Chapter 12
 Appendix on Double Cosets

We now discuss a double coset decomposition for the symplectic group $G S p$ $(2 n, F)$, which in the case $n=2$ was found by Schröder [81]. Let F be a local non-Archimedean field of residue characteristic not equal to 2 , let \mathfrak{o}_{F} be its ring of integers, and let π_{F} denote a prime element. Let $G(F)=G S p(2 n, F) \subseteq G l(2 n, F)$ be the group of symplectic similitudes. Hence, $g \in G(F)$ iff $g^{\prime} J g=\lambda(g) \cdot J$ for a scalar $\lambda(g) \in F^{*}$, where

$$
J=\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)
$$

and where E denotes the unit matrix. Then $g \in G(F) \Longleftrightarrow\left(g^{\prime}\right)^{-1} \in G(F) \Longleftrightarrow$ $g^{\prime} \in G(F)$ and $J^{\prime}=J^{-1}=-J \in G(F)$. Let $G\left(\mathfrak{o}_{F}\right)=G S p\left(2 n, \mathfrak{o}_{F}\right)$ denote the group of all unimodular symplectic similitudes.

Centralizers. For $n=i+j$ and $i \leq j$ put

$$
s=\operatorname{diag}\left(E^{(i, i)},-E^{(j, j)}, E^{(i, i)},-E^{(j, j)}\right) \in G(F)
$$

The connected component of the centralizer $H=\left(G_{s}\right)^{0}$ of s is a maximal connected reductive subgroup of $G . H(F)$ is isomorphic to the subgroup of all matrices $\left(g_{1}, g_{2}\right)$ in $G S p(2 i, F) \times G S p(2 j, F)$ with similitude factor $\lambda\left(g_{1}\right)=\lambda\left(g_{2}\right)$

$$
1 \rightarrow H(F) \rightarrow G S p(2 i, F) \times G S p(2 j, F) \rightarrow F^{*} \rightarrow 1
$$

The Matrices $\boldsymbol{g}\left(e_{\mathbf{1}}, \ldots, e_{i}\right)$. Let denote $g\left(e_{1}, \ldots, e_{i}\right)$ the upper triangular matrix

$$
g(D)=\left(\begin{array}{cc}
E & S \\
0 & E
\end{array}\right), \quad S=\left(\begin{array}{cc}
0^{(i, i)} & D \\
D^{\prime} & 0^{(j, j)}
\end{array}\right)
$$

defined by $D=\left(\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{i}}\right), 0^{(i, j-i)}\right)$, where we assume $e_{\nu} \in \mathbb{Z}$ and

$$
e_{1} \leq e_{2} \ldots \leq e_{i} \leq \infty
$$

(c) Springer-Verlag Berlin Heidelberg 2009

Theorem 12.1. The matrices $g\left(e_{1}, \ldots, e_{i}\right)$, for $e_{1} \leq e_{2} \cdots \leq e_{i} \leq \infty$ and $e_{\nu}<0$ or $e_{\nu}=\infty$ for all $\nu=1, \ldots, i$, define a system of representatives for the double cosets

$$
H(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right)
$$

Remark 12.1. An alternative choice would have been $g\left(e_{1}, \ldots, e_{i}\right)$ with $e_{1} \leq \ldots \leq$ $e_{i} \leq 0$. Using this representatives one obtains the following corollary.

Corollary 12.1. Let T be the diagonal torus in H or in G. Then there exists an element $r \in G(F)$ such that the set of conjugates $\left\{\operatorname{trt}^{-1} \mid t \in T(F)\right\}$ of r contains a complete set of representatives of $H(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right)$.
For instance, one can choose $r=g(0, \ldots, 0) \in G\left(\mathfrak{o}_{F}\right)$. For $\mathbf{D}=\operatorname{diag}(D, E$, $\left.D^{-1}, E\right) \in T(F)$ and $D=\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi^{e_{i}}\right)$ then $\mathbf{D} r \mathbf{D}^{-1}=g\left(e_{1}, \ldots, e_{i}\right)$.

The proof of the theorem requires some preparation. In the following we always assume that D satisfies $e_{1} \leq \cdots \leq e_{\nu}$ and $e_{\nu+1}=\cdots=e_{i}=\infty$ for some $\nu \leq i$:

1. The parabolic subgroups \boldsymbol{P}_{s}. There is a parabolic subgroup $P=P_{s}$ of G with Levi component L in $H=H_{s}$. Let $P=L \cdot N$, where N is the unipotent radical. Then Iwasawa decomposition $G(F)=L(F) \cdot N(F) \cdot G\left(\mathfrak{o}_{F}\right)$ allows us to choose representatives $g(M, N, U, V) \in N(F)$ of the form

$$
g(M, N, U, V)=\left(\begin{array}{cccc}
E & M & U & N \\
0 & E & * & V \\
0 & 0 & E & 0 \\
0 & 0 & -M^{\prime} & E
\end{array}\right)
$$

Notice $g(0,0,0, V) g(M, N, U, 0)=g(M, N, U, V)$ and $V=V^{\prime}=V^{(j, j)}$ is symmetric. Since $g(0,0,0, V) \in H(F)$ we can assume $V=0$ and therefore write $g(M, N, *)=g(M, N, *, 0)$ for the representative

$$
g(M, N, *)=\left(\begin{array}{cccc}
E & M & * & N \\
0 & E & N^{\prime} & 0 \\
0 & 0 & E & 0 \\
0 & 0 & -M^{\prime} & E
\end{array}\right)
$$

For the moment $M, N \in \operatorname{Hom}_{F}\left(F^{j}, F^{i}\right)$ are still arbitrary.
2. Notice $g\left(M_{1}, N_{1}, U_{1}\right) \cdot g\left(M_{2}, N_{2}, U_{2}\right)=g\left(M_{\tilde{U}}+M_{2}, N_{1}+\underset{\tilde{U}}{N_{2}}, U_{1}+U_{2}+M_{1}\right.$. $\left.N_{2}^{\prime}-N_{1} \cdot M_{2}^{\prime}\right)$; hence, $g(M, N, U) \cdot g(0,0, \tilde{U})=g(0,0, \tilde{U}) \cdot g(M, N, U)=$ $g(M, N, \tilde{U}+U)$ and $g(0,0, U) \in H(F) . S=U-M \cdot N^{\prime}$ is symmetric. For symmetric $S=S^{\prime}$ now $g(0,0, S) \in H(F)$. Hence, we can choose the representatives in the form

$$
g(M, N)=g\left(M, N, M \cdot N^{\prime}\right)
$$

Since $g\left(M_{1}, N_{1}\right) g\left(M_{2}, N_{2}\right)=g\left(M_{1}+M_{2}, N_{1}+N_{2}, M_{1} N_{1}^{\prime}+M_{2} N_{2}^{\prime}+M_{1} N_{2}^{\prime}-\right.$ $\left.N_{1} M_{2}^{\prime}\right)=g\left(M_{1}+M_{2}, N_{1}+N_{2},\left(M_{1}+M_{2}\right)\left(N_{1}+N_{2}\right)^{\prime}-M_{2} N_{1}^{\prime}-N_{1} M_{2}^{\prime}\right)=$ $g\left(0,0,-M_{2} N_{1}^{\prime}-N_{1} M_{2}^{\prime}\right) \cdot g\left(M_{1}+M_{2}, N_{1}+N_{2}\right)$
$H(F) \cdot g\left(M_{1}, N_{1}\right) g\left(M_{2}, N_{2}\right) \cdot G\left(\mathfrak{o}_{F}\right)=H(F) \cdot g\left(M_{1}+M_{2}, N_{1}+N_{2}\right) \cdot G\left(\mathfrak{o}_{F}\right)$.
Hence, $(M, N) \in \operatorname{Hom}_{F}\left(F^{2 j}, F^{i}\right)$ can be modified within the double coset by adding an arbitrary element from $\operatorname{Hom}_{\mathfrak{o}_{F}}\left(\mathfrak{o}_{F}^{2 j}, \mathfrak{o}_{F}^{i}\right)$.
3. For $A=A^{(i, i)}$ and $B=B^{(i, i)}$ we later consider the special cases

$$
M=(A, 0), \quad N=(B, 0)
$$

We then simply write $g(A, B)$ or $g(A, B, *)$ instead of $g(M, N)$ and $g(M, N, *)$, respectively. The formulas above are valid with A, B in place of M, N. For

$$
A=\left(\begin{array}{cc}
A_{0} & 0 \\
A_{1} & A_{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{0} & 0 \\
0 & B_{1}
\end{array}\right)
$$

and $k \times k$-matrices A_{0}, B_{0}, and $k<i$ and integral matrices A_{1}, A_{2}, B_{1} step (2) allows us to replace the matrices A_{1}, A_{2} by zero and B_{1} by the unit matrix, without changing the double coset.
4. Next, for $U_{i} \in G l\left(i, \mathfrak{o}_{F}\right)$ we obtain equivalent representatives $g(M, N, *)$ and $g\left(U_{i} \cdot M, U_{i} \cdot N, *\right)$ by conjugation with $\operatorname{diag}\left(U_{i}, E,\left(U_{i}^{\prime}\right)^{-1}, E\right)$.
5. On the $i \times 2 j$-matrices in $\operatorname{Hom}_{F}\left(F^{2 j}, F^{i}\right)$ the elements $g \in \operatorname{Sp}\left(2 j, \mathfrak{o}_{F}\right)$ act by multiplication from the right

$$
(\tilde{M}, \tilde{N})=(M, N) \cdot g^{-1}
$$

$g(M, N, *)$ and $g(\tilde{M}, \tilde{N}, *)$ define the same double coset. It suffices to show this for generators g of $S p\left(2 j, \mathfrak{o}_{F}\right)$. For this notice $w_{j} \cdot g(M, N, 0) \cdot w_{j}^{-1}=$ $g(N,-M, *)$ and $u_{T} \cdot g(M, N, 0) \cdot u_{T}^{-1}=g(M, N-M T, *)$ for the generators (see [28], Satz A.5.4)

$$
w_{j}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & 0 & 0 & E \\
0 & 0 & E & 0 \\
0 & -E & 0 & 0
\end{array}\right)
$$

and

$$
u_{V}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & E & 0 & V \\
0 & 0 & E & 0 \\
0 & 0 & 0 & E
\end{array}\right)
$$

For integral symmetric V these are contained in the intersection of $G\left(\mathfrak{o}_{F}\right)$ and $H(F)$. Hence, we may choose our representatives (A, B) in

$$
G l\left(i, \mathfrak{o}_{F}\right) \backslash \operatorname{Hom}_{F}\left(F^{2 j}, F^{i}\right) / S p\left(2 j, \mathfrak{o}_{F}\right),
$$

where these, in addition, may be modified by elements from $\operatorname{Hom}_{\mathfrak{o}_{F}}\left(\mathfrak{o}_{F}^{2 j}, \mathfrak{o}_{F}^{i}\right)$.

12.1 Reduction to Standard Type

We say (M, N) are of standard type if

$$
(M, N)=((A, 0),(B, 0))
$$

for an $i \times i$-diagonal matrix $B=\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{i}}\right)$ and a nilpotent $i \times i$-lower triangular matrix A such that:
(a) $e_{1} \leq e_{2} \leq \ldots \leq e_{i} \leq 0$.
(b) $B^{-1} \cdot A$ is an integral matrix.

The Reduction. We now construct elements in $S p\left(2 j, \mathfrak{o}_{F}\right) \times G l\left(i, \mathfrak{o}_{F}\right)$ which transform a given $(M, N) \in \operatorname{Hom}_{F}\left(F^{2 j}, F^{i}\right)$ into standard type. For this temporarily replace (M, N) by $(N,-M)$ (using conjugation by w_{j} as in step (5)), and then replace the resulting matrix by its transpose in

$$
\operatorname{Hom}_{F}\left(F^{i}, F^{2 j}\right) .
$$

By this $S p\left(2 j, \mathfrak{o}_{F}\right)$ now acts from the left and $G l\left(i, \mathfrak{o}_{F}\right)$ acts from the right. Our argument now proceeds using induction. Start with an arbitrary matrix in $\operatorname{Hom}_{F}\left(F^{i}, F^{2 j}\right)$. We say it is of weak r-standard type if it is of the form

$$
\left(\begin{array}{cc}
B_{r} & * \\
0 & * \\
-A_{r}^{\prime} & * \\
0 & *
\end{array}\right),
$$

where $r \leq i \leq j$ and $B_{r}=\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{r}}\right)$ and $e_{1} \leq \ldots \leq e_{r} \leq \infty$, such that A_{r}^{\prime} is a strict upper triangular $r \times r$-matrix such that:
(a) $\pi^{e_{r}}$ divides the greatest common divisor $(\mathrm{gcd}) \pi^{e}$ of all entries of the matrix denoted by a star.
(b) $\pi^{e_{\nu}}$ divides all entries of the ν th column for $1 \leq \nu \leq r$.

If, in addition, the shape is

$$
\left(\begin{array}{cc}
B_{r} & 0 \\
0 & * \\
-A_{r}^{\prime} & * \\
0 & *
\end{array}\right)
$$

we say the matrix is partially of r-standard type.
By elimination of the right upper block a representative of weak partial r standard type can be transformed to become partially of r-standard type. Use right multiplication with some element in $G l\left(i, \mathfrak{o}_{F}\right)$ to clear the first r rows of the dotted area by adding columns. This does not change condition (b), since $e_{1} \leq \ldots e_{r}$
and e_{r} is less than or equal to the gcd of the remaining columns (beginning from $r+1)$. Since we add multiples of $\pi_{F}^{e-e_{\nu}} \lambda, \lambda \in \mathfrak{o}_{F}$ times the ν th column $(\nu \leq r)$, we add terms in $\pi_{F}^{e} \mathfrak{o}_{F}$ as follows from condition (b). Therefore, the gcd of the back columns will not be changed by this procedure.

The Induction Step. For a matrix partially of $(r-1)$-standard type consider the columns beginning from the r th column. By right multiplication with a permutation matrix in $G l\left(i, \mathfrak{o}_{F}\right)$ one can achieve the $\operatorname{gcd} \pi_{F}^{e}$ of all these columns already being the gcd of the entries of the r th column vector $v \in F^{2 j}$. The first $(r-1)$-entries of v are zero since the matrix we started with was partially of $(r-1)$-standard type, and since the permutations of columns beginning from the r th column do not change the property such that the upper entries of these columns vanish.

Now our modifications will only involve multiplications with elements in $G\left(\mathfrak{o}_{F}\right)$ from the left. This changes the columns beginning from the $(r+1)$ th. In particular, this may destroy the property that the first $(r-1)$-coordinates of these columns vanish. The given matrix is of the form

$$
\left(\begin{array}{ccc}
B_{r-1} & 0 & * \\
0 & * & * \\
-A_{r-1}^{\prime} & * & * \\
0 & * & *
\end{array}\right)
$$

such that the gcd π_{F}^{e} of the "middle" r th column divides the gcd of all columns beginning from the $(r+1)$ th. This property is preserved under multiplication with substitutions from $G\left(\mathfrak{o}_{F}\right)$. Hence, in principle, we can concentrate on the first r columns since it is enough to bring our representative into a form of weak partial r-standard type. We therefore temporarily ignore all columns beginning from the $(r+1)$ th column.

A suitable symplectic transformation of an embedded $S p\left(2(j-r+1), \mathfrak{o}_{F}\right)$ by multiplication from the left allows us to make all coordinates of v be zero, except the r th and the $(j+1), \ldots,(j+r-1)$ th coordinate entries. By this the first $(r-1)$ columns of our representative will not be changed. In addition we can achieve the r th coordinate entry of v being a power π_{F}^{f} of the prime element. For this notice that the unimodular symplectic matrices act transitively on primitive vectors ([28], Hilfssatz A.5.2).

After this the matrix is almost of weak partial r-standard type, being of the form

$$
\left(\begin{array}{cc}
B_{r} & * \\
0 & * \\
-A_{r}^{\prime} & * \\
0 & *
\end{array}\right)
$$

such that (a) is satisfied. We are done if the r th coordinate entry π_{F}^{f} of the r th column is equal to π_{F}^{e}. If it is not, then $e<f$. Then there exists ν with $1 \leq \nu<r$ such that the gcd of the r th column is realized at the $(j+\nu)$ th coordinate entry. It then remains to bring the gcd of column v to the "top." Left multiplication by
a symplectic unimodular substitution - on the standard basis w_{i} of $F^{2 j}$ given by $w_{\mu} \mapsto w_{\mu}$ for $\mu \neq j+\nu, j+r$ and by $w_{j+\nu} \mapsto w_{j+\nu}+w_{r}$ and $w_{j+r} \mapsto w_{j+r}+w_{\nu}-$ has no effect on the lower half, i.e., A_{r}^{\prime} will not be changed. Also the zero blocks on the left side will not be changed. The matrix B_{r}, on the other hand, will be modified. Since the r th line of $-A_{r}^{\prime}$ is zero, only the last line of B_{r} will be changed - in fact by addition of the ν th line of $-A_{r}^{\prime}$. Let x_{1}, \ldots, x_{r} denote the new entries. For example, $x_{r}=\pi_{F}^{e_{r}}+\pi_{F}^{e}=\varepsilon \cdot \pi^{e}\left(\varepsilon \in \mathfrak{o}_{F}^{*}\right)$.

Next the modified B_{r} will again be diagonalized by left multiplication by a unimodular symplectic matrix of the form $\operatorname{diag}\left(U, E,\left(U^{\prime}\right)^{-1}, E\right)$, where

$$
U=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\cdot & & & & \cdot \\
0 & 0 & \ldots & 1 & 0 \\
y_{1} & y_{2} & & y_{r-1} & \varepsilon^{-1}
\end{array}\right)
$$

This transforms $-A_{r}^{\prime}$ into $-\left(U^{\prime}\right)^{-1} \cdot A_{r}^{\prime}=-A_{r}^{\prime}$ (the r th column of A_{r}^{\prime} is zero) and transforms B_{r} into $U \cdot B_{r}$. For suitable y_{ν} the matrix $U \cdot B_{r}$ will become a diagonal matrix with the entries $\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{r-1}}, \pi_{F}^{e}\right)$, provided $y_{\nu} \cdot \pi_{F}^{\varepsilon_{\nu}}=$ $-\varepsilon^{-1} x_{\nu}$ holds. By condition (b) of the matrix of partial $(r-1)$-standard type we started with, such y_{ν} can be chosen in \mathfrak{o}_{F}. This implies $U \in G l\left(r, \mathfrak{o}_{F}\right)$ and $\operatorname{diag}\left(U, E,\left(U^{\prime}\right)^{-1}, E\right) \in G\left(\mathfrak{o}_{F}\right)$. This shows that our new matrix is now of weak partial r-standard type such that $e_{r}=e$, and it is a representative in the double coset of the matrix we started from. This completes the proof of the induction step.

Iterating this i times, we can get a matrix of partial i-standard type. Reverse transposition and reverse conjugation by w_{j} therefore gives an equivalent matrix replacing (M, N), which now is almost of standard type. It is of the form $(M, N)=$ $((A, 0),(B, 0))$ for $B=\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{i}}\right)$ and a lower triangular matrix A, whose diagonal is zero, and such that $e_{1} \leq e_{2} \leq \ldots \leq e_{i} \leq \infty$. Choose k to be maximal such that $e_{k}<0$. By step (3) we can assume without restriction of generality $e_{\nu}=0$ for $\nu>k$. Then B^{-1} is defined, and $B^{-1} A$ is an integral matrix. So we have a matrix of standard type.

Summary. There exist representatives of the double cosets $H(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right)$ of the form $g=g((A, 0),(B, 0))$, such that:
$-B=\operatorname{diag}\left(\pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{i}}\right)$ is a diagonal invertible $i \times i$-matrix with $e_{1} \leq \ldots$ $e_{i} \leq 0$.

- A is a lower triangular matrix.
- B^{-1} has integral entries.
- The lower $i \times i$-triangular matrix $B^{-1} \cdot A$ has integral entries.
- $B^{-1} \cdot A^{\prime}$ is an $i \times i$-matrix with integral entries.

12.2 The Quadratic Embedding

The matrix $\Lambda_{s}=s \cdot J=J \cdot s$ is skew-symmetric

$$
\Lambda_{s}=\left(\begin{array}{cccc}
0 & 0 & E & 0 \\
0 & 0 & 0 & -E \\
-E & 0 & 0 & 0 \\
0 & E & 0 & 0
\end{array}\right)
$$

For $g \in G(F)$ the conditions $g \in H(F)$ and $\lambda(g)^{-1} g^{\prime} \cdot \Lambda_{s} \cdot g=\Lambda_{s}$ are equivalent; since $\lambda(g)^{-1} \cdot\left(g^{\prime}\right)^{-1}=J g J^{-1}$ and $J^{-1} \Lambda_{s}=s$, the first equation is equivalent to $s \cdot g=g \cdot s$.

Consequence. $\operatorname{Elm}(H(F) \cdot g)=\lambda(g)^{-1} g^{\prime} \cdot \Lambda_{s} \cdot g$ defines an injection

$$
\operatorname{Elm}: H(F) \backslash G(F) \hookrightarrow \Lambda^{2}\left(F^{2 n}\right)
$$

of the cosets $H(F) \backslash G(F)$ into the vector space $\Lambda^{2}\left(F^{2 n}\right)$ of skew-symmetric $2 n$ matrices.

Remark 12.2. The quadratic form $q(\Lambda)=\operatorname{Trace}(\Lambda \cdot J \cdot \Lambda \cdot J)$ defines a nondegenerate symmetric bilinear form on $\Lambda^{2}\left(F^{2 n}\right)$ such that $q\left(\lambda(g)^{-1} g^{\prime} \cdot \Lambda \cdot g\right)=q(\Lambda)$ holds for all $g \in G(F)$.

Notation. We write $\operatorname{Elm}(A, B)$ for the matrix $\operatorname{Elm}\left(g\left(A, B, A B^{\prime}\right)\right)$. Then $\operatorname{Elm}(A, B)$ is a skew-symmetric matrix contained in the symplectic group $S p(2 n, F)$.

By definition Λ_{s} and g are both contained in $G(F)=G S p(2 n, F)$. In all that follows, we may therefore restrict ourselves to the case $i=j$ since $\operatorname{Elm}(A, B)$ is in $S p(2 i, F) \times S p(2(j-i), F)$, and its "component" is in $S p(2(j-i), F)$ is $J=J^{(j-i, j-i)}$.

Assumption. For simplicity of notation we therefore assume from now on $j=i$, without restriction of generality.

Then

$$
\operatorname{Elm}(A, B)=\left(\begin{array}{cc}
0 & X \\
-X^{\prime} & \mathcal{A}
\end{array}\right)
$$

defined by $n \times n$-block matrices $X=\left(\begin{array}{cc}E & 0 \\ 2 A^{\prime}-E\end{array}\right)$ and $\mathcal{A}=\left(\begin{array}{cc}2\left(B \cdot A^{\prime}-A \cdot B^{\prime}\right)-2 \cdot B \\ 2 \cdot B^{\prime} & 0\end{array}\right)$.
Remark 12.3. The skew-symmetric matrix \mathcal{A} is invertible since B is invertible.
So there are matrices Z and $\tilde{\mathcal{A}}$ such that

$$
\left(\begin{array}{cc}
0 & X \\
-X^{\prime} & \mathcal{A}
\end{array}\right)=\left(\begin{array}{cc}
E & Z \\
0 & E
\end{array}\right)\left(\begin{array}{cc}
\tilde{\mathcal{A}} & 0 \\
0 & \mathcal{A}
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
Z^{\prime} & E
\end{array}\right) .
$$

Notice $X=Z \cdot \mathcal{A}, \tilde{\mathcal{A}}=-Z \cdot \mathcal{A} \cdot Z^{\prime}$, and $Z=X \cdot \mathcal{A}^{-1}, X^{\prime}=-\mathcal{A} \cdot Z^{\prime}$, $\tilde{\mathcal{A}}=Z \cdot X^{\prime}=X \cdot \mathcal{A}^{-1} \cdot X^{\prime}$.

Corollary 12.2. The $(n \times n)$-matrix Z is symmetric. Hence,

$$
g(Z)=\left(\begin{array}{ll}
E & 0 \\
Z & E
\end{array}\right) \in G(F)
$$

Proof. $Z=X \cdot \mathcal{A}^{-1}$ satisfies $Z=Z^{\prime}$ if $-\mathcal{A}^{\prime} \cdot Z \cdot \mathcal{A}=\mathcal{A} \cdot X$ is symmetric. Since

$$
\begin{aligned}
\mathcal{A} \cdot X= & \left(\begin{array}{cc}
2 \cdot\left(B \cdot A^{\prime}-A \cdot B^{\prime}\right) & -2 \cdot B \\
2 \cdot B^{\prime} & 0
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
2 \cdot A^{\prime}-E
\end{array}\right) \\
= & \left(\begin{array}{cc}
2 B \cdot A^{\prime}-2 A \cdot B^{\prime}-4 B \cdot A^{\prime} & 2 B \\
2 B^{\prime} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 \cdot\left(B \cdot A^{\prime}+A \cdot B^{\prime}\right) & 2 \cdot B \\
2 \cdot B^{\prime} & 0
\end{array}\right)
\end{aligned}
$$

is symmetric, Z is also symmetric.
It follows that
Fact. $g(Z)^{\prime} \cdot \operatorname{Elm}(A, B) \cdot g(Z)=\left(\begin{array}{cc}\tilde{\mathcal{A}} & 0 \\ 0 & \mathcal{A}\end{array}\right)$, where $\tilde{\mathcal{A}}=\left(\mathcal{A}^{\prime}\right)^{-1}=-\mathcal{A}^{-1}$ and

$$
\mathcal{A}=\left(\begin{array}{cc}
2\left(B A^{\prime}-A B^{\prime}\right)-2 \cdot B \\
2 \cdot B^{\prime} & 0
\end{array}\right)=-\mathcal{A}^{\prime}
$$

Formula for $Z . \mathcal{A}$ is invertible by assumption. Since $\operatorname{Elm}(A, B)$ and $g(Z)$, and hence also $g(Z)^{\prime}$, are symplectic matrices, we have $\tilde{\mathcal{A}}=\left(\mathcal{A}^{\prime}\right)^{-1}$. Notice that

$$
\begin{gathered}
\left(\begin{array}{cc}
E & -A \\
0 & E
\end{array}\right)\left(\begin{array}{cc}
0 & -2 \cdot B \\
2 \cdot B^{\prime} & 0
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
-A^{\prime} & E
\end{array}\right) \\
=\left(\begin{array}{cc}
-2 A \cdot B^{\prime}-2 \cdot B \\
2 \cdot B^{\prime} & 0
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
-A^{\prime} & E
\end{array}\right) \\
=\left(\begin{array}{cc}
-2\left(A \cdot B^{\prime}-B \cdot A^{\prime}\right)-2 \cdot B \\
2 \cdot B^{\prime} & 0
\end{array}\right)=\mathcal{A} .
\end{gathered}
$$

Hence,

$$
-2 \cdot Z=-2 \cdot X \cdot \mathcal{A}^{-1}=\left(\begin{array}{cc}
E & 0 \\
2 \cdot A^{\prime} & -E
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
A^{\prime} & E
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
-B^{\prime} & 0
\end{array}\right)^{-1}\left(\begin{array}{cc}
E & A \\
0 & E
\end{array}\right)
$$

$$
\begin{aligned}
&=\left(\begin{array}{cc}
E & 0 \\
A^{\prime} & -E
\end{array}\right)\left(\begin{array}{cc}
0 & -\left(B^{\prime}\right)^{-1} \\
B^{-1} & 0
\end{array}\right)\left(\begin{array}{cc}
E & A \\
0 & E
\end{array}\right) \\
&=\left(\begin{array}{cc}
0 & -\left(B^{\prime}\right)^{-1} \\
-B^{-1}-A^{\prime} \cdot\left(B^{\prime}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
E & A \\
0 & E
\end{array}\right) \\
&=\left(\begin{array}{cc}
0 & -\left(B^{\prime}\right)^{-1} \\
-B^{-1}-B^{-1} \cdot A-A^{\prime} \cdot\left(B^{\prime}\right)^{-1}
\end{array}\right) .
\end{aligned}
$$

Since we have shown that we can assume the representative to be of standard type, the matrices B^{-1} and $B^{-1} A$ are integral; hence, Z is also integral. Therefore, we have

Fact. The symplectic matrix $g(Z)$ is contained in $G\left(\mathfrak{o}_{F}\right)$.
The injection $E l m$ already defined induces an injection elm

$$
\text { elm }: H(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right) \hookrightarrow \Lambda^{2}\left(F^{2 n}\right) / G\left(\mathfrak{o}_{F}\right) .
$$

A Consequence. Suppose (M, N) is of standard type. Consider the double coset of $g(M, N)=g(A, B)$. Its image $\operatorname{elm}(A, B)$ in $\Lambda^{2}\left(F^{2 n}\right) / G\left(\mathfrak{o}_{F}\right)$ is represented by the symplectic block matrix

$$
\operatorname{diag}(\tilde{\mathcal{A}}, \mathcal{A})=\operatorname{diag}\left(-\mathcal{A}^{-1}, \mathcal{A}\right)
$$

12.3 Elementary Divisors

We dispose over another obvious map

$$
\Lambda^{2}\left(F^{2 n}\right) / G\left(\mathfrak{o}_{F}\right) \rightarrow \Lambda^{2}\left(F^{2 n}\right) /\left(G l\left(2 n, \mathfrak{o}_{F}\right) \times \mathfrak{o}_{F}^{*}\right)
$$

Here $(h, \varepsilon) \in G l\left(2 n, \mathfrak{o}_{F}\right) \times \mathfrak{o}_{F}^{*}$ acts on $\Lambda^{2}\left(F^{2 n}\right)$ by $\Lambda \mapsto \varepsilon \cdot h^{\prime} \cdot \Lambda \cdot h$. For this we may consider the general case $i \leq j$, and we then claim

Lemma 12.1. The composed map

$$
\mathcal{L}: H(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right) \quad \longrightarrow \quad \Lambda^{2}\left(F^{2 n}\right) /\left(G l\left(2 n, \mathfrak{o}_{F}\right) \times \mathfrak{o}_{F}^{*}\right),
$$

which maps $H(F) g G\left(\mathfrak{o}_{F}\right)$ to the orbit of $\lambda(g)^{-1} g^{\prime} \Lambda_{s} g$, is an injection.
We say two skew-symmetric invertible matrices in $\Lambda^{2}\left(F^{m}\right)$ are equivalent if there exists a unimodular matrix h in $G l\left(m, \mathfrak{o}_{F}\right)$ such that $\Lambda_{1}=h^{\prime} \cdot \Lambda_{2} \cdot h$. Concerning the orbits (right side of the map in the last lemma) recall the result of Frobenius:
(A) Λ_{1} and Λ_{2} are equivalent if and only if they have the same elementary divisors (understood in the usual sense).
(B) The product of the first k-elementary divisors (in the usual sense) is the gcd of all $k \times k$-minors.
(C) $\varepsilon \cdot \Lambda$ and Λ are equivalent for any $\varepsilon \in \mathfrak{o}_{F}^{*}$.

Hence, the orbits $\Lambda^{2}\left(F^{m}\right) /\left(G l\left(m, \mathfrak{o}_{F}\right) \times \mathfrak{o}_{F}^{*}\right)$ are described by the elementary divisors.

Proof of Lemma 12.1. Without restriction of generality we again assume $i=j$. Then the skew-symmetric $(n \times n)$-matrix \mathcal{A} can be brought into the following Frobenius standard form by a suitable unimodular transformation $U \in G l\left(n, \mathfrak{o}_{F}\right)$:

$$
U^{\prime} \cdot \mathcal{A} \cdot U=\operatorname{diag}\left(\left(\begin{array}{cc}
0 & \pi_{F}^{a_{1}} \\
-\pi_{F}^{a_{1}} & 0
\end{array}\right), \ldots,\left(\begin{array}{cc}
0 & \pi_{F}^{a_{i}} \\
-\pi_{F}^{a_{i}} & 0
\end{array}\right)\right)
$$

where $a_{1} \leq \ldots \leq a_{i}$. These symplectic elementary divisors are determined by the elementary divisors of the matrix $U^{\prime} \mathcal{A} U$ (in the usual sense), which are $\pi_{F}^{a_{1}}, \pi_{F}^{a_{1}}, \pi_{F}^{a_{2}}, \pi_{F}^{a_{2}}, \cdots$.

The diagonalizing matrix U defines

$$
g=\operatorname{diag}\left(\left(U^{\prime}\right)^{-1}, U\right) \in S p\left(2 n, \mathfrak{o}_{F}\right) \subseteq G l\left(2 n, \mathfrak{o}_{F}\right) .
$$

The symplectic $2 n \times 2 n$-matrix $\operatorname{diag}(\tilde{\mathcal{A}}, \mathcal{A})=\operatorname{diag}\left(\left(\mathcal{A}^{\prime}\right)^{-1}, \mathcal{A}\right)$ will be transformed by $g \in G\left(\mathfrak{o}_{F}\right)$ into the "symplectic normal form"
$\operatorname{diag}\left(\left(\begin{array}{cc}0 & \pi_{F}^{-a_{1}} \\ -\pi_{F}^{-a_{1}} & 0\end{array}\right), \ldots,\left(\begin{array}{cc}0 & \pi_{F}^{-a_{i}} \\ -\pi_{F}^{-a_{i}} & 0\end{array}\right),\left(\begin{array}{cc}0 & \pi_{F}^{a_{1}} \\ -\pi_{F}^{a_{1}} & 0\end{array}\right), \ldots,\left(\begin{array}{cc}0 & \pi_{F}^{a_{i}} \\ -\pi_{F}^{a_{i}} & 0\end{array}\right)\right)$.
This symplectic normal form defines the same coset in $\Lambda^{2}\left(F^{2 n}\right) / G\left(\mathfrak{o}_{F}\right)$ as the matrices $\operatorname{diag}(\tilde{\mathcal{A}}, \mathcal{A})$ and $\operatorname{elm}(M, N)$.

Claim 12.1. $a_{i} \leq-a_{i}$. In other words, the exponents of the elementary divisors of $\operatorname{diag}(\tilde{\mathcal{A}}, \mathcal{A})$, in increasing order, are the numbers

$$
a_{1}, a_{1}, a_{2}, a_{2}, \ldots, a_{i}, a_{i},-a_{i},-a_{i}, \ldots,-a_{1},-a_{1}
$$

(In the general case $j>i$ there are $n-2 i$ additional zeros in the middle.) Hence, the elementary divisors of $\operatorname{diag}(\tilde{\mathcal{A}}, \mathcal{A})$ uniquely determine the exponents $a_{1} \leq a_{2} \leq$ $\cdots \leq a_{i}$ of the symplectic Frobenius normal form of \mathcal{A}, as defined above. This immediately implies the lemma, provided the claim $a_{i} \leq 0$ holds. To show this claim, notice $\pi_{F}^{-a_{i}}=\operatorname{det}(\mathcal{A})^{-1} \cdot \operatorname{gcd}\left(\Lambda^{n-1}(\mathcal{A})\right)$ and $\operatorname{det}(\mathcal{A})^{-1} \cdot \Lambda^{2 i-1}(\mathcal{A})=\mathcal{A}^{-1}$. Hence, $\pi_{F}^{-a_{i}}=\operatorname{gcd}\left(\mathcal{A}^{-1}\right)$ is the first elementary divisor of \mathcal{A}^{-1}. Thus, to prove the claim, it suffices to show that \mathcal{A}^{-1} is an integral matrix. Since

$$
\mathcal{A}=-2\left(\begin{array}{cc}
B & 0 \\
0 & E
\end{array}\right)\left(\begin{array}{cc}
G & E \\
-E & 0
\end{array}\right)\left(\begin{array}{cc}
B^{\prime} & 0 \\
0 & E
\end{array}\right)
$$

for the matrix $G=B^{-1} A-\left(B^{-1} A\right)^{\prime}$, we get

$$
\mathcal{A}^{-1}=-\frac{1}{2}\left(\begin{array}{cc}
\left(B^{\prime}\right)^{-1} & 0 \\
0 & E
\end{array}\right)\left(\begin{array}{cc}
0 & -E \\
E & G
\end{array}\right)\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & E
\end{array}\right) .
$$

Since B^{-1} and G are integral, \mathcal{A}^{-1} is integral, which proves the lemma.
Proof of Theorem 12.1. By Lemma 12.1 it suffices to show that for $\left(e_{1}, \ldots, e_{i}\right)$, subject to the conditions stated in Theorem 12.1, the elementary divisors of the matrices

$$
\operatorname{Elm}\left(g\left(e_{1}, \ldots, e_{i}\right)\right)=\left(\begin{array}{cccc}
0 & 0 & E & 0 \\
0 & 0 & 0 & -E \\
-E & 0 & 0 & -2 \cdot D \\
0 & E & 2 \cdot D^{\prime} & 0
\end{array}\right)
$$

determine $\left(e_{1}, \ldots, e_{i}\right)$ uniquely such that every possible constellation of elementary divisors - as determined above - is realized by some $\operatorname{Elm}\left(g\left(e_{1}, \ldots, e_{i}\right)\right)$. This, however, is rather obvious. The elementary divisors of $\operatorname{Elm}\left(g\left(e_{1}, \ldots, e_{i}\right)\right)$ are $\pi_{F}^{e_{1}}, \pi_{F}^{e_{1}}, \ldots, \pi_{F}^{e_{r}}, \pi_{F}^{e_{r}}, \ldots$, where $r \leq i$ is chosen to be maximal such that $e_{r}<0$. The following elementary divisors are pairs of 1 and then followed by the inverse numbers $\pi_{F}^{-e_{r}}, \ldots, \pi_{F}^{-e_{1}}$ (in fact notice it is enough to consider minors in the right lower $n \times n$-block). This implies that the representatives $g\left(e_{1}, \ldots, e_{i}\right)$ uniquely represent the double cosets $H(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right)$, which proves the theorem.

Remark 12.4. In fact we have now also determined the image of the map \mathcal{L}. It consists of all orbits which contain a matrix in Frobenius normal form with exponents which satisfy

$$
a_{1} \leq \cdots \leq a_{i} \leq-a_{i} \leq \cdots-a_{1} .
$$

12.4 The Compact Open Groups

Now fix some representative $g(D)$ as in Theorem 12.1. For simplicity assume $i=j$. Recall $D=D^{\prime}$. Then

$$
H_{D}=H(F) \cap g(D) G\left(\mathfrak{o}_{F}\right) g(D)^{-1}
$$

is a compact open subgroup of $H(F)$. For

$$
h=\left(\begin{array}{cccc}
\alpha_{1} & 0 & \beta_{1} & 0 \\
0 & \alpha_{2} & 0 & \beta_{2} \\
\gamma_{1} & 0 & \delta_{1} & 0 \\
0 & \gamma_{2} & 0 & \delta_{2}
\end{array}\right)
$$

in $H(F)$ we have the symplectic conditions $\alpha_{i}^{\prime} \delta_{i}-\gamma_{i}^{\prime} \beta_{i}=\lambda \cdot E, \lambda \in \mathfrak{o}_{F}^{*}, \alpha_{i}^{\prime} \gamma_{i}=$ $\gamma_{i}^{\prime} \alpha_{i}, \gamma_{i} \delta_{i}^{\prime}=\delta_{i}^{\prime} \beta_{i}$. Furthermore, h is contained in H_{D} if and only if

$$
g(D)^{-1} \cdot h \cdot g(D)=\left(\begin{array}{cccc}
\alpha_{1} & -D \gamma_{2} & -D \gamma_{2} D^{\prime}+\beta_{1} & -D \delta_{2}+\alpha_{1} D \\
-D^{\prime} \gamma_{1} & \alpha_{2} & -D^{\prime} \delta_{1}+\alpha_{2} D^{\prime} & -D^{\prime} \gamma_{1} D+\beta_{2} \\
\gamma_{1} & 0 & \delta_{1} & \gamma_{1} D \\
0 & \gamma_{2} & \gamma_{2} D^{\prime} & \delta_{2}
\end{array}\right)
$$

is contained in $G\left(\mathfrak{o}_{F}\right)$. Then $\alpha_{i}, \gamma_{i}, \delta_{i}$ and $D^{\prime} \gamma_{1}, D \gamma_{2}$ and $\gamma_{2} D^{\prime}$ and $\gamma_{1} D$ are integral, and $\operatorname{det}(h) \in \mathfrak{o}_{F}^{*}$ (first integrality conditions). Furthermore, we have the four congruence conditions (*) modulo integral matrices:

$$
\begin{array}{ll}
\beta_{1} \equiv D \gamma_{2} D^{\prime}, & \beta_{2} \equiv D^{\prime} \gamma_{1} D \\
D \delta_{2} \equiv \alpha_{1} D, & D^{\prime} \delta_{1} \equiv \alpha_{2} D^{\prime}
\end{array}
$$

Since D^{-1} is integral, and hence $D^{-1} \beta_{1}, \beta_{1}\left(D^{\prime}\right)^{-1},\left(D^{\prime}\right)^{-1} \beta_{2}, \beta_{2} D^{-1}$ and $D^{-1} \alpha_{1} D, D^{\prime} \delta_{1}\left(D^{\prime}\right)^{-1}, D \delta_{2} D^{-1},\left(D^{\prime}\right)^{-1} \alpha_{2} D^{\prime}$ are necessarily integral (second integrality conditions). We reformulate the integrality conditions by introducing the integral skew-symmetric matrix

$$
\Lambda_{D}=\left(\begin{array}{cc}
0 & D^{-1} \\
-D^{-1} & 0
\end{array}\right)
$$

Define

$$
G S p\left(\Lambda_{D}\right)=\left\{h \in G l\left(F^{2 i}\right) \mid h^{\prime} \Lambda_{D} h=\lambda \cdot \Lambda_{D}, \lambda \in F^{*}\right\}
$$

Notice $\operatorname{diag}(E,-E) \in G S p\left(\Lambda_{D}\right)$ and $J \in G S p\left(\Lambda_{D}\right)$; hence,

$$
I=\left(\begin{array}{cc}
0 & E \\
E & 0
\end{array}\right) \in G S p\left(\Lambda_{D}\right)
$$

and, therefore, $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G S p\left(\Lambda_{D}\right) \Longleftrightarrow g^{I}=I g I=\left(\begin{array}{cc}d & c \\ b & a\end{array}\right) \in G S p\left(\Lambda_{D}\right)$.
Also notice that $g_{k} \in G S p\left(\Lambda_{D}\right)$ holds for the two matrices $(k=1,2)$

$$
g_{k}:=\left(\begin{array}{cc}
a_{k} & b_{k} \\
c_{k} & d_{k}
\end{array}\right)=\left(\begin{array}{cc}
0 & D \\
E & 0
\end{array}\right)\left(\begin{array}{cc}
\alpha_{k} & \beta_{k} \\
\gamma_{k} & \delta_{k}
\end{array}\right)\left(\begin{array}{cc}
0 & D \\
E & 0
\end{array}\right)^{-1}=\left(\begin{array}{cc}
D \delta_{k} D^{-1} & D \gamma_{k} \\
\beta_{k} D^{-1} & \alpha_{k}
\end{array}\right) .
$$

All the integrality conditions stated above when put together express the fact that both matrices g_{k} and $\operatorname{diag}(D, D)^{-1} g_{k} \operatorname{diag}(D, D)$ are integral matrices (for $k=$ $1,2)$ with equal similitude factor in \mathfrak{o}_{F}^{*}. If $\Gamma=\left(\mathfrak{o}_{F}\right)^{2 i}$ denotes the standard lattice in $F^{2 i}$, then Λ_{D} defines a skew-symmetric pairing $\langle., .\rangle_{D}$ on Γ by $\langle v, w\rangle_{D}=v^{\prime} \Lambda_{D} w$. The dual lattice $\Gamma^{*}=\left\{w \in F^{2 i} \mid\langle w, \Gamma\rangle_{D} \in \mathfrak{o}_{F}\right\}$ is $\Gamma^{*}=\operatorname{diag}(D, D)(\Gamma)$. The matrices in $G S p\left(\Lambda_{D}\right)$, which preserve the lattice Γ, define a compact open subgroup $\operatorname{Aut}\left(\Gamma, \Lambda_{D}\right) \subseteq G S p\left(\Lambda_{D}\right)$. Each $g \in \operatorname{Aut}\left(\Gamma, \Lambda_{D}\right)$ preserves the dual lattice Γ^{*}. Hence, $g\left(\Gamma^{*}\right)=\Gamma^{*}$ or $\operatorname{diag}(D, D)^{-1} \cdot g \cdot \operatorname{diag}(D, D) \in \operatorname{Aut}\left(\Gamma, \Lambda_{D^{-1}}\right)$. This shows that the first and second integrality conditions are equivalent to

$$
g_{1}, g_{2} \in \operatorname{Aut}\left(\Gamma, \Lambda_{D}\right)
$$

This defines an injective homomorphism

$$
H_{D} \hookrightarrow \operatorname{Aut}\left(\Gamma, \Lambda_{D}\right) \times \operatorname{Aut}\left(\Gamma, \Lambda_{D}\right),
$$

induced from the injection of $H(F)$ into $G S p\left(\Lambda_{D}\right) \times G S p\left(\Lambda_{D}\right)$, which is defined by

$$
h \mapsto\left(k_{1}, k_{2}\right)=\left(g_{1}, g_{2}^{I}\right)
$$

Now $\Gamma \subseteq \Gamma^{*}$ since Λ_{D} is integral. Hence, we get a homomorphism

$$
1 \rightarrow K_{D} \rightarrow \operatorname{Aut}\left(\Gamma, \Lambda_{D}\right) \rightarrow \operatorname{Aut}\left(\Gamma^{*} / \Gamma\right)
$$

with kernel, say, K_{D}. Obviously $g \in K_{D} \Longleftrightarrow(g-i d) \operatorname{diag}(D, D)$ is integral. For $\mathcal{G}=M_{i, i}\left(\mathfrak{o}_{F}\right) \cdot D^{-1} \subseteq M_{i, i}\left(\mathfrak{o}_{F}\right)$ the above four congruences $(*)$ are equivalent to $b_{1} \equiv c_{2}, c_{1} \equiv b_{2}, d_{1} \equiv a_{2}$, and $a_{1} \equiv d_{2}$ modulo \mathcal{G}. In other words, the conditions (*) mean $\left(g_{1}-g_{2}^{I}\right) \operatorname{diag}(D, D)$ is integral, or $\left(i d-g_{1}^{-1} g_{2}^{I}\right) \operatorname{diag}(D, D)$ is integral. In other words, we get the condition

$$
g_{1} \equiv g_{2}^{I} \bmod K_{D}
$$

or $k_{1} \equiv k_{2} \bmod K_{D}$. Hence, H_{D} is isomorphic to the group of all $\left(k_{1}, k_{2}\right) \in$ $\operatorname{Aut}\left(\Gamma, \Lambda_{D}\right)^{2}$ such that $k_{1} \equiv k_{2} \bmod K_{D}$. Since K_{D} is a normal subgroup of $\operatorname{Aut}\left(\Gamma, \Lambda_{D}\right)$, this proves that H_{D} is isomorphic to the semidirect product $K_{D} \triangleleft$ $\operatorname{Aut}\left(\Gamma, \Lambda_{D}\right)$

$$
1 \rightarrow K_{D} \rightarrow H_{D} \rightarrow \operatorname{Aut}\left(\Gamma, \Lambda_{D}\right) \rightarrow 1
$$

Example 12.1. For $D=d \cdot E$ we have $G S p\left(\Lambda_{D}\right)=G S p(2 i, F)$, and $A u t\left(\Gamma, \Lambda_{D}\right)=$ $G\left(\mathfrak{o}_{F}\right)$ such that K_{D} is the principal congruence subgroup of level d.

12.5 The Twisted Group \tilde{H}

Whereas in the last section we considered $i \leq j$, we now have to restrict ourselves to the special case $n=i+j$, where $i=j$. In this special case the normalizer N_{s} of the subgroup $H=G_{s}$ of $G=G S p(2 n)$ is not connected. This now allows us to define Galois twists \tilde{H} of the group H considered in the last section. For $i=j$ the centralizer in the adjoint group of the element s (defined at the beginning of this chapter) is nontrivial. The element

$$
w=\left(\begin{array}{cccc}
0 & E & 0 & 0 \\
E & 0 & 0 & 0 \\
0 & 0 & 0 & E \\
0 & 0 & E & 0
\end{array}\right) \in G\left(\mathfrak{o}_{F}\right)
$$

in G_{s} generates $N_{s} / G_{s} \cong \mathbb{Z} / 2 \mathbb{Z}$. We have $w s=-s w, w^{2}=i d$, and $w J=J w$.

Suppose K / F is a quadratic field extension, and σ is the generator of the Galois group of this extension. Since $H^{1}(F, G S p(2 n))$ is trivial, there exists an $g_{0} \in G S p(2 n, K)$ such that

$$
g_{0}^{-1} \sigma\left(g_{0}\right)=w, \quad \sigma\left(g_{0}\right)=g_{0} \cdot w .
$$

This condition determines the coset $G(F) \cdot g_{0}$ uniquely. Then the group $\tilde{H}=$ $g_{0} H g_{0}^{-1}$ is invariant under σ, and defines a form \tilde{H} of H over F together with an embedding $\tilde{H} \hookrightarrow G$ defined over F. Notice for the norm-1-subgroup N^{1} in $\operatorname{Res}_{K / F}\left(\mathbb{G}_{m}\right)$

$$
1 \rightarrow \tilde{H} \rightarrow \operatorname{Res}_{K / F}(\operatorname{GSp}(2 i)) \rightarrow N^{1} \rightarrow 1
$$

where the morphism on the right is $g \mapsto(\sigma(\lambda(g)) / \lambda(g)$. Let us make some choice, i.e., $g_{0}=\operatorname{diag}\left(1, \frac{\alpha^{2}}{2}, \alpha^{2}, 2\right) \cdot \operatorname{diag}\left(U,\left(U^{\prime}\right)^{-1}\right)$ for $U=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ -\alpha & \alpha\end{array}\right)$, where $K=F(\alpha)$ and $A^{-1}=\alpha^{2} \in F^{*}$. We can assume that the valuation is $v_{K}\left(\alpha^{2}\right)=0$ or -1 depending on whether K / F is unramified or not since the residue characteristic is different from 2. Then \tilde{H} becomes the subgroup of all the matrices η defined on page 239 .

The Map $\tilde{\mathcal{L}}$. Now consider the commutative diagram

where the upper map is induced by the scalar extension maps, the right vertical bijection is $\tilde{H}(K) g G\left(\mathfrak{o}_{K}\right) \mapsto H(K) g_{0}^{-1} g G\left(\mathfrak{o}_{K}\right)$, and the lower horizontal injective map is defined as in Lemma 12.1, but now for the field K instead of F. The left vertical map is the composition of the other maps $\tilde{\mathcal{L}}\left(\tilde{H}(F) g G\left(\mathfrak{o}_{F}\right)\right)=$ $\mathcal{L}\left(H(K) g_{0}^{-1} g G\left(\mathfrak{o}_{K}\right)\right)=$ orbit of $\lambda\left(g_{0}^{-1} g\right)^{-1} \cdot\left(g_{0}^{-1} g\right)^{\prime} \Lambda_{s}\left(g_{0}^{-1} g\right)=$ orbit of $\lambda(g)^{-1}$. $g^{\prime} \tilde{\Lambda}_{s} g$ for

$$
\tilde{\Lambda}_{s}=\left(\begin{array}{cccc}
0 & 0 & 0 & -\alpha^{-1} E \\
0 & 0 & -\alpha E & 0 \\
0 & \alpha E & 0 & 0 \\
\alpha^{-1} E & 0 & 0 & 0
\end{array}\right) .
$$

The Image of $\tilde{\mathcal{L}}$. The F-rational element $\operatorname{diag}(E, A \cdot E, E, E) \times 1$ transforms $\tilde{\Lambda}_{s}$ to $-\alpha^{-1} \cdot J$ within its orbits. Hence, the image of $\tilde{\mathcal{L}}$ is contained in the image of the $G l(2 n, F) \times F^{*}$ orbit of the matrix $-\alpha^{-1} \cdot J$. Therefore,

$$
\operatorname{image}(\tilde{\mathcal{L}}) \subseteq\left(v_{K}(\alpha), \ldots, v_{K}(\alpha)\right)+v_{K}\left(F^{*}\right)^{n} \subseteq v_{K}\left(K^{*}\right)^{n}
$$

considered as a subset of the n exponents, which define the Frobenius normal form of the skew-symmetric $2 n \times 2 n$-matrix. On the other hand, this image is contained in the image of the lower horizontal map \mathcal{L}, which is the set $\left\{\left(a_{1}, \ldots, a_{i},-a_{i}, \ldots,-a_{1}\right) \in v_{K}\left(K^{*}\right)^{n} \mid a_{1} \leq \cdots a_{\nu} \leq-a_{\nu} \leq \cdots-a_{1}\right\}$.

We claim that $\operatorname{image}(\tilde{\mathcal{L}})$ is the intersection of these two sets. We show that every element of this intersection is some $\tilde{\mathcal{L}}\left(\tilde{H}(F) \tilde{g}(D) G\left(\mathfrak{o}_{F}\right)\right)$. Notice
$\tilde{\mathcal{L}}\left(\tilde{H}(F) \tilde{g}(D) G\left(\mathfrak{o}_{F}\right)\right)=$ orbit of $\left(\begin{array}{cc}E & T \\ 0 & E\end{array}\right)^{\prime} \tilde{\Lambda}_{s}\left(\begin{array}{cc}E & T \\ 0 & E\end{array}\right)=$ orbit of $\left(\begin{array}{cc}0 & M \\ -M^{\prime} & T M-M^{\prime} T\end{array}\right)$
for $M=\left(\begin{array}{cc}0 & M_{0}^{-1} \\ M_{0} & 0\end{array}\right), M_{0}=-\alpha E$. For $T=\left(\begin{array}{cc}A^{-1} \cdot D & 0 \\ 0 & 0\end{array}\right)$ this gives the orbit of

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & -\alpha^{-1} E \\
0 & 0 & -\alpha E & 0 \\
0 & \alpha E & 0 & -\alpha D \\
\alpha^{-1} E & 0 & \alpha D & 0
\end{array}\right) .
$$

Obviously for $e=v_{K}(\alpha) \in\left\{0,-\frac{1}{2}\right\}$ and $D=A^{-1} \cdot \operatorname{diag}\left(\pi_{F}^{e_{1}}, \cdots, \pi_{F}^{e_{i}}\right)$ as in Theorem 12.1 the first $2 i$-elementary divisors of this matrix are $\left(e+e_{1}, e+e_{1}, e+\right.$ $e_{2}, e+e_{2}, \ldots, e+e_{i}, e+e_{i}, *, \ldots, *$) (arises from the lower right block, since αD gives rise to the minors with the highest order denominator). This suffices to prove the claim with the representatives $\tilde{g}(D)=\left(\begin{array}{cc}E & T \\ 0 & E\end{array}\right)$, where $T=\left(A^{A^{-1}} \cdot D{ }_{0}^{0}\right)$ for D as above.

Galois Descent. From the last argument it follows that every $g \in G(F)$ can be written in the form $g=h \tilde{g}(D) k_{0}^{-1}$ for some $h \in \tilde{H}(K)$, some $k_{0} \in G\left(\mathfrak{o}_{K}\right)$, and some D as in Theorem 12.1. Then $\sigma(h) \tilde{g}(D) \sigma\left(k^{-1}\right)=h \tilde{g}(D) k^{-1}$ implies $\tilde{g}(D)^{-1} h^{-1} \sigma(h) \tilde{g}(D)=k^{-1} \sigma(k)$ or

$$
b(\sigma)=k^{-1} \sigma(k) \in H_{D}(K):=\left(\tilde{g}(D)^{-1} \tilde{H}(K) \tilde{g}(D)\right) \cap G\left(\mathfrak{o}_{K}\right)
$$

Suppose the 1-cocycle $b(\sigma)=k^{-1} \sigma(k) \in H_{D}(K)$ is a 1-coboundary $b(\sigma)=y^{-1} \sigma(y)$ for some $y \in H_{D}(K)$. Then $\tilde{k}=y k^{-1} \in G\left(\mathfrak{o}_{F}\right)$ and $g=\left(h \tilde{g}(D) y^{-1} \tilde{g}(D)^{-1}\right) \cdot \tilde{g}(D) \cdot\left(y k^{-1}\right)=\tilde{h} \cdot \tilde{g}(D) \cdot \tilde{k}$. Since $g, \tilde{k} \in G(F)$ and $\tilde{g}(D) \in G(F), \tilde{h} \in \tilde{H}(F)$ and

$$
g \in \tilde{H}(F) \cdot \tilde{g}(D) \cdot G\left(\mathfrak{o}_{F}\right)
$$

The Obstruction. For $n=2$ the group $H_{D}(K)$ is isomorphic to the group $G l(2, R)^{0}$, where R is the ring $\mathfrak{o}_{F} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K}(i)$ (see page 248). Here σ acts by its natural action on the first factor, and is trivial on the second factor. By Shapiro's lemma the class $[b(\sigma)]$ in the cohomology $H^{1}\left(\langle\sigma\rangle, H_{D}(K)\right)$ is trivial if this holds for its image in the quotient $H^{1}\left(\langle\sigma\rangle, G l\left(2, \mathfrak{o}_{K} /\left(\pi_{F}^{i}\right)\right)^{0}\right.$. Now it is easy to show that the fiber over the trivial element under the reduction map

$$
H^{1}\left(\langle\sigma\rangle, G l\left(2, \mathfrak{o}_{K} /\left(\pi_{F}^{i}\right)\right)^{0}\right) \rightarrow H^{1}\left(\langle\sigma\rangle, G l\left(2, \mathfrak{o}_{K} /\left(\pi_{K}\right)\right)^{0}\right)
$$

is trivial. This is easily shown by induction on i. If K / F is unramified, the cohomology set $H^{1}\left(\langle\sigma\rangle, G l\left(2, \mathfrak{o}_{K} /\left(\pi_{K}\right)\right)^{0}\right)$ is trivial. If K / F is ramified, this is not the case. But in the ramified case, for the vanishing of the obstruction classes $[b(\sigma)]$
it is therefore sufficient that the image of the 1-cocycle $b(\sigma)$ is trivial in the quotient group $G l\left(2, \mathfrak{o}_{K} /\left(\pi_{K}\right)\right)^{0}$ of $H_{D}(K)$. However, this follows from Lemma 7.5 since the reduction of $b(\sigma)=k^{-1} \sigma(k) \in G\left(\mathfrak{o}_{K}\right)$ in $G\left(\mathfrak{o}_{K} /\left(\pi_{K}\right)\right)$ is trivial. Notice $k^{-1} \sigma(k)=k^{-1} k=1$ in $G\left(\mathfrak{o}_{K} /\left(\pi_{K}\right)\right)$.

Injectivity of $\tilde{\mathcal{L}}$. In general, if all the above-defined cohomology obstructions [b($\sigma)$] in $H^{1}\left(\langle\sigma\rangle, H_{D}(K)\right)$ are trivial, we obtain

$$
G(F)=\bigcup_{D} \tilde{H}(F) \cdot \tilde{g}(D) \cdot G\left(\mathfrak{o}_{F}\right)
$$

Furthermore, since $\tilde{\mathcal{L}}\left(H(F) \cdot \tilde{g}\left(D_{1}\right) \cdot G\left(\mathfrak{o}_{F}\right)\right)=\tilde{\mathcal{L}}\left(H(F) \cdot \tilde{g}\left(D_{2}\right) \cdot G\left(\mathfrak{o}_{F}\right)\right)$ implies $D_{1}=D_{2}$ as shown above, we even conclude

Theorem 12.2. The matrices $\left(\begin{array}{cc}E & T \\ 0 & E\end{array}\right)$ for $T=\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right)$ and $D=A^{-1} \cdot \operatorname{diag}\left(\pi_{F}^{e_{1}}\right.$, $\cdots, \pi_{F}^{e_{i}}$), where $e_{1} \leq \cdots \leq e_{i}$ and $e_{\nu}<0$ or $e_{\nu}=\infty$ for $\nu=1, \ldots$, , define inequivalent representatives and for $n=2$ a full system of representatives for the double cosets

$$
\tilde{H}(F) \backslash G(F) / G\left(\mathfrak{o}_{F}\right)
$$

In general, consider the matrix group $H^{\prime}=\operatorname{Res}_{K / F}\left(G S p\left(\Lambda_{D}\right)\right)^{0}$. For an integral extension ring \mathfrak{O} of \mathfrak{o}_{F} with fraction field L consider the subset of $H^{\prime}(L)=$ $G S p\left(\Lambda_{D}\right)^{0}\left(L \otimes_{F} K\right)$ defined by all block matrices $g=\left(\begin{array}{c}A \\ C\end{array} \underset{D}{B}\right)$ for which A, B, C, and D are matrices of the form

$$
X \otimes 1+Y \cdot D^{-1} \otimes \sqrt{A}^{-1}
$$

such that X and Y are $i \times i$-matrices with coefficients in \mathfrak{O}. In fact, this subset defines a subgroup. For $\mathfrak{O}=\mathfrak{o}_{K}$ this group is isomorphic to $H_{D}(K)$, and σ acts on these matrices by $\sigma\left(X \otimes 1+Y D^{-1} \otimes \sqrt{A}^{-1}\right)=\sigma(X) \otimes 1+\sigma(Y) D^{-1} \otimes \sqrt{A}^{-1}$, via its natural action on $\mathfrak{O}=\mathfrak{o}_{K}$. Notice that the coefficients of the matrices g are in $\mathfrak{O} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K} \subseteq L \otimes_{F} K$.

