
Quick Shift and Kernel Methods

for Mode Seeking

Andrea Vedaldi and Stefano Soatto

University of California, Los Angeles
Computer Science Department
{vedaldi,soatto}@ucla.edu

Abstract. We show that the complexity of the recently introduced
medoid-shift algorithm in clustering N points is O(N2), with a small
constant, if the underlying distance is Euclidean. This makes medoid
shift considerably faster than mean shift, contrarily to what previously
believed. We then exploit kernel methods to extend both mean shift
and the improved medoid shift to a large family of distances, with com-
plexity bounded by the effective rank of the resulting kernel matrix, and
with explicit regularization constraints. Finally, we show that, under cer-
tain conditions, medoid shift fails to cluster data points belonging to the
same mode, resulting in over-fragmentation. We propose remedies for this
problem, by introducing a novel, simple and extremely efficient clustering
algorithm, called quick shift, that explicitly trades off under- and over-
fragmentation. Like medoid shift, quick shift operates in non-Euclidean
spaces in a straightforward manner. We also show that the accelerated
medoid shift can be used to initialize mean shift for increased efficiency.
We illustrate our algorithms to clustering data on manifolds, image seg-
mentation, and the automatic discovery of visual categories.

1 Introduction

Mean shift [9,3,5] is a popular non-parametric clustering algorithm based on the
idea of associating each data point to a mode of the underlying probability den-
sity function. This simple criterion has appealing advantages compared to other
traditional clustering techniques: The structure of the clusters may be rather
arbitrary and the number of clusters does not need to be known in advance.

Mean shift is not the only “mode seeking” clustering algorithm. Other ex-
amples include earlier graph-based methods [13] and, more recently, medoid
shift [20]. Unlike mean shift, medoid shift extends easily to general metric spaces
(i.e. spaces endowed with a distance). In fact, mean shift is essentially a gra-
dient ascent algorithm [3,5,24] and the gradient may not be defined unless the
data space has additional structure (e.g. Hilbert space or smooth manifold struc-
ture). While there have been recent efforts to generalize mean shift to non-linear
manifolds [21], medoid shift does not require any additional steps to be used on
curved spaces. Moreover, the algorithm is non-iterative and there is no need for a
stopping heuristic. Its biggest disadvantage is its computational complexity [20].

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part IV, LNCS 5305, pp. 705–718, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

706 A. Vedaldi and S. Soatto

Fig. 1. Mode seeking algorithms. Comparison of different mode seeking algo-
rithms (Sect. 2) on a toy problem. The black dots represent (some of) the data points
xi ∈ X ⊂ R

2 and the intensity of the image is proportional to the Parzen density esti-
mate P (x). Left. Mean shift moves the points uphill towards the mode approximately
following the gradient. Middle. Medoid shift approximates mean shift trajectories by
connecting data points. For reason explained in the text and in Fig. 2, medoid shifts
are constrained to connect points comprised in the red circles. This disconnects por-
tions of the space where the data is sparse, and can be alleviated (but not solved) by
iterating the procedure (Fig. 2). Right. Quick shift (Sect. 3) seeks the energy modes
by connecting nearest neighbors at higher energy levels, trading-off mode over- and
under-fragmentation.

Depending on the implementation, medoid shift requires between O(dN2 +N3)
and O(dN2 + N2.38) operations to cluster N points, where d is the dimension-
ality of the data. On the other hand, mean shift is only O(dN2T), where T
is the number of iterations of the algorithm, and clever implementations yield
dT � N .

Contributions. In this paper we show that the computational complexity of
Euclidean medoid shift is only O(dN2) (with a small constant), which makes it
faster (not slower!) than mean shift (Sect. 3). We then generalize this result to
a large family of non-Euclidean distances by using kernel methods [18], showing
that in this case the complexity is bounded by the effective dimensionality of
the kernel space (Sect. 3). Working with kernels has other advantages: First, it
extends to mean shift (Sect. 4); second, it gives an explicit interpretation of non-
Euclidean medoid shift; third, it suggests why such generalized mode seeking
algorithms skirt the curse of dimensionality, despite estimating a density in
complex spaces (Sect. 4). In summary, we show that kernels extend mode seeking
algorithms to non-Euclidean spaces in a simple, general and efficient way.

Can we conclude that medoid shift should replace mean shift? Unfortunately,
not. We show that the weak point of medoid shift is its inability to identify
consistently all the modes of the density (Sect. 2). This fact was addressed
implicitly by [20] who reiterate medoid shift on a simplified dataset (similar
to [2]). However, this compromises the non-iterative nature of medoid shift and
changes the underlying density function (which may be undesirable). Moreover,
we show that this fix does not always work (Fig. 2).

Quick Shift and Kernel Methods for Mode Seeking 707

We address this issue in two ways. First, we propose using medoid shift to sim-
plify the data and initialize the more accurate mean shift algorithm (Sect. 5.2 and
Sect. 5.3). Second, we propose an alternative mode seeking algorithm that can
trade off mode over- and under-fragmentation (Sect. 3). This algorithm, related
to [13], is particularly simple and fast, yields surprisingly good segmentations,
and returns a one parameter family of segmentations where model selection can
be applied.

We demonstrate these algorithms on three tasks (Sect. 5): Clustering on a
manifold (Sect. 5.1), image segmentation (Sect. 5.2), and clustering image sig-
natures for automatic object categorization (Sect. 5.3). The relative advantages
and disadvantages of the various algorithms are discussed.

2 Mode Seeking

Given N data points x1, . . . , xN ∈ X = R
d, a mode seeking clustering algorithm

conceptually starts by computing the Parzen density estimate

P (x) =
1
N

N∑

i=1

k(x− xi), x ∈ R
d (1)

where k(x) can be a Gaussian or other window.1 Then each point xi is moved
towards a mode of P (x) evolving the trajectory yi(t), t > 0 uphill, starting from
yi(0) = xi and following the gradient ∇P (yi(t)). All the points that converge to
the same mode form a cluster.

A mode seeking algorithm needs (i) a numerical scheme to evolve the trajec-
tories yi(t), (ii) a halting rule to decide when to stop the evolution and (iii) a
clustering rule to merge the trajectory end-points. Next, we discuss two algo-
rithms of this family.

Mean Shift. Mean shift [9,5] is based on an efficient rule to evolve the tra-
jectories yi(t) when the window k(x) can be written as ψ(‖x‖22) for a convex
function ψ(z) (for instance the Gaussian window has ψ(z) ∝ exp(−z)). The
idea is to bound the window from below by the quadric k(z′) ≥ k(z) + (‖z′‖22 −
‖z‖22)ψ̇(‖z‖22). Substituting in (1) yields

P (y′) ≥ P (y) +
1
N

N∑

j=1

(‖y′ − xj‖22 − ‖y − xj‖22)ψ̇(‖y − xj‖22), (2)

and maximizing this lower bound at y = yi(t) yields the mean-shift update rule

yi(t+ 1) = argmax
y

1

N

N∑

j=1

‖y − xj‖2
2ψ̇(‖yi(t) − xj‖2

2) =

∑N
j=1 ψ̇(‖yi(t) − xj‖2

2)xj
∑N

j=1 ψ̇(‖yi(t) − xj‖2
2)

. (3)

1 The term “kernel” is also used in the literature. Here we use the term “window” to
avoid confusion with the kernels introduced in Sect. 3.

708 A. Vedaldi and S. Soatto

If the profile ψ(z) is monotonically decreasing, then P (yi(t)) < P (yi(t + 1)) at
each step and the algorithm converges in the limit (since P is bounded [5]). The
complexity is O(dN2T), where d is the dimensionality of the data space and T is
the number of iterations. The behavior of the algorithm is illustrated in Fig. 1.

Medoid Shift. Medoid shift [20] is a modification of mean shift in which the
trajectories yi(t) are constrained to pass through the points xi, i = 1, . . . , N .
The advantage of medoid shift are: (i) only one step yi(1), i = 1, . . . , N has to
be computed for each point xi (because yi(t + 1) = yyi(t)(1)), (ii) there is no
need for a stopping/merging heuristic (as these conditions are met exactly), and
(iii) the data space X may be non-Euclidean (since to maximize (4) there is no
need to compute derivatives). Eventually, points are linked by steps into a forest,
with clusters corresponding to trees. The algorithm is illustrated in Fig. 1.

According to [20], the main drawback of medoid shift is speed. In fact, maxi-
mizing (3) restricted to the dataset amounts to calculating

yi(1) = argmax
y∈{x1,...,xN}

1
N

N∑

j=1

d2(y, xj)φ̇(d2(xj , xi)) (4)

where d2(x, y) = ‖x − y‖22 in the Euclidean case. A basic implementation re-
quires O(N3 + dN2) operations, assuming O(d) operations to evaluate d2(x, y).
However, by defining matrices Dkj = d2(xk, xj) and Fki = φ̇(Dik)/N , we can
rewrite (4) as

yi(1) = argmax
k=1,...,N

N∑

j=1

DkjFji = argmax
k=1,...,N

e�k DFei (5)

where ei denotes the i-th element of the canonical basis.2 As noted in [20],
O(N2.38) operations are sufficient by using the fastest matrix multiplication
algorithm available. Unfortunately the hidden constant of this algorithm is too
large to be practical (see [12], pag. 501). Thus, a realistic estimate of the time
required is more pessimistic than what suggested by the asymptotic estimate
O(dN2 +N2.38).

Here we note that a more delicate issue with medoid shift is that it may fail
to properly identify the modes of the density P (x). This is illustrated in Fig. 2,
where medoid shift fails to cluster three real points −1,+1 and +1/2, finding
two modes −1 and +1 instead of one. To overcome this problem, [20] applies
medoid shift iteratively on the modes (in the example −1 and +1). However, this
solution is not completely satisfactory because (i) the underlying model P (x) is
changed (similarly to blurry mean shift [9,3]) and (ii) the strategy does not work
in all cases (for instance, in Fig. 2 points −1 and +1 still fail to converge to a
single mode).

Finally, consider the interpretation of medoid shift. When X is a Hilbert space,
medoid (and mean) shift follow approximately the gradient of the density P (x)

2 For instance e2 =
[
0 1 0 . . . 0

]�
.

Quick Shift and Kernel Methods for Mode Seeking 709

−1 1 1.5
0

0.1

0.2

−1 1
0

0.1

0.2

Fig. 2. Medoid shift over-fragmentation. Left. We apply medoid shift to cluster
points −1,+1,+1/2 ∈ R using a Gaussian window of variance σ2 = 1 (dashed green
lines). The density P (x) (red curve; Sect. 2) has a single mode, but medoid shift fails
to move the point −1 towards the mode (i.e. y−1(1) = −1). The reason is that the
quadratic lower bound (2) (blue curve) is larger at −1 than it is at +1 or +1/2. Notice
that mean shift would have moved −1 towards the mode by a small, but finite amount,
eventually extracting the single mode. Right. The problem is not solved even if medoid
shift is reiterated [20] on the two modes −1 and +1 (where +1 has double mass), even
if the density P (x) does become blurrier [2,20].

(by maximizing the lower bound (3)). The gradient depends crucially on the
inner product and corresponding metric defined on X , which encodes the cost
of moving along each direction [22]. For general metric spaces X , the gradient
may not be defined, but the term d2(x, y) in (4) has a similar direction-weighing
effect. In later sections we will make this connection more explicit.

3 Fast Clustering

Faster Euclidean Medoid Shift. We show that the complexity of Euclidean
medoid shift is only O(dN2) (with a small constant) instead of O(dN2 +N2.38)
(with a large constant) [20]. Let X =

[
x1 . . . xN

]
be the data matrix. Let

n = (X� � X�)1 be the vector of the squared norms of the data, where 1
denotes the vector of all ones and � the Hadamard (component wise) matrix
product. Then we have

D = 1n� + n1� − 2X�X, DF = n(1�F) + 1(n�F)− 2X�(XF). (6)

The term 1(n�F) has constant columns and is irrelevant to the maximiza-
tion (5). Therefore, we need to compute

DF ∝ n(1�F)− 2X�(XF), n = (X� �X�)1 = (I �X�X)1 (7)

where I is the identity matrix.3 It is now easy to check that each matrix product
in (7) requires O(dN2) operations only.

3 And we used the fact that (I � AB)1 = (B� � A)1.

710 A. Vedaldi and S. Soatto

Kernel Medoid Shift. An advantage of medoid shift is the possibility of com-
puting (4) for distances d2(x, y) other than the Euclidean one [20]. The decom-
position (6) can still be carried out if the distance d2(x, y) can be expressed as
K(x, x) + K(y, y)− 2K(x, y) for an appropriate positive definite (p.d.) kernel4

K [18]. Then we have D = 1n� + n1� − 2K, and

DF ∝ n(1�F)− 2KF, n = (I �K)1.

Unfortunately, the multiplication KF is still O(N2.38). However, we can search
for a low-rank decomposition G�G of K (we assume, without loss of generality,
that K is centered5). If G is a decomposition of rank d, then

DF ∝ n(1�F)− 2G(G�F), n = (I �G�G)1 = (G� �G�)1

can still be computed in O(dN2) operations. The cost of decomposing K is
typically around O(d2N) [8,1]. See Fig. 3 for a basic implementation.

Quick Shift. In order to seek the mode of the density P (x), it is not necessary
to use the gradient or the quadratic lower bound (2). Here we propose quick
shift, which simply moves each point xi to the nearest neighbor for which there
is an increment of the density P (x). In formulas,

yi(1) = argmin
j:Pj>Pi

Dij , Pi =
1
N

N∑

j=1

φ(Dij). (8)

Quick shift has four advantages: (i) simplicity; (ii) speed (O(dN2) with a small
constant); (iii) generality (the nature of D is irrelevant); (iv) a tuning parameter
to trade off under- and over-fragmentation of the modes. The latter is obtained
because there is no a-priori upper bound on the length Dij of the shifts yi(0)→
yi(1). In fact, the algorithm connects all the points into a single tree. Modes
are then recovered by breaking the branches of the tree that are longer than a
threshold τ . Searching τ amounts to performing model selection and balances
under- and over-fragmentation of the modes. The algorithm is illustrated in
Fig. 1.

Quick shift is related to the classic algorithm from [13]. In fact, we can
rewrite (8) as

yi(1) = argmax
j=1,...,N

sign(Pj − Pi)

Dij
, and compare it to yi(1) = argmax

j:d(xj ,xi)<τ

Pj − Pi

Dij
(9)

4 The kernel K should not be confused with the Parzen window k(z) appearing in (1).
In the literature, it is common to refer to the Parzen window as “kernel”, but in most
cases it has rather different mathematical properties than the kernel K we consider
here. An exception is when the window is Gaussian, in which cases k(d2(x, y)) is a
p.d. kernel. In this case, we point out an interesting interpretation of mean shift as
a local optimization algorithm that, starting from each data point, searches for the
pre-image of the global data average computed in kernel space. This explains the
striking similarity of the mean shift update Eq. (3) and Eq. (18.22) of [19].

5 K is centered if K1 = 0. If this is not the case, we can replace K by K′ = HKH ,
where H = I − 11�/N is the so-called centering matrix. This operation translates
the origin of the kernel space, but does not change the corresponding distance.

Quick Shift and Kernel Methods for Mode Seeking 711

as given by [13]. Notice that (Pj − Pi)/Dij is a numerical approximation of the
gradient of P in the direction xj − xi. The crucial difference is that maximizing
the gradient approximation must be done in a neighborhood of each point defined
a-priori by the choice of the parameter τ . Thus, model selection in [13] requires
running the algorithm multiple times, one for each value of τ . In contrast, quick
shift returns at once the solutions for all possible values of τ , making model
selection much more efficient.

4 Cluster Refinement

In the previous section we introduced fast kernel medoid shift as an accelerated
version of non-Euclidean medoid shift. Since medoid shift may over-fragment
modes, quick shift was then proposed as a method to control under- and over-
fragmentation by the choice of a parameter τ . No algorithm, however, guarantees
the same accuracy of the slower mean shift.

It is then natural to ask whether mean shift could be extended to work in a
non-Euclidean setting. [20] cites the problem of defining the mean as the major
obstacle to this idea. [21] addresses this issue by defining mean shift vectors on
the tangent space of a non-linear manifold, but no proof of convergence is given,
and the applicability is limited by the fact that the data space needs to have a
manifold structure known analytically.

A simple solution to this problem is to extend kernel medoid to a correspond-
ing kernel mean shift procedure. Let K(·, ·) be a p.d. kernel on the data space
X . Then K(x, ·) is an element of the so called reproducing kernel Hilbert space
H [19], whose inner product is defined by letting 〈K(x, ·),K(y, ·)〉H = K(x, y).
Points x ∈ R

d are then identified with elements K(x, ·) of the Hilbert space.
Given this identification, we can write 〈·, x〉H for 〈·,K(x, ·)〉H.

Kernel mean shift computes a “density6” on H

P (y) =
1
N

N∑

j=1

k(d2
H(y, xj)), y ∈ H (10)

where d2
H(xj , y) = 〈y, y〉H + 〈xj , xj〉H − 2〈y, xj〉H. Notice that y ∈ H, unlike

standard mean shift, does not belong necessarily to the data space X (up to
the identification x ≡ K(x, ·)). However, if k(z) is monotonically decreasing,
then maximizing w.r.t. y can be restricted to the linear subspace spanHX =
spanH{x1, . . . , xn} ⊂ H (if not, the orthogonal projection of y onto that space
decreases simultaneously all terms d2

H(xj , y)).
Therefore, we can express all calculations relative to spanHX . In particular,

if Kij = K(xi, xj) is the kernel matrix, we have d2
H(xj , y) = y�Ky + e�j Kej −

2e�j Ky where ej is the j-th vector of the canonical basis and y is a vector of N
coefficients. As in standard mean shift, the shifts are obtained by maximizing
the lower bound
6 The interpretation is discussed later.

712 A. Vedaldi and S. Soatto

(Kernel) Mean Shift (Kernel) Medoid Shift

function Z = meanshift(G, sigma)

[d,N] = size(G) ;
oN = ones(N,1) ;
od = ones(d,1) ;
n = (G’.*G’)*od ;

Z = G ;
T = 100 ;
for t=1:T

m = (Z’.*Z’)*od ;
D = m*oN’ + oN*n’ - 2*(Z’*G) ;
F = - exp(- .5 * D’ / sigma^2) ;
Y = F ./ (oN * (oN’*F)) ;
Z = G*Y ;

end

function map = medoidshift(G, sigma)

[d,N] = size(G) ;
oN = ones(N,1) ;
od = ones(d,1) ;
n = (G’.*G’)*od ;

D = n*oN’ + oN*n’ - 2*(G’*G) ;
F = - exp(- .5 * D’ / sigma^2) ;
Q = n * (oN’*F) - 2 * G’ * (G*F) ;

[drop,map] = max(Q) ;

Fig. 3. Kernel mean and medoid shift algorithms. We show basic MATLAB
implementations of two of the proposed algorithms. Here K = G�G is a low-rank
decomposition G ∈ R

d×N of the (centered) kernel matrix and sigma is the (isotropic)
standard deviation of the Gaussian Parzen window. Both algorithms are O(dN2) (for
a fixed number of iterations of mean shift), reduce to their Euclidean equivalents by
setting G ≡ X and Z ≡ Y , and can be easily modified to use the full kernel matrix K
rather than a decomposition G�G (but the complexity grows to O(N3)).

yi(t+ 1) = argmax
y∈RN

N∑

j=1

(y�Ky + e�j Kej − 2e�j Ky)φ̇(d2
H(xj , yi(t))).

Deriving w.r.t. y and setting to zero yields the update equation

yi(t+ 1) =
1

1�Fei
(Fei), Fji = φ̇(Dij), Dij = d2

H(yi(t), xj). (11)

Low-rank approximation. Similarly to medoid shift, we can accelerate the
algorithm by using a low-rank decomposition K = G�G of the (centered) ker-
nel matrix. It is useful to switch to matrix notation for all the quantities. Let
Y =

[
y1, . . . yM

]
be the trajectory matrix and define Z = GY the reduced

coordinates.7 The distance matrix D can be written compactly as

D = m1� + 1n� − 2Y �K = m1� + 1n� − 2Z�G;

where

m = (Y � � Y �K)1 = (Z� � Z�)1, n = (I �K)1 = (G� �G�)1.

At each iteration D is calculated in O(dN2) operations. Then F = φ̇(D�)/N
is evaluated component-wise. Finally the trajectories Y (or equivalently Z) are
updated by

Y ← F diag(F1)−1, Z ← GY.

7 Similarly, the data matrix X has reduced coordinates equal to G.

Quick Shift and Kernel Methods for Mode Seeking 713

in O(N2) operations. Notice that, by setting G ≡ X and Z ≡ Y in these equa-
tions, we obtain Euclidean mean shift back. See Fig. 3 for a basic implementation.

Interpretation, Regularization and Scaling. In Euclidean mean shift the
function P (x) is a non-parametric estimate of a probability density. Does the
same interpretation hold in kernel space? For any fixed data set of size N , we can
restrict our attention to the subspace space spanHX ⊂ H and interpret P (x) as
a probability density on this finite-dimensional space. Unfortunately, the num-
ber of dimensions of this space may be as large as the number of data points N ,
which makes the Parzen density estimate P (x) inconsistent (in the sense that
the variance does not converge to zero as N → ∞). So how do we make sense
of kernel mean shift? The idea is to use the fact that most of the dimensions
of spanHX are often unimportant. Formally, consider the eigen-decomposition
K = V ΣV � = G�G, G = Σ

1
2V � of the (centered) kernel matrix K. Assume

Σ
1
2 = N diag(σ1, . . . , σN), with σ1 ≥ σ2 ≥ · · · ≥ σN . According to this decompo-

sition, vectors x, y ∈ spanHX can be identified with their coordinates g, z ∈ R
N

so that 〈x, y〉H = 〈g, z〉. Moreover the data matrix G =
[
g1 . . . gn

]
has null

mean8 and covariance GG�/N = Σ/N = σ2
1 diag(λ2

1, . . . , λ
2
N). If λi decay fast,

the effective dimension of the data can be much smaller than N .
The simplest way to regularize the Parzen estimate is therefore to discard the

dimensions above some index d (which also improves efficiency). Another option
is to blur the coordinates z by adding a small Gaussian noise η of isotropic
standard deviation ε, obtaining a regularized variable z′ = z+η. The components
of z with smaller variance are “washed out” by the noise, and we can obtain a
consistent estimator of z′ by using the regularized Parzen estimate

∑N
i=1(gε ∗

k)(zi) (the same idea is implicitly used, for instance, in kernel Fisher discriminant
analysis [15], where the covariance matrix computed in kernel space is regularized
by the addition of ε2I). This suggests that using a kernel with sufficient isotropic
smoothing may be sufficient.

Finally, we note that, due to the different scalings λ1, . . . , λN of the linear
dimensions, it might be preferable to use an adapted Parzen window, which
retains the same proportions [17]. This, combined with the regularization ε,
suggests us to scale each axis of the kernel by

√
σ2λ2

i + ε2.9

8 Because K is assumed to be centered, so that 1�G�(G1) = 1�K1 = 0.
9 So far we disregarded the normalization constant of the Parzen window k(x) as it

was irrelevant for our purposes. If, however, windows kσ(x) of variable width σ are
used [6], then the relative weights of the windows become important. Recall that in
the d dimensional Euclidean case one has kσ(0)/kσ′(0) = (σ′/σ)d. In kernel space
therefore one would have

kσ(0)

kσ′(0)
=

√√√√
N∏

i=1

σ′2λ2
i + ε2

σ2λ2
i + ε2

.

714 A. Vedaldi and S. Soatto

Fig. 4. Clustering on a manifold. By using kernel ISOMAP we can apply kernel
mean and medoid shift to cluster points on a manifold. For the sake of illustration,
we reproduce an example from [20]. From left to right: Kernel mean shift (7.8s), non-
iterated kernel medoid shift (0.18s), iterated kernel medoid shift (0.48s), quick shift
(0.12s). We project the kernel space to three dimensions d = 3 as the residual dimen-
sions are irrelevant. All algorithms but non-iterated medoid shift segment the modes
successfully. Compared to [20], medoid shift has complexity O(dN2), (with a small con-
stant and d = 3 � N) instead of O(N3) (small constant) or O(N2.38) (large constant).

5 Applications

5.1 Clustering on Manifolds

[20] applies medoid shift to cluster data on manifolds, based on the distance
matrix D calculated by ISOMAP. If the kernel matrix K = HDH ′/2, H =
I− 1

N 11� is p.d., we can apply directly kernel mean or medoid shift to the same
problem. If not, we can use the technique from [4] to regularize the estimate and
enforce this property. In Fig. 4 this idea is used to compare kernel mean shift,
kernel medoid shift and quick shift in a simple test case.

5.2 Image Segmentation

Image segmentation is a typical test case for mode seeking algorithms [5,16,20].
Usually mode seeking is applied to this task by clustering data {(p, f(p)), p ∈ Ω},
where p ∈ Ω are the image pixels and f(p) their color coordinates (we use the
same color space of [5]).

As in [5], we apply mean shift to segment the image into super-pixels (mean
shift variants can be used to obtain directly full segmentations [2,16,24]). We
compare the speed and segmentation quality obtained by using mean shift,
medoid shift, and quick shift (see Fig. 5 for further details).

Mean shift is equivalent to [5] and can be considered a reference to evaluate the
other segmentations. Non-iterative medoid shift (first column) over-fragments
significantly (see also Fig. 2), which in [20] is addressed by reiterating the algo-
rithm. However, since our implementation is only O(dN2), medoid shift has at
least the advantage of being much faster than mean shift, and can be used to
speed up the latter. In Fig. 5 we compare the time required to run mean shift
from scratch and from the modes found by medoid shift. We report the speedup
(as the number of modes found by medoid shift over the number of pixels), the

Quick Shift and Kernel Methods for Mode Seeking 715

Medoid Mean Quick 1 Quick 2

σ = 2 spd = 1.1

0.6s

σ = 2

6.5s (5.9s)

σ = 2 τ = 6.7

0.5s

σ = 2 τ = 11.3

0.5s

σ = 5 spd = 2.5

3.5s

σ = 5

37.5s (34.0s)

σ = 5 τ = 16.7

2.7s

σ = 5 τ = 28.3

2.7s

σ = 8 spd = 5.7

7.1s

σ = 8

33.4s (26.3s)

σ = 8 τ = 26.7

5.5s

σ = 8 τ = 45.3

5.5s

Fig. 5. Image segmentation. We compare different mode seeking techniques for seg-
menting an image (for clarity we show only a detail). We report the computation time
in seconds (top-right corner of each figure). In order to better appreciate the intrin-
sic efficiency advantages of each method, we use comparable vanilla implementations
of the algorithms (in practice, one could use heuristics and advanced approximation
techniques [23] to significantly accelerate the computation). We use a Gaussian kernel
of isotropic standard deviation σ in the spatial domain and use only one optimization:
We approximate the support of the Gaussian window by a disk of radius 3σ (in the
spatial domain) which results in a sparse matrix F . Therefore the computational effort
increases with σ (top to bottom). The results are discussed in the text.

computation time of medoid+mean shift and, in brackets, the computation time
of the mean shift part only. Interestingly, the efficiency increases for larger σ, so
that the overall computation time actually decreases when σ is large enough.

Finally, we show the result of quick shift segmentation (last two columns)
for increasing values of the regularization parameter τ . Notice that quick shift
is run only once to get both segmentations (Sect. 3) and that the algorithm
is in practice much faster than the other two, while still producing reasonable
super-pixels.

5.3 Clustering Bag-of-Features

The interesting work [11] introduces a large family of positive definite kernels
for probability measures which includes many of the popular metrics: χ2 ker-
nel, Hellinger’s kernel, Kullback-Leibler kernel and l1 kernel. Leveraging on
these ideas, we can use kernel mean shift to cluster probability measures, and in

716 A. Vedaldi and S. Soatto

Algorithm Scal. Rate [%] Time [s]

mean no 93.9 29.9
mean yes 94.6 89.0
mean+medoid no 93.9 3.63
mean+medoid yes 94.5 6.28
quick no 96.3 0.62
quick yes 96.1 0.70

Fig. 6. Automatic visual categorization. We use kernel mean shift to cluster bag-
of-features image descriptors of 1600 images from Caltech-4 (four visual categories:
airplanes, motorbikes, faces, cars). Top. From left to right, iterations of kernel mean
shift on the bag-of-features signatures. We plot the first two dimensions of the rank-
reduced kernel space (z vectors) and color the points based on the ground truth labels.
In the rightmost panel the data converged to five points, but we artificially added
random jitter to visualize the composition of the clusters. Bottom. Samples from the
five clusters found (notice that airplane are divided in two categories). We also report
the clustering quality, as the percentage of correct labels compared to the ground truth
(we merge the two airplanes categories into one), and the execution time. We use basic
implementations of the algorithms, although several optimizations are possible.

particular histograms, such as the ones arising in bag-of-features [7] or similar
representations. In the rest of the section we experiment with the χ2 kernel

Kχ2(x, y) = 2
B∑

b=1

xbyb

xb + yb

where x and y are histograms of B bins.
Inspired by [10], we attempt to automatically infer the object categories of

Caltech-4 in a completely unsupervised setting. We select at random 1600 im-
ages from the categories bike, airplanes, cars and faces. Instead of the more
sophisticated representation of [10], we compute a basic bag-of-feature image
representation as suggested by [25]: We extract multiscale Harris and DoG

Quick Shift and Kernel Methods for Mode Seeking 717

interest points (of fixed orientation; see [25] and ref. therein) and calculate SIFT
descriptors [14], obtaining about 103 features per image. We then generate a vo-
cabulary of 400 visual words by clustering a random selection of such descriptors
by using k-means. For each image, we compute a bag-of-feature histogram x by
counting the number of occurrences of each visual word in that image. Finally,
we use the χ2 kernel to generate the kernel matrix, that we feed to our clustering
algorithms.

In Fig. 6 we compare kernel mean shift, kernel mean shift initialized by medoid
shift, and quick shift. The problem we solve is considerably harder than [10],
since in our case the number of clusters (categories) is unknown. All algorithms
discover five (rather than four) categories (Fig. 6), but the result is quite reason-
able since the category airplanes contains two distinct and visually quite different
populations (grounded and airborne airplanes). Moreover, compared to [10] we
do not try to explicitly separate an object from its background, but we use a
simple holistic representation of each image.

The execution time of the algorithms (Fig. 6) is very different. Mean shift
is relatively slow, at least in our simple implementation, and its speed greatly
improves when we use medoid shift to initialize it. However, consistently with
our image segmentation experiments, quick shift is much faster.

We also report the quality of the learned clusters (after manually merging the
two airplane subcategories) as the percentage of correct labels. Our algorithm
performs better than [10], that uses spectral clustering and reports 94% accuracy
on selected prototypes and as low as 85% when all the data are considered; our
accuracy in the latter case is at least 94%. We also study rescaling as proposed in
Sect. 4, showing that it (marginally) improves the results of mean/medoid shift,
but makes the convergence slower. Interestingly, however, the best performing
algorithm (not to mention the fastest) is quick shift.

6 Conclusions

In this paper we exploited kernels to extend mean shift and other mode seeking
algorithms to a non-Euclidean setting. This also clarifies issues of regularization
and data scaling when complex spaces are considered. In this context, we showed
how to derive a very efficient version of the recently introduced medoid shift
algorithm, whose complexity is lower than mean shift. Unfortunately, we also
showed that medoid shift often results in over-fragmented clusters. Therefore,
we proposed to use medoid shift to initialize mean shift, yielding a clustering
algorithm which is both efficient and accurate.

Wealso introducedquick shift,whichcanbalanceunder- andover-fragmentation
of the clusters by the choice of a real parameter. We showed that, in practice, this
algorithm is very competitive, resulting in good (and sometimes better) segmenta-
tions compared to mean shift, at a fraction of the computation time.

Acknowledgment. Supported by AFOSR FA9550-06-1-0138 and ONR N00014-
08-1-0414.

718 A. Vedaldi and S. Soatto

References

1. Bach, F.R., Jordan, M.I.: Kernel independent componet analysis. Journal of Ma-
chine Learninig Research 3(1) (2002)

2. Carreira-Perpiñán, M.: Fast nonparametric clustering with gaussian blurring mean-
shift. In: Proc. ICML (2006)

3. Cheng, Y.: Mean shift, mode seeking, and clustering. PAMI 17(8) (1995)
4. Choi, H., Choi, S.: Robust kernel isomap. Pattern Recognition (2006)
5. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space

analysis. PAMI 24(5) (2002)
6. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and

data-driven scale selection. In: Proc. ICCV (2001)
7. Csurka, G., Dance, C.R., Dan, L., Willamowski, J., Bray, C.: Visual categorization

with bags of keypoints. In: Proc. ECCV (2004)
8. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representa-

tions. Journal of Machine Learninig Research (2001)
9. Fukunaga, K., Hostler, L.D.: The estimation of the gradient of a density function,

with applications in pattern recognition. IEEE Trans. 21(1) (1975)
10. Grauman, K., Darrell, T.: Unsupervised learning of categories from sets of partially

matching image features. In: Proc. CVPR (2006)
11. Hein, M., Bousquet, O.: Hilbertian metrics and positive definite kernels on proba-

bility measures. In: Proc. AISTAT (2005)
12. Knuth, D.: The Art of Computer Programming: Seminumerical Algorithms, 3rd

edn., vol. 2 (1998)
13. Koontz, W.L.G., Narendra, P., Fukunaga, K.: A graph-theoretic approach to non-

parametric cluster analyisis. IEEE Trans. on Computers c-25(9) (1976)
14. Lowe, D.: Implementation of the scale invariant feature transform (2007),

http://www.cs.ubc.ca/∼lowe/keypoints/
15. Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.-R.: Fisher discrimi-

nant analysis with kernels. In: Proc. IEEE Neural Networks for Signal Processing
Workshop (1999)

16. Paris, S., Durand, F.: A topological approach to hierarchical segmentation using
mean shift. In: Proc. CVPR (2007)

17. Sain, S.R.: Multivariate locally adaptive density estimation. Comp. Stat. and Data
Analysis, 39 (2002)

18. Schölkopf, B.: The kernel trick for distances. In: Proc. NIPS (2001)
19. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
20. Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by medoidshifts. In: Proc.

CVPR (2007)
21. Subbarao, R., Meer, P.: Nonlinear mean shift for clustering over analytic manifolds.

In: Proc. CVPR (2006)
22. Sundaramoorthy, G., Yezzi, A., Mennucci, A.: Sobolev active contours. Int. J. Com-

put. Vision 73(3) (2007)
23. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast Gauss trans-

form and efficient kernel density estimation. In: Proc. ICCV (2003)
24. Yuan, X., Li, S.Z.: Half quadric analysis for mean shift: with extension to a se-

quential data mode-seeking method. In: Proc. CVPR (2007)
25. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for

classification of texture and object categories: A comprehensive study IJCV (2006)

http://www.cs.ubc.ca/~lowe/keypoints/

	Quick Shift and Kernel Methods for Mode Seeking
	Introduction
	Mode Seeking
	Fast Clustering
	Cluster Refinement
	Applications
	Clustering on Manifolds
	Image Segmentation
	Clustering Bag-of-Features

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

