀i : ni = |Pi|∑

j |Pj | . The resulting terms
have values between zero and one with a concentration in the region close
to zero. As a feature vector (FV1) a histogram is computed using bins of
different size – small close to zero and becoming large towards one.

(ii) Angles between Normals of Patches. Here, the orientation between patches
is considered: ∀i �= j : αij = cos−1(ni ·nj) normalized by the maximal pos-
sible value which is π

2 . The feature vector (FV2) is created as a histogram
with five intervals uniformly distributed over the values between zero and
one. In Section 5, it is shown that for classification it is sufficient to compute
the median of these angles to encode their information. Both, histograms
over number of points per patch and angles between pairs of patches do not
contain any structural information about the rooms. This information can
be introduced by computing the feature histogram (FV3) over the angles
α′

ij between pairs of close patches leading to better classification results.
(iii) Ratios between Sizes of Patches. This feature (FV4) encodes whether a

frame contains a lot of patches of similar or different size: ∀i �= j : rij =
min(|Pi|,|Pj |)
max(|Pi|,|Pj|) , while the feature vector (FV1) over the number of points per
patch refers to the absolute sizes of the patches.

The values in the bins of the feature histograms (FV1, FV2, FV3, FV4) are
normalized to the range [0, 1] by dividing the entries by the sum over all values
in the bins per histogram.
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5 Experiments and Discussion

For the following experiments 300 frames of two different offices, two halls, and
two meeting rooms were acquired. The camera was positioned at a height of 145
cm (robot’s camera head) and rotated horizontally 30◦ left/right and vertically
10◦ up/down in order to simulate a more or less random view on the room while
entering. Also, the rooms chosen have significant differences in the layout within
a room type as shown in Figure 3. The office tested is mirrored concerning the
arrangement of furniture compared to the trained one, the table of the meeting
room tested is rotated about 90 degree compared to the trained one, and the hall
tested is not a straight corridor but a corridor following a corner. One office, one
meeting room, and one hall (Fig. 3(a), 3(b), 3(c)) form the training set where
270 frames per room are used to train the classifiers and the remaining 30 frames
to test the quality of the performance in recognizing an already seen room. 300
frames per room of the three other rooms (Fig. 3(d), 3(e), 3(f)) form the main
test set for examining the performance of our system in categorizing percepts
of rooms which have not be seen before. We intentionally started with a very
small training set containing a single room per category in order to show the
generalizability of the learned model.

Fig. 4. (top) This plot presents results of the recognition and categorization using dif-
ferent combinations of the feature vectors (FV1, FV2, FV3, FV4: FV2a the histogram
of angles between all patches, FV2b the median of these angles). Three classifiers are
tested: a neuronal network (NN), a support vector machine (SVM), and a gaussian
mixture model (GMM). (bottom) This plot shows the influence of the number of train-
ings data on the categorization result using [FV1, FV2b, FV3, FV4]. The vertical bars
encode the standard deviation of the rates over 10 training runs of the NN, SVM or
GMM with identical parameters (results using GMMs stay unchanged over 10 runs).
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Three different classifiers are used to examine the proposed features in Sec-
tion 4. The examined feature vectors are the number of points (FV1), the an-
gles between patches (FV2a) and the median over these angles (FV2b), the
angles between close patches (FV3), and the ratio of number of points between
pairs of patches (FV4). The features are tested separately and in combination.
A neural network (NN) with one hidden layer based on the Neural Network
Toolbox of MatLab using backpropagation [21], the support vector machine
SVMlight (SVM) [22,23] with a 5th-degree polynomial, and a gaussian mixture
model (GMM) with five mixed distributions implemented in the toolkit ESMER-
ALDA [24] are used for the classification task. Screening experiments provided
five mixed distribution for GMM and a 5th-degree polynomial for SVM as quite
suitable to deal with the proposed feature vectors.

Figure 4(top) presents all classification results from different feature vectors
and combinations of them. The first four columns examine the feature vectors
FV1, FV2a, FV3, and FV4 separated from each other. FV1 and FV3 turn out
as features which contribute most to a good feature vector (recognition rate:
0.90, categorization rate: 0.65). The combination of these two features (FV1 and
FV3) leads to a feature vector which provides promising categorization results
up to 0.79 and recognition results up to 0.93. An additional test is executed to
study the influence of FV2a compared to FV2b. FV2b performs similar to FV2a
therefore it is assumed that the median of all angles can replace a histogram
over all angles. The categorization can be improved up to 0.81 if the feature
vector FV4 is added while the recognition rate stays on the level of 0.90. This
rate can be further increased up to 0.99 using FV2b. As an assumption it can
be stated that GMMs provide the most stable and proper classifiers using [FV1
FV2b FV3 FV4] as a feature vector. Round about 75% of the false classified
vectors contains a mix up between meeting room and office. Since both room
categories have analogies like a large table area in the middle of the room, this
is an expected result.

Figure 4(bottom) shows the influence of the amount of training data on the
classification rates. The vertical bars encode for each set of training data how
reliable this classification rate is, since every trainings run with the same set of
features and identical parameters leads to classifiers producing different classifi-
cation rates on the same test data. Especially the NN and GMM classifiers seem
to become saturated when using more than 150 training samples.

For additional experiments extra offices are recorded. Four of the now six
different offices have a similar layout with two opposing work places while the
other two rooms contain only a single work place. A categorization of the four
double-place offices with the classifiers – trained with the train data introduced
above – provides a rate of at least 0.69 right categorized percepts while only 0.34
to 0.51 of the percepts of the two single-place offices are classified correctly. If
the train data is extended with frames of a single-place room the categorization
rate of all offices can be increased to 0.88 on average.

Eighty percent of successful room categorization indicates that these planar
structures extracted from the 3D point clouds provide meaningful information
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about categories of rooms whereon feature vectors can be defined suitable for
classification. The categorization only based on the given 3D data provides
promising first results that may be even further improved via applying more
different statistics to the set of planar patches, like e.g. histograms over the
smallest distances between pairs of patches, number of close patches, the shapes
of patches, or the convex hulls.

6 Conclusion and Outlook

In this paper an approach for classifying and categorizing rooms is introduced.
This is especially challenging as individual components reappear in different
room categories and vary in the same category with regard to color and texture.
We propose a holistic classification scheme of room types using 3D spatial in-
formation. The approach is designed to work in a real world setting combining
different innovative techniques in a whole processing chain from sensor to classi-
fication result. First, planar structures on 3D ToF data are extracted. Oriented
particles for each point over its 8-neighborhood are defined. Afterwards using re-
gion growing the current region is extended by points that are planar, valid with
regard to the preprocessing, conormal and coplanar. On the resulting connected
planar regions RANSAC refines smooth planar patches while a merging step
fuses close patches that belong to the same infinite plane. Several statistics over
these patches are computed like number of points per patch, angles between all
pairs of patches, angles between pairs of close patches, and ratios between sizes
of patch pairs. Histograms over these statistics define feature vectors that show
a good performance in categorizing room percepts of offices, halls, and meeting
rooms.

We show that the features defined can be utilized for room categorization
providing context information important for a mobile robot acting in a home
tour scenario [25,26]. To cope with such a scenario, the next step is to apply the
proposed feature extraction and classification to data of other room types – like
living rooms, kitchens, and bedrooms which are typical rooms for this scenario.
The aim is to combine room hypotheses on 3D data with hypotheses of other
sensors like speech or 2D data. There, it might be necessary to compute a huge
amount of simple features and to extract the best ones using feature selection
techniques like AdaBoost. As our approach is purely data driven and represents
a bottom-up description of rooms, a second interesting field for further research
is to generate models of different room categories out of planar structures. These
models could be triggered by the holistic classification result and support the
interpretation as top-down world knowledge. It further can help to build up a
scene model of the robot’s environment.
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