
Chapter 12
Appendix on Double Cosets

We now discuss a double coset decomposition for the symplectic group GSp
(2n, F ), which in the case n = 2 was found by Schröder [81]. Let F be a local
non-Archimedean field of residue characteristic not equal to 2, let oF be its ring of
integers, and let πF denote a prime element. LetG(F ) = GSp(2n, F ) ⊆ Gl(2n, F )
be the group of symplectic similitudes. Hence, g ∈ G(F ) iff g′Jg = λ(g) · J for a
scalar λ(g) ∈ F ∗, where

J =
(

0 E
−E 0

)

and where E denotes the unit matrix. Then g ∈ G(F ) ⇐⇒ (g′)−1 ∈ G(F ) ⇐⇒
g′ ∈ G(F ) and J ′ = J−1 = −J ∈ G(F ). Let G(oF ) = GSp(2n, oF ) denote the
group of all unimodular symplectic similitudes.

Centralizers. For n = i + j and i ≤ j put

s = diag(E(i,i),−E(j,j), E(i,i),−E(j,j)) ∈ G(F ).

The connected component of the centralizer H = (Gs)0 of s is a maximal con-
nected reductive subgroup of G. H(F ) is isomorphic to the subgroup of all matrices
(g1, g2) in GSp(2i, F ) × GSp(2j, F ) with similitude factor λ(g1) = λ(g2)

1 → H(F ) → GSp(2i, F )× GSp(2j, F ) → F ∗ → 1.

The Matrices g(e1, . . . , ei). Let denote g(e1, . . . , ei) the upper triangular matrix

g(D) =
(

E S
0 E

)

, S =
(

0(i,i) D
D′ 0(j,j)

)

,

defined by D =
(
diag(πe1

F , . . . , πei

F ) , 0(i,j−i)
)
, where we assume eν ∈ Z and

e1 ≤ e2 . . . ≤ ei ≤ ∞.
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Theorem 12.1. The matrices g(e1, . . . , ei), for e1 ≤ e2 · · · ≤ ei ≤ ∞ and eν < 0
or eν = ∞ for all ν = 1, . . . , i, define a system of representatives for the double
cosets

H(F ) \ G(F ) /G(oF ).

Remark 12.1.An alternative choice would have been g(e1, . . . , ei) with e1 ≤ . . . ≤
ei ≤ 0. Using this representatives one obtains the following corollary.

Corollary 12.1. Let T be the diagonal torus in H or in G. Then there exists an
element r ∈ G(F ) such that the set of conjugates {trt−1 | t ∈ T (F )} of r contains
a complete set of representatives of H(F ) \ G(F )/G(oF ).

For instance, one can choose r = g(0, . . . , 0) ∈ G(oF ). For D = diag(D, E,
D−1, E) ∈ T (F ) and D = diag(πe1

F , . . . , πei) then DrD−1 = g(e1, . . . , ei).
The proof of the theorem requires some preparation. In the following we always

assume that D satisfies e1 ≤ · · · ≤ eν and eν+1 = · · · = ei = ∞ for some ν ≤ i:

1. The parabolic subgroups Ps. There is a parabolic subgroup P = Ps of G with
Levi componentL in H = Hs. Let P = L ·N , where N is the unipotent radical.
Then Iwasawa decompositionG(F ) = L(F ) ·N(F ) ·G(oF ) allows us to choose
representatives g(M, N, U, V ) ∈ N(F ) of the form

g(M, N, U, V ) =

⎛

⎜
⎜
⎝

E M U N
0 E ∗ V
0 0 E 0
0 0 −M ′ E

⎞

⎟
⎟
⎠ .

Notice g(0, 0, 0, V )g(M, N, U, 0) = g(M, N, U, V ) and V = V ′ = V (j,j) is
symmetric. Since g(0, 0, 0, V ) ∈ H(F ) we can assume V = 0 and therefore
write g(M, N, ∗) = g(M, N, ∗, 0) for the representative

g(M, N, ∗) =

⎛

⎜
⎜
⎝

E M ∗ N
0 E N ′ 0
0 0 E 0
0 0 −M ′ E

⎞

⎟
⎟
⎠ .

For the moment M, N ∈ HomF (F j , F i) are still arbitrary.
2. Notice g(M1, N1, U1) ·g(M2, N2, U2) = g(M1 +M2, N1 +N2, U1 +U2 +M1 ·

N ′
2 − N1 · M ′

2); hence, g(M, N, U) · g(0, 0, Ũ) = g(0, 0, Ũ) · g(M, N, U) =
g(M, N, Ũ + U) and g(0, 0, U) ∈ H(F ). S = U − M · N ′ is symmetric.
For symmetric S = S′ now g(0, 0, S) ∈ H(F ). Hence, we can choose the
representatives in the form

g(M, N) = g(M, N, M · N ′).
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Since g(M1, N1)g(M2, N2) = g(M1+M2, N1+N2, M1N
′
1+M2N

′
2+M1N

′
2−

N1M
′
2) = g(M1 +M2, N1 +N2, (M1 +M2)(N1 +N2)′ −M2N

′
1 −N1M

′
2) =

g(0, 0,−M2N
′
1 − N1M

′
2) · g(M1 + M2, N1 + N2)

H(F ) ·g(M1, N1)g(M2, N2) ·G(oF ) = H(F ) ·g(M1+M2, N1+N2) ·G(oF ).

Hence, (M, N) ∈ HomF (F 2j , F i) can be modified within the double coset by
adding an arbitrary element from HomoF (o2j

F , oi
F ).

3. For A = A(i,i) and B = B(i,i) we later consider the special cases

M = (A, 0), N = (B, 0).

We then simply write g(A, B) or g(A, B, ∗) instead of g(M, N) and g(M, N, ∗),
respectively. The formulas above are valid with A, B in place of M, N . For

A =
(

A0 0
A1 A2

)

, B =
(

B0 0
0 B1

)

and k × k-matrices A0, B0, and k < i and integral matrices A1, A2, B1 step
(2) allows us to replace the matrices A1, A2 by zero and B1 by the unit matrix,
without changing the double coset.

4. Next, for Ui ∈ Gl(i, oF ) we obtain equivalent representatives g(M, N, ∗) and
g(Ui · M, Ui · N, ∗) by conjugation with diag(Ui, E, (U ′

i)
−1, E).

5. On the i × 2j-matrices in HomF (F 2j , F i) the elements g ∈ Sp(2j, oF ) act by
multiplication from the right

(M̃, Ñ) = (M, N) · g−1.

g(M, N, ∗) and g(M̃, Ñ , ∗) define the same double coset. It suffices to show
this for generators g of Sp(2j, oF ). For this notice wj · g(M, N, 0) · w−1

j =
g(N,−M, ∗) and uT · g(M, N, 0) · u−1

T = g(M, N −MT, ∗) for the generators
(see [28], Satz A.5.4)

wj =

⎛

⎜
⎜
⎝

E 0 0 0
0 0 0 E
0 0 E 0
0 −E 0 0

⎞

⎟
⎟
⎠

and

uV =

⎛

⎜
⎜
⎝

E 0 0 0
0 E 0 V
0 0 E 0
0 0 0 E

⎞

⎟
⎟
⎠ .

For integral symmetric V these are contained in the intersection of G(oF ) and
H(F ). Hence, we may choose our representatives (A, B) in

Gl(i, oF ) \ HomF (F 2j , F i) /Sp(2j, oF ),

where these, in addition, may be modified by elements from HomoF (o2j
F , oi

F ).
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12.1 Reduction to Standard Type

We say (M, N) are of standard type if

(M, N) =
(
(A, 0), (B, 0)

)

for an i × i-diagonal matrix B = diag(πe1
F , . . . , πei

F ) and a nilpotent i × i-lower
triangular matrix A such that:

(a) e1 ≤ e2 ≤ . . . ≤ ei ≤ 0.
(b) B−1 · A is an integral matrix.

The Reduction. We now construct elements in Sp(2j, oF ) × Gl(i, oF ) which
transform a given (M, N) ∈ HomF (F 2j , F i) into standard type. For this tem-
porarily replace (M, N) by (N,−M) (using conjugation by wj as in step (5)), and
then replace the resulting matrix by its transpose in

HomF (F i, F 2j).

By this Sp(2j, oF ) now acts from the left and Gl(i, oF ) acts from the right.
Our argument now proceeds using induction. Start with an arbitrary matrix in
HomF (F i, F 2j). We say it is of weak r-standard type if it is of the form

⎛

⎜
⎜
⎝

Br ∗
0 ∗

−A′
r ∗

0 ∗

⎞

⎟
⎟
⎠ ,

where r ≤ i ≤ j and Br = diag(πe1
F , . . . , πer

F ) and e1 ≤ . . . ≤ er ≤ ∞, such that
A′

r is a strict upper triangular r × r-matrix such that:

(a) πer divides the greatest common divisor (gcd) πe of all entries of the matrix
denoted by a star.

(b) πeν divides all entries of the νth column for 1 ≤ ν ≤ r.

If, in addition, the shape is
⎛

⎜
⎜
⎝

Br 0
0 ∗

−A′
r ∗

0 ∗

⎞

⎟
⎟
⎠

we say the matrix is partially of r-standard type.
By elimination of the right upper block a representative of weak partial r-

standard type can be transformed to become partially of r-standard type. Use right
multiplication with some element in Gl(i, oF ) to clear the first r rows of the dot-
ted area by adding columns. This does not change condition (b), since e1 ≤ . . . er
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and er is less than or equal to the gcd of the remaining columns (beginning from
r + 1). Since we add multiples of πe−eν

F λ, λ ∈ oF times the νth column (ν ≤ r),
we add terms in πe

F oF as follows from condition (b). Therefore, the gcd of the back
columns will not be changed by this procedure.

The Induction Step. For a matrix partially of (r − 1)-standard type consider the
columns beginning from the rth column. By right multiplication with a permutation
matrix in Gl(i, oF ) one can achieve the gcd πe

F of all these columns already being
the gcd of the entries of the rth column vector v ∈ F 2j . The first (r−1)-entries of v
are zero since the matrix we started with was partially of (r − 1)-standard type, and
since the permutations of columns beginning from the rth column do not change the
property such that the upper entries of these columns vanish.

Now our modifications will only involve multiplications with elements in G(oF )
from the left. This changes the columns beginning from the (r + 1)th. In particular,
this may destroy the property that the first (r − 1)-coordinates of these columns
vanish. The given matrix is of the form

⎛

⎜
⎜
⎝

Br−1 0 ∗
0 ∗ ∗

−A′
r−1 ∗ ∗
0 ∗ ∗

⎞

⎟
⎟
⎠

such that the gcd πe
F of the “middle” rth column divides the gcd of all columns

beginning from the (r + 1)th. This property is preserved under multiplication with
substitutions from G(oF ). Hence, in principle, we can concentrate on the first r
columns since it is enough to bring our representative into a form of weak partial
r-standard type. We therefore temporarily ignore all columns beginning from the
(r + 1)th column.

A suitable symplectic transformation of an embedded Sp(2(j − r + 1), oF ) by
multiplication from the left allows us to make all coordinates of v be zero, except
the rth and the (j +1), . . . , (j +r−1)th coordinate entries. By this the first (r−1)-
columns of our representative will not be changed. In addition we can achieve the
rth coordinate entry of v being a power πf

F of the prime element. For this notice
that the unimodular symplectic matrices act transitively on primitive vectors ([28],
Hilfssatz A.5.2).

After this the matrix is almost of weak partial r-standard type, being of the form
⎛

⎜
⎜
⎝

Br ∗
0 ∗

−A′
r ∗

0 ∗

⎞

⎟
⎟
⎠

such that (a) is satisfied. We are done if the rth coordinate entry πf
F of the rth

column is equal to πe
F . If it is not, then e < f . Then there exists ν with 1 ≤ ν < r

such that the gcd of the rth column is realized at the (j + ν)th coordinate entry.
It then remains to bring the gcd of column v to the “top.” Left multiplication by
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a symplectic unimodular substitution – on the standard basis wi of F 2j given by
wμ 	→ wμ for μ �= j+ν, j+r and bywj+ν 	→ wj+ν +wr andwj+r 	→ wj+r +wν –
has no effect on the lower half, i.e., A′

r will not be changed. Also the zero blocks on
the left side will not be changed. The matrixBr, on the other hand, will be modified.
Since the rth line of−A′

r is zero, only the last line ofBr will be changed – in fact by
addition of the νth line of−A′

r. Let x1, . . . , xr denote the new entries. For example,
xr = πer

F + πe
F = ε · πe (ε ∈ o∗F ).

Next the modified Br will again be diagonalized by left multiplication by a uni-
modular symplectic matrix of the form diag(U, E, (U ′)−1, E), where

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0
0 1 . . . 0 0
. .
. .
. .
. .
0 0 . . . 1 0
y1 y2 yr−1 ε−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This transforms −A′
r into −(U ′)−1 · A′

r = −A′
r (the rth column of A′

r is zero)
and transforms Br into U · Br. For suitable yν the matrix U · Br will become a
diagonal matrix with the entries diag(πe1

F , . . . , π
er−1
F , πe

F ), provided yν · πεν

F =
−ε−1xν holds. By condition (b) of the matrix of partial (r − 1)-standard type
we started with, such yν can be chosen in oF . This implies U ∈ Gl(r, oF ) and
diag(U, E, (U ′)−1, E) ∈ G(oF ). This shows that our new matrix is now of weak
partial r-standard type such that er = e, and it is a representative in the double coset
of the matrix we started from. This completes the proof of the induction step.

Iterating this i times, we can get a matrix of partial i-standard type. Reverse
transposition and reverse conjugation by wj therefore gives an equivalent matrix
replacing (M, N), which now is almost of standard type. It is of the form (M, N) =(
(A, 0), (B, 0)

)
forB = diag(πe1

F , . . . , πei

F ) and a lower triangular matrixA, whose
diagonal is zero, and such that e1 ≤ e2 ≤ . . . ≤ ei ≤ ∞. Choose k to be maximal
such that ek < 0. By step (3) we can assume without restriction of generality eν = 0
for ν > k. Then B−1 is defined, and B−1A is an integral matrix. So we have a
matrix of standard type.

Summary. There exist representatives of the double cosets H(F ) \ G(F )/G(oF )
of the form g = g((A, 0), (B, 0)), such that:

– B = diag(πe1
F , . . . , πei

F ) is a diagonal invertible i × i-matrix with e1 ≤ . . .
ei ≤ 0.

– A is a lower triangular matrix.
– B−1 has integral entries.
– The lower i × i-triangular matrix B−1 · A has integral entries.
– B−1 · A′ is an i × i-matrix with integral entries.
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12.2 The Quadratic Embedding

The matrix Λs = s · J = J · s is skew-symmetric

Λs =

⎛

⎜
⎜
⎝

0 0 E 0
0 0 0 −E

−E 0 0 0
0 E 0 0

⎞

⎟
⎟
⎠ .

For g ∈ G(F ) the conditions g ∈ H(F ) and λ(g)−1g′ ·Λs ·g = Λs are equivalent;
since λ(g)−1 · (g′)−1 = JgJ−1 and J−1Λs = s, the first equation is equivalent to
s · g = g · s.

Consequence. Elm(H(F ) · g) = λ(g)−1g′ · Λs · g defines an injection

Elm : H(F ) \ G(F ) ↪→ Λ2(F 2n)

of the cosets H(F ) \ G(F ) into the vector space Λ2(F 2n) of skew-symmetric 2n-
matrices.

Remark 12.2. The quadratic form q(Λ) = Trace(Λ · J · Λ · J) defines a nonde-
generate symmetric bilinear form on Λ2(F 2n) such that q(λ(g)−1g′ ·Λ · g) = q(Λ)
holds for all g ∈ G(F ).

Notation. We write Elm(A, B) for the matrix Elm(g(A, B, AB′)). Then
Elm(A, B) is a skew-symmetric matrix contained in the symplectic group
Sp(2n, F ).

By definition Λs and g are both contained in G(F ) = GSp(2n, F ). In all that
follows, we may therefore restrict ourselves to the case i = j since Elm(A, B)
is in Sp(2i, F ) × Sp(2(j − i), F ), and its “component” is in Sp(2(j − i), F ) is
J = J (j−i,j−i).

Assumption. For simplicity of notation we therefore assume from now on j = i,
without restriction of generality.

Then

Elm(A, B) =
(

0 X
−X ′ A

)

defined by n×n-blockmatricesX=
(

E 0
2A′−E

)

andA=
(

2(B ·A′−A·B′) −2·B
2 · B′ 0

)

.

Remark 12.3. The skew-symmetric matrix A is invertible since B is invertible.
So there are matrices Z and Ã such that

(
0 X

−X ′ A
)

=
(

E Z
0 E

)(Ã 0
0 A
)(

E 0
Z ′ E

)

.
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Notice X = Z · A, Ã = −Z · A · Z ′, and Z = X · A−1, X ′ = −A · Z ′,
Ã = Z · X ′ = X · A−1 · X ′.

Corollary 12.2. The (n × n)-matrix Z is symmetric. Hence,

g(Z) =
(

E 0
Z E

)

∈ G(F ).

Proof. Z = X · A−1 satisfies Z = Z ′ if −A′ · Z · A = A · X is symmetric. Since

A · X =
(

2 · (B · A′ − A · B′) −2 · B
2 · B′ 0

)(
E 0

2 · A′ −E

)

=
(

2B · A′ − 2A · B′ − 4B · A′ 2B
2B′ 0

)

=
(−2 · (B · A′ + A · B′) 2 · B

2 · B′ 0

)

is symmetric, Z is also symmetric. �

It follows that

Fact. g(Z)′ · Elm(A, B) · g(Z) =
(Ã 0

0 A
)

, where Ã = (A′)−1 = −A−1 and

A =
(

2(BA′ − AB′) −2 · B
2 · B′ 0

)

= −A′.

Formula for Z. A is invertible by assumption. Since Elm(A, B) and g(Z), and
hence also g(Z)′, are symplectic matrices, we have Ã = (A′)−1. Notice that

(
E −A
0 E

)(
0 −2 · B

2 · B′ 0

)(
E 0

−A′ E

)

=
(−2A · B′ −2 · B

2 · B′ 0

)(
E 0

−A′ E

)

=
(−2(A · B′ − B · A′) −2 · B

2 · B′ 0

)

= A.

Hence,

−2 · Z = −2 · X · A−1 =
(

E 0
2 · A′ −E

)(
E 0
A′ E

)(
0 B

−B′ 0

)−1(
E A
0 E

)
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=
(

E 0
A′ −E

)(
0 −(B′)−1

B−1 0

)(
E A
0 E

)

=
(

0 −(B′)−1

−B−1 −A′ · (B′)−1

)(
E A
0 E

)

=
(

0 −(B′)−1

−B−1 −B−1 · A − A′ · (B′)−1

)

.

Since we have shown that we can assume the representative to be of standard type,
the matrices B−1 and B−1A are integral; hence, Z is also integral. Therefore, we
have

Fact. The symplectic matrix g(Z) is contained in G(oF ).
The injection Elm already defined induces an injection elm

elm : H(F ) \ G(F )/G(oF ) ↪→ Λ2(F 2n)/G(oF ) .

A Consequence. Suppose (M, N) is of standard type. Consider the double coset
of g(M, N) = g(A, B). Its image elm(A, B) in Λ2(F 2n)/G(oF ) is represented by
the symplectic block matrix

diag(Ã,A) = diag(−A−1,A).

12.3 Elementary Divisors

We dispose over another obvious map

Λ2(F 2n)/G(oF ) → Λ2(F 2n)/
(
Gl(2n, oF ) × o∗F

)
.

Here (h, ε) ∈ Gl(2n, oF ) × o∗F acts on Λ2(F 2n) by Λ 	→ ε · h′ · Λ · h. For this we
may consider the general case i ≤ j, and we then claim

Lemma 12.1. The composed map

L : H(F ) \G(F ) /G(oF ) −→ Λ2(F 2n)/
(
Gl(2n, oF ) × o∗F

)
,

which maps H(F )gG(oF ) to the orbit of λ(g)−1g′Λsg, is an injection.

We say two skew-symmetric invertible matrices in Λ2(Fm) are equivalent if
there exists a unimodular matrix h in Gl(m, oF ) such that Λ1 = h′ ·Λ2 ·h. Concern-
ing the orbits (right side of the map in the last lemma) recall the result of Frobenius:

(A) Λ1 and Λ2 are equivalent if and only if they have the same elementary divisors
(understood in the usual sense).
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(B) The product of the first k-elementary divisors (in the usual sense) is the gcd of
all k × k-minors.

(C) ε · Λ and Λ are equivalent for any ε ∈ o∗F .

Hence, the orbits Λ2(Fm)/
(
Gl(m, oF ) × o∗F

)
are described by the elementary

divisors.

Proof of Lemma 12.1.Without restriction of generality we again assume i = j. Then
the skew-symmetric (n × n)-matrixA can be brought into the following Frobenius
standard form by a suitable unimodular transformation U ∈ Gl(n, oF ):

U ′ · A · U = diag

((
0 πa1

F

−πa1
F 0

)

, . . . ,

(
0 πai

F

−πai

F 0

))

,

where a1 ≤ . . . ≤ ai. These symplectic elementary divisors are determined
by the elementary divisors of the matrix U ′AU (in the usual sense), which are
πa1

F , πa1
F , πa2

F , πa2
F , · · · .

The diagonalizing matrix U defines

g = diag
(
(U ′)−1, U

) ∈ Sp(2n, oF ) ⊆ Gl(2n, oF ).

The symplectic 2n × 2n-matrix diag(Ã,A) = diag((A′)−1,A) will be trans-
formed by g ∈ G(oF ) into the “symplectic normal form”

diag

((
0 π−a1

F

−π−a1
F 0

)

, . . . ,

(
0 π−ai

F

−π−ai

F 0

)

,

(
0 πa1

F

−πa1
F 0

)

, . . . ,

(
0 πai

F

−πai

F 0

))

.

This symplectic normal form defines the same coset in Λ2(F 2n)/G(oF ) as the ma-
trices diag(Ã,A) and elm(M, N).

Claim 12.1. ai ≤ −ai. In other words, the exponents of the elementary divisors of
diag(Ã,A), in increasing order, are the numbers

a1, a1, a2, a2, . . . , ai, ai,−ai,−ai, . . . ,−a1,−a1.

(In the general case j > i there are n−2i additional zeros in the middle.) Hence, the
elementary divisors of diag(Ã,A) uniquely determine the exponents a1 ≤ a2 ≤
· · · ≤ ai of the symplectic Frobenius normal form of A, as defined above. This
immediately implies the lemma, provided the claim ai ≤ 0 holds. To show this
claim, notice π−ai

F = det(A)−1 ·gcd(Λn−1(A)) and det(A)−1 ·Λ2i−1(A) = A−1.
Hence, π−ai

F = gcd(A−1) is the first elementary divisor ofA−1. Thus, to prove the
claim, it suffices to show that A−1 is an integral matrix. Since

A = −2
(

B 0
0 E

)(
G E
−E 0

)(
B′ 0
0 E

)

for the matrix G = B−1A − (B−1A)′, we get
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A−1 = −1
2

(
(B′)−1 0

0 E

)(
0 −E
E G

)(
B−1 0

0 E

)

.

Since B−1 and G are integral,A−1 is integral, which proves the lemma. �

Proof of Theorem 12.1. By Lemma 12.1 it suffices to show that for (e1, . . . , ei),
subject to the conditions stated in Theorem 12.1, the elementary divisors of the
matrices

Elm

(

g(e1, . . . , ei)
)

=

⎛

⎜
⎜
⎝

0 0 E 0
0 0 0 −E

−E 0 0 −2 · D
0 E 2 · D′ 0

⎞

⎟
⎟
⎠

determine (e1, . . . , ei) uniquely such that every possible constellation of elemen-
tary divisors – as determined above – is realized by some Elm(g(e1, . . . , ei)).
This, however, is rather obvious. The elementary divisors ofElm(g(e1, . . . , ei)) are
πe1

F , πe1
F , . . . , πer

F , πer

F , . . . ,, where r ≤ i is chosen to be maximal such that er < 0.
The following elementary divisors are pairs of 1 and then followed by the inverse
numbers π−er

F , . . . , π−e1
F (in fact notice it is enough to consider minors in the right

lower n×n-block). This implies that the representatives g(e1, . . . , ei) uniquely rep-
resent the double cosets H(F ) \G(F )/G(oF ), which proves the theorem. �

Remark 12.4. In fact we have now also determined the image of the map L. It con-
sists of all orbits which contain a matrix in Frobenius normal form with exponents
which satisfy

a1 ≤ · · · ≤ ai ≤ −ai ≤ · · · − a1.

12.4 The Compact Open Groups

Now fix some representative g(D) as in Theorem 12.1. For simplicity assume i = j.
Recall D = D′. Then

HD = H(F ) ∩ g(D)G(oF )g(D)−1

is a compact open subgroup of H(F ). For

h =

⎛

⎜
⎜
⎝

α1 0 β1 0
0 α2 0 β2

γ1 0 δ1 0
0 γ2 0 δ2

⎞

⎟
⎟
⎠

in H(F ) we have the symplectic conditions α′
iδi − γ′

iβi = λ · E, λ ∈ o∗F , α
′
iγi =

γ′
iαi, γiδ

′
i = δ′iβi. Furthermore, h is contained in HD if and only if
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g(D)−1 · h · g(D) =

⎛

⎜
⎜
⎝

α1 −Dγ2 −Dγ2D
′ + β1 −Dδ2 + α1D

−D′γ1 α2 −D′δ1 + α2D
′ −D′γ1D + β2

γ1 0 δ1 γ1D
0 γ2 γ2D

′ δ2

⎞

⎟
⎟
⎠

is contained in G(oF ). Then αi, γi, δi and D′γ1, Dγ2 and γ2D
′ and γ1D are inte-

gral, and det(h) ∈ o∗F (first integrality conditions). Furthermore, we have the four
congruence conditions (*) modulo integral matrices:

β1 ≡ Dγ2D
′, β2 ≡ D′γ1D,

Dδ2 ≡ α1D, D′δ1 ≡ α2D
′.

Since D−1 is integral, and hence D−1β1, β1(D′)−1, (D′)−1β2, β2D
−1 and

D−1α1D, D′δ1(D′)−1, Dδ2D
−1, (D′)−1α2D

′ are necessarily integral (second
integrality conditions). We reformulate the integrality conditions by introducing the
integral skew-symmetric matrix

ΛD =
(

0 D−1

−D−1 0

)

.

Define

GSp(ΛD) =
{
h ∈ Gl(F 2i) | h′ΛDh = λ · ΛD, λ ∈ F ∗

}
.

Notice diag(E,−E) ∈ GSp(ΛD) and J ∈ GSp(ΛD); hence,

I =
(

0 E
E 0

)

∈ GSp(ΛD),

and, therefore, g = ( a b
c d ) ∈ GSp(ΛD) ⇐⇒ gI = IgI = ( d c

b a ) ∈ GSp(ΛD).

Also notice that gk ∈ GSp(ΛD) holds for the two matrices (k = 1, 2)

gk :=
(

ak bk

ck dk

)

=
(

0 D
E 0

)(
αk βk

γk δk

)(
0 D
E 0

)−1

=
(

DδkD−1 Dγk

βkD−1 αk

)

.

All the integrality conditions stated above when put together express the fact that
both matrices gk and diag(D, D)−1gkdiag(D, D) are integral matrices (for k =
1, 2) with equal similitude factor in o∗F . If Γ = (oF )2i denotes the standard lattice in
F 2i, then ΛD defines a skew-symmetric pairing 〈., .〉D on Γ by 〈v, w〉D = v′ΛDw.
The dual lattice Γ∗ = {w ∈ F 2i | 〈w, Γ〉D ∈ oF } is Γ∗ = diag(D, D)(Γ). The
matrices inGSp(ΛD), which preserve the lattice Γ, define a compact open subgroup
Aut(Γ, ΛD) ⊆ GSp(ΛD). Each g ∈ Aut(Γ, ΛD) preserves the dual lattice Γ∗.
Hence, g(Γ∗) = Γ∗ or diag(D, D)−1 · g · diag(D, D) ∈ Aut(Γ, ΛD−1). This
shows that the first and second integrality conditions are equivalent to

g1, g2 ∈ Aut(Γ, ΛD).
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This defines an injective homomorphism

HD ↪→ Aut(Γ, ΛD) × Aut(Γ, ΛD),

induced from the injection of H(F ) into GSp(ΛD) × GSp(ΛD), which is defined
by

h 	→ (k1, k2) = (g1, g
I
2).

Now Γ ⊆ Γ∗ since ΛD is integral. Hence, we get a homomorphism

1 → KD → Aut(Γ, ΛD) → Aut(Γ∗/Γ)

with kernel, say, KD. Obviously g ∈ KD ⇐⇒ (g − id)diag(D, D) is integral. For
G = Mi,i(oF ) · D−1 ⊆ Mi,i(oF ) the above four congruences (*) are equivalent to
b1 ≡ c2, c1 ≡ b2, d1 ≡ a2, and a1 ≡ d2 modulo G. In other words, the conditions
(*) mean (g1 − gI

2)diag(D, D) is integral, or (id − g−1
1 gI

2)diag(D, D) is integral.
In other words, we get the condition

g1 ≡ gI
2 mod KD,

or k1 ≡ k2 mod KD. Hence, HD is isomorphic to the group of all (k1, k2) ∈
Aut(Γ, ΛD)2 such that k1 ≡ k2 mod KD. Since KD is a normal subgroup of
Aut(Γ, ΛD), this proves that HD is isomorphic to the semidirect product KD �
Aut(Γ, ΛD)

1 → KD → HD → Aut(Γ, ΛD) → 1.

Example 12.1. ForD = d·E we haveGSp(ΛD) = GSp(2i, F ), andAut(Γ, ΛD) =
G(oF ) such that KD is the principal congruence subgroup of level d.

12.5 The Twisted Group H̃

Whereas in the last section we considered i ≤ j, we now have to restrict ourselves
to the special case n = i + j, where i = j. In this special case the normalizer Ns

of the subgroup H = Gs of G = GSp(2n) is not connected. This now allows us
to define Galois twists H̃ of the group H considered in the last section. For i = j
the centralizer in the adjoint group of the element s (defined at the beginning of this
chapter) is nontrivial. The element

w =

⎛

⎜
⎜
⎝

0 E 0 0
E 0 0 0
0 0 0 E
0 0 E 0

⎞

⎟
⎟
⎠ ∈ G(oF )

in Gs generates Ns/Gs
∼= Z/2Z. We have ws = −sw, w2 = id, and wJ = Jw.
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Suppose K/F is a quadratic field extension, and σ is the generator of the
Galois group of this extension. Since H1(F, GSp(2n)) is trivial, there exists an
g0 ∈ GSp(2n, K) such that

g−1
0 σ(g0) = w, σ(g0) = g0 · w.

This condition determines the coset G(F ) · g0 uniquely. Then the group H̃ =
g0Hg−1

0 is invariant under σ, and defines a form H̃ of H over F together with
an embedding H̃ ↪→ G defined over F . Notice for the norm-1-subgroup N1 in
ResK/F (Gm)

1 → H̃ → ResK/F (GSp(2i)) → N1 → 1,

where the morphism on the right is g 	→ (σ(λ(g))/λ(g). Let us make some choice,
i.e., g0 = diag(1, α2

2 , α2, 2)·diag(U, (U ′)−1) forU = ( 1/2 1/2
−α α ), whereK = F (α)

and A−1 = α2 ∈ F ∗. We can assume that the valuation is vK(α2) = 0 or −1
depending on whether K/F is unramified or not since the residue characteristic is
different from 2. Then H̃ becomes the subgroup of all the matrices η defined on
page 239.

The Map L̃. Now consider the commutative diagram

H̃(F ) \ G(F )/G(oF ) ��

L̃
��

g0H(K)g−1
0 \ G(K)/G(oK)

L(g−1
0 )

��
Λ2(K2n)/(Gl(2n, oK) × o∗K) H(K) \ G(K)/G(oK)L		

where the upper map is induced by the scalar extension maps, the right vertical
bijection is H̃(K)gG(oK) 	→ H(K)g−1

0 gG(oK), and the lower horizontal in-
jective map is defined as in Lemma 12.1, but now for the field K instead of F .
The left vertical map is the composition of the other maps L̃(H̃(F )gG(oF )) =
L(H(K)g−1

0 gG(oK)) = orbit of λ(g−1
0 g)−1 ·(g−1

0 g)′Λs(g−1
0 g) = orbit of λ(g)−1 ·

g′Λ̃sg for

Λ̃s =

(
0 0 0 −α−1E
0 0 −αE 0
0 αE 0 0

α−1E 0 0 0

)

.

The Image of L̃. The F -rational element diag(E, A ·E, E, E)× 1 transforms Λ̃s

to −α−1 ·J within its orbits. Hence, the image of L̃ is contained in the image of the
Gl(2n, F ) × F ∗ orbit of the matrix −α−1 · J . Therefore,

image(L̃) ⊆ (
vK(α), . . . , vK(α)

)
+ vK(F ∗)n ⊆ vK(K∗)n,

considered as a subset of the n exponents, which define the Frobenius nor-
mal form of the skew-symmetric 2n × 2n-matrix. On the other hand, this im-
age is contained in the image of the lower horizontal map L, which is the set
{(a1, . . . , ai,−ai, . . . ,−a1) ∈ vK(K∗)n | a1 ≤ · · · aν ≤ −aν ≤ · · · − a1}.
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We claim that image(L̃) is the intersection of these two sets. We show that every
element of this intersection is some L̃(H̃(F )g̃(D)G(oF )). Notice

L̃(H̃(F )g̃(D)G(oF ))= orbit of

(
E T
0 E

)′
Λ̃s

(
E T
0 E

)

= orbit of

(
0 M

−M ′ TM − M ′T

)

for M = ( 0 M−1
0

M0 0
), M0 = −αE. For T = ( A−1·D 0

0 0
) this gives the orbit of

(
0 0 0 −α−1E
0 0 −αE 0
0 αE 0 −αD

α−1E 0 αD 0

)

.

Obviously for e = vK(α) ∈ {0,− 1
2} and D = A−1 · diag(πe1

F , · · · , πei

F ) as in
Theorem 12.1 the first 2i-elementary divisors of this matrix are (e + e1, e + e1, e +
e2, e + e2, . . . , e + ei, e + ei, ∗, . . . , ∗) (arises from the lower right block, since αD
gives rise to the minors with the highest order denominator). This suffices to prove
the claim with the representatives g̃(D) = ( E T

0 E ), where T = ( A−1·D 0
0 0

) for D as
above.

Galois Descent. From the last argument it follows that every g ∈ G(F ) can be
written in the form g = hg̃(D)k−1

0 for some h ∈ H̃(K), some k0 ∈ G(oK),
and some D as in Theorem 12.1. Then σ(h)g̃(D)σ(k−1) = hg̃(D)k−1 implies
g̃(D)−1h−1σ(h)g̃(D) = k−1σ(k) or

b(σ) = k−1σ(k) ∈ HD(K) :=
(
g̃(D)−1H̃(K)g̃(D)

)
∩ G(oK).

Suppose the 1-cocycle b(σ) = k−1σ(k) ∈ HD(K) is a 1-coboundary
b(σ) = y−1σ(y) for some y ∈ HD(K). Then k̃ = yk−1 ∈ G(oF ) and
g = (hg̃(D)y−1g̃(D)−1) · g̃(D) · (yk−1) = h̃ · g̃(D) · k̃. Since g, k̃ ∈ G(F )
and g̃(D) ∈ G(F ), h̃ ∈ H̃(F ) and

g ∈ H̃(F ) · g̃(D) · G(oF ).

The Obstruction. For n = 2 the group HD(K) is isomorphic to the group
Gl(2, R)0, where R is the ring oF ⊗oF oK(i) (see page 248). Here σ acts by its
natural action on the first factor, and is trivial on the second factor. By Shapiro’s
lemma the class [b(σ)] in the cohomology H1(〈σ〉, HD(K)) is trivial if this holds
for its image in the quotient H1(〈σ〉, Gl(2, oK/(πi

F ))0. Now it is easy to show that
the fiber over the trivial element under the reduction map

H1
(
〈σ〉, Gl(2, oK/(πi

F ))0
)
→ H1

(
〈σ〉, Gl(2, oK/(πK))0

)

is trivial. This is easily shown by induction on i. If K/F is unramified, the coho-

mology set H1
(
〈σ〉, Gl(2, oK/(πK))0

)
is trivial. If K/F is ramified, this is not

the case. But in the ramified case, for the vanishing of the obstruction classes [b(σ)]
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it is therefore sufficient that the image of the 1-cocycle b(σ) is trivial in the quo-
tient group Gl(2, oK/(πK))0 of HD(K). However, this follows from Lemma 7.5
since the reduction of b(σ) = k−1σ(k) ∈ G(oK) in G(oK/(πK)) is trivial. Notice
k−1σ(k) = k−1k = 1 in G(oK/(πK)).

Injectivity of L̃. In general, if all the above-defined cohomology obstructions
[b(σ)] in H1(〈σ〉, HD(K)) are trivial, we obtain

G(F ) =
⋃

D

H̃(F ) · g̃(D) · G(oF ).

Furthermore, since L̃(H(F ) · g̃(D1) ·G(oF )) = L̃(H(F ) · g̃(D2) ·G(oF )) implies
D1 = D2 as shown above, we even conclude

Theorem 12.2. The matrices ( E T
0 E ) for T = ( D 0

0 0 ) and D = A−1 · diag(πe1
F ,

· · · , πei

F ), where e1 ≤ · · · ≤ ei and eν < 0 or eν = ∞ for ν = 1, . . . , i, define
inequivalent representatives and for n = 2 a full system of representatives for the
double cosets

H̃(F ) \G(F )/G(oF ).

In general, consider the matrix group H ′ = ResK/F (GSp(ΛD))0. For an inte-
gral extension ring O of oF with fraction field L consider the subset of H ′(L) =
GSp(ΛD)0(L ⊗F K) defined by all block matrices g = ( A B

C D ) for which A, B, C,
and D are matrices of the form

X ⊗ 1 + Y · D−1 ⊗
√

A
−1

,

such that X and Y are i × i-matrices with coefficients in O. In fact, this subset
defines a subgroup. ForO = oK this group is isomorphic to HD(K), and σ acts on

these matrices by σ(X ⊗ 1 + Y D−1 ⊗√
A

−1
) = σ(X)⊗ 1 + σ(Y )D−1 ⊗√

A
−1

,
via its natural action on O = oK . Notice that the coefficients of the matrices g are
inO⊗oF oK ⊆ L ⊗F K .




