
Side Channel Analysis of Some Hash Based
MACs: A Response to SHA-3 Requirements

Praveen Gauravaram1,� and Katsuyuki Okeya2

1 DTU Mathematics, Technical University of Denmark, Denmark
p.gauravaram@mat.dtu.dk

2 Hitachi, Ltd., Systems Development Laboratory, Japan
katsuyuki.okeya.ue@hitachi.com

Abstract. The forthcoming NIST’s Advanced Hash Standard (AHS)
competition to select SHA-3 hash function requires that each candidate
hash function submission must have at least one construction to support
FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to
select either a candidate hash function which is more resistant to known
side channel attacks (SCA) when plugged into HMAC, or that has an
alternative MAC mode which is more resistant to known SCA than the
other submitted alternatives. In response to this, we perform differen-
tial power analysis (DPA) on the possible smart card implementations
of some of the recently proposed MAC alternatives to NMAC (a fully
analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC
versions of some recently proposed hash and compression function modes.
We show that the recently proposed BNMAC and KMDP MAC schemes
are even weaker than NMAC/HMAC against the DPA attacks, whereas
multi-lane NMAC, EMD MAC and the keyed wide-pipe hash have simi-
lar security to NMAC against the DPA attacks. Our DPA attacks do not
work on the NMAC setting of MDC-2, Grindahl and MAME compression
functions.

Keywords: Applied cryptography, hash functions, side channel attacks,
HMAC.

1 Introduction

The cryptanalysis of the MD5 and SHA-1 hash functions [41,42] and its impact
on several applications [5, 10, 13, 16, 40] have triggered a kind of feeding frenzy
among the cryptographers. On the other hand, generic attacks [20, 23] on the
popular Merkle-Damg̊ard (MD) hash framework [12,30] have exposed several of
its undesirable properties.

In the wake of this active cryptanalysis of hash functions and its impact on
applications, NIST is conducting an international competition to define an Ad-
vanced Hash Standard (AHS) which would be referred to as SHA-3 family [34].

� Author and this research project are supported by The Danish Research Council for
Technology and Innovation grant number 274-08-0052.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 111–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 P. Gauravaram and K. Okeya

NIST requires that each candidate hash function must have at least one con-
struction to support the current applications of hash functions specified in the
FIPS or NIST special publications that include FIPS 198 HMAC [33]. As part of
its evaluation, NIST is also considering side channel attacks (SCA) on the hash
based MACs. NIST intends to select as SHA-3, either a candidate hash which is
more resistant to known SCA attacks when plugged into HMAC, or that has an
alternative MAC mode which is more resistant to known SCA attacks than the
other submitted alternatives [9, 21, 22].

Considering this state of the art of research in hash functions, we believe that
AHS competition would receive hash as well as compression function modes as
candidates for SHA-3 using structures and chaining modes different from the
ones used in the broken hash functions. It is prominent that such proposals
define provably secure MAC modes with a protection from the SCA attacks.

This research problem has motivated us to assess the security of several re-
cently proposed MAC alternatives to NMAC (a thoroughly analysed variant of
HMAC) and HMAC algorithms [3, 2] and some compression function and hash
function modes in the NMAC/HMAC setting from differential power analysis
(DPA) attacks. We analyse MACs that are assumed to be instantiated with the
compression functions built over ideal block ciphers that are secure against SCA
attacks as was done in [36, 17]. If the proposed MAC or hash function mode
does not specify any block cipher based compression function then we analyse it
using twelve secure compression functions based on block ciphers proposed by
Preneel, Govaerts and Vandewalle (PGV) [38]. Such analysis allows the designers
to construct hash and DPA resistant MAC modes whose security can be formally
reduced to the compression function modes that are real and whose security was
formally established [7]. In a related work, HMAC based on the dedicated hash
functions SHA-1 and SHA-256 was shown to be vulnerable to the side channel
attacks [28, 26].

1.1 Our Approach

We analyse several recently proposed provably secure MAC alternatives to the
NMAC/HMAC algorithms and NMAC/HMAC settings of some compression
function and hash function prototypes proposed in the literature against the
DPA attacks. Although the list of MAC algorithms that we have analysed may
not be thorough, our analysis can be easily extended to the other similar MAC
proposals that we might have missed. The outcome of the DPA attacks on many
of these MAC schemes is the recovery of their secret keys. The MAC schemes that
are vulnerable to the complete key recovery attacks can be universally forged ;
forgery for any given message. The MACs for which we can partially recover the
key or internal state, we can either existentially forge the scheme by computing
a valid authentication tag for a random message or cannot guarantee its security
against forgery attacks. We perform DPA analysis of MACs by dividing them
into Type-1 and Type-2 categories:

Type-1: Provably secure MAC alternatives to NMAC/HMAC. These
MAC schemes, in general, are based on the alternative hash frameworks to the

Side Channel Analysis of Some Hash Based MACs 113

MD structure. They include BNMAC and its single key variants [43], MAC
based on Enveloped Merkle-Damg̊ard (EMD) transform [4], keyed version of
Merkle-Damg̊ard with permutation (MDP)-KMDP [18], Multi-Lane NMAC [44]
and One-keyed NMAC (O-NMAC) [14]. These schemes do not emphasize using
any specific compression function; hence, we analyse their security using twelve
secure PGV schemes.

Type-2: NMAC setting of the compression and hash function modes.
This category includes the DPA analysis of the NMAC settings of MDC-2 [11,32],
MAME [45] and Grindahl [24] compression functions which is also applicable to
their HMAC versions. MDC-2 has been chosen for its rigorous analysis and
specification in the standards ANSI X9.31 [1] and ISO/IEC 10118-2 [19] and
the new proposals Grindahl and MAME are chosen due to their novelty. We
assume that the keyed versions of these compression functions define a family
of pseudorandom functions and hence their NMAC settings retain the proof of
security of NMAC [2]. We also analyse the security of the wide-pipe hash [27]
instantiated with twelve PGV schemes in the setting of NMAC.

Our DPA analysis of MACs based on EMD, MDP and wide-pipe hash [27]
and the NMAC setting of the hashes in the Type-2 category meet the criteria of
the AHS evaluation process where a MAC version of a secure hash is expected
to resist SCA attacks. EMD and KMD modes preserve the pseudorandom oracle
and collision resistance properties of the compression functions whereas wide-
pipe hash was shown to be secure against the generic attacks of [20, 23]. The
unkeyed version of O-NMAC was recently shown to be weak against the generic
attacks of [23,20] in [15] and collisions can be easily found for the unkeyed version
of BNMAC as shown later in the paper.

1.2 Our Results and Their Significance

In Table 1, we outline the results of the DPA attacks on the MAC schemes in
the Type-1 category. While we have analysed MAC functions, where applicable,
instantiated with twelve PGV schemes, here we outline our results for the MAC
instantiations based on the popular compression functions that include Matyas-
Meyer-Oseas (MMO), Miyaguchi-Preneel (MP) and Davies-Meyer (DM). In Ta-
ble 1, the following notation holds: CK-complete key recovery, PK-partial key
recovery, N/A-not applicable, NO-key recovery is not possible, EF-existential
forgery, UF-universal forgery, NG-no guarantee on the MAC security. For the
sake of comparison, we have also included the results of the DPA analysis of
NMAC [36,17] in the last row of Table 1. While MP scheme can be implemented
in three different ways for a given block cipher as shown later in the paper,
Table 1 outlines the results based on its strongest implementation. The NMAC
settings of the compression functions in the Type-2 category are not vulnerable
to the DPA attacks. NMAC based on the wide-pipe hash has similar security as
NMAC [36] with respect to the DPA attacks.

Our research indirectly provides some ground work on building DPA resistant
hash based MACs using cryptographic primitives such as block ciphers that are
often implemented as DPA resistant hardware modules. Our work provides the

114 P. Gauravaram and K. Okeya

Table 1. Our results on the Type-1 MACs based on three popular PGV schemes

MAC function Matyas-Meyer-Oseas Miyaguchi-Preneel Davies-Meyer
BNMAC [43] PK(EF) CK(UF) CK(UF)

EMD [4] N/A N/A PK(NG)
KMDP [18] NO NO CK(UF)

Multi-lane NMAC [44] N/A N/A PK(NG)
O-NMAC [25] NO NO NO
NMAC [36] NO NO PK(NG)

following significant contributions: Firstly, we analysed several alternatives to
NMAC/HMAC that use hash function modes different from that of MD [36,17].
Secondly, we analysed MACs in the MD mode instantiated with the compression
functions different from the PGV schemes. Finally, we show the first example of
a MAC scheme, in the form of BNMAC, vulnerable to the DPA attacks and can
be existentially forged when instantiated with any secure compression function.

Our results are the outcome of theoretical DPA attacks on the possible smart
card implementations of some MAC proposals. To our knowledge, currently,
no smart card implementations of the MAC schemes analysed in this paper
are available. So, experimental verification of our analysis has not been done
so far. However, since our DPA attacks follow the same attack model used to
attack HMAC implementations on an IC chip in [36], it is possible to realise the
practicality of our attacks on the MAC implementations on a real smart card
system or its emulated system.

1.3 Guide to the Paper

In Section 2, we introduce hash functions and NMAC and HMAC functions. In
Section 3, we generalise DPA attacks on MACs. In Sections 4 and 5, we analyse
Type-1 and Type-2 MAC schemes against the DPA attacks. We conclude the
paper in Section 6 with some open questions.

2 Hash Functions

A hash function H : {0, 1}∗ → {0, 1}n processes an arbitrary length message into
a fixed length n-bit hash value. It is a common approach to design H by iterating
a compression function h : {0, 1}n × {0, 1}b → {0, 1}n which processes a fixed
length b-bit message and an n-bit input state producing an n-bit output state.
The message to be processed using H is always padded using any secure one-to-
one padding technique such that {0, 1}∗ → {0, 1}b.t where t is the number of b-bit
blocks. The padded message is represented with b-bit message blocks as m =
m[1]‖ . . .‖m[t]. Each block m[i] is processed using h to compute intermediate
hash values H [i] = hH[i−1](m[i]) where i = 1, . . . , t and H [0] is the fixed initial
value (IV) of H . The final state H [t] = hH[t−1](m[t]) is the hash value of m.

Side Channel Analysis of Some Hash Based MACs 115

The MD iterative structure [30,12] has been a popular iterated hash function
framework used in the design of standard hash functions such as SHA-1 and
SHA-2 family [35]. Let ec be the concatenation of e bit c times where e is either
0 or 1. MD hash functions specify an upper bound of 2l bits on the length of
m and always pad m by appending it with a 1 bit and 0b−l−d−1 where d is
the number of message bits in the incomplete block of m. The last l bits of m
are filled in with the binary encoded representation of the length of m in bits
(depending on the size of d, an additional block may be used for padding).

Often, compression function modes are constructed using block ciphers.
Twelve out of sixty-four PGV compression function modes [38] are provably
secure when their underlying block cipher is ideal [7]. This model of PGV uses
parameters p, q, r ∈ {H [i − 1], m[i], H [i − 1] ⊕ m[i], 0} and a block cipher G
to derive a compression function. See Table 2 for the description of these 12
schemes denoted with hj where j is from 1 to 12. Table 2 also includes three
possible implementations of the compression functions h3 and h7. The subscript
to G denotes its key input which is either a message block m[i] or a hash state
H [i − 1] when G is turned into the compression function h using one of the 12
PGV modes. In this paper, we shall often assume that b = n for these twelve
PGV schemes.

Table 2. 12 provably secure PGV compression functions

Compression function Description
h1 H [i] = GH[i−1](m[i]) ⊕ m[i]
h2 H [i] = GH[i−1](m[i] ⊕ H [i − 1]) ⊕ m[i] ⊕ H [i − 1]
h3 H [i] = GH[i−1](m[i]) ⊕ (m[i] ⊕ H [i − 1])
h4 H [i] = GH[i−1](m[i] ⊕ H [i − 1]) ⊕ m[i]
h5 H [i] = Gm[i](H [i − 1]) ⊕ H [i − 1]
h6 H [i] = Gm[i](H [i − 1] ⊕ m[i]) ⊕ (H [i − 1] ⊕ m[i])
h7 H [i] = Gm[i](H [i − 1]) ⊕ (m[i] ⊕ H [i − 1])
h8 H [i] = Gm[i](H [i − 1] ⊕ m[i]) ⊕ H [i − 1]
h9 H [i] = GH[i−1]⊕m[i](m[i]) ⊕ m[i]
h10 H [i] = GH[i−1]⊕m[i](H [i − 1]) ⊕ H [i − 1]
h11 H [i] = GH[i−1]⊕m[i](m[i]) ⊕ H [i − 1]
h12 H [i] = GH[i−1]⊕m[i](H [i − 1]) ⊕ m[i]

h(3,1) H [i] = (H [i − 1] ⊕ m[i]) ⊕ GH[i−1](m[i])
h(7,1) H [i] = (H [i − 1] ⊕ m[i]) ⊕ Gm[i](H [i − 1])
h(3,2) H [i] = (GH[i−1](m[i]) ⊕ m[i]) ⊕ H [i − 1]
h(7,2) H [i] = (Gm[i](H [i − 1]) ⊕ m[i]) ⊕ H [i − 1]
h(3,3) H [i] = (GH[i−1](m[i]) ⊕ H [i − 1]) ⊕ m[i]
h(7,3) H [i] = (Gm[i](H [i − 1]) ⊕ H [i − 1]) ⊕ m[i]

2.1 NMAC and HMAC

Let k2 and k1 be any two random and independent secret keys. If H is an MD
hash, the NMAC function [3, 2] is defined by NMACk1,k2(m) = hk1(Hk2(m))

116 P. Gauravaram and K. Okeya

where the keys k2 and k1 replace the IVs of the inner and outer H where outer
H is expected to perform only one iteration. If k is an n-bit random secret key
then HMACk(m) = HIV ((k‖0b−|k| ⊕ const1)‖HIV ((k‖0b−|k| ⊕ const2)‖m))).
HMAC and NMAC are related by HMACk(m) = hk1(Hk2(m)) where k1 =
hIV ((k‖0b−|k|) ⊕ const1), k2 = hIV ((k‖0b−|k|) ⊕ const2), const1 and const2
are the constants defined in [3] and ‖ is the concatenation operation.

3 Side Channel Attacks on Hash Based MACs

Here, we generalize the DPA attacks [36, 17] mounted on the NMAC/HMAC
algorithms instantiated with the 12 secure PGV compression functions based on
the DPA resistant block ciphers.

3.1 Differential Power Analysis (DPA) Attack

The main objective of mounting a DPA attack on a MAC function is to detect
target regions in the power consumption of a cryptographic device having a MAC
function implementation correlated with particular bits of the secret key.

x

y z(secret and fixed)

(public and variable)

Fig. 1. The DPA attack model

Lemma 1. A DPA attack is mounted on a MAC function with the target XOR
operation z = x ⊕ y (See Figure 1) to detect the fixed secret key input y where x
is a public variable input.

The DPA attack on such a MAC function is outlined below:

1. Guess a certain bit b of the secret input y and run the MAC algorithm having
the above target XOR operation for N random values of message input xi

where i = 1 . . .N .
2. For each of the N message inputs xi, a discrete time power signal Sit is

collected and the corresponding output zi of the XOR operation is also
collected. The index i corresponds to the message input xi that produced
the signal and t corresponds to the time of the sample.

3. Let xi,k be the kth bit of input xi. Sort the inputs xi depending on whether
the target kth bit of z is 0 or 1. Let Sb = {Sit|xi,k ⊕ b = 0} and Sb =
{Sit|xi,k ⊕ b = 1} where b is the guessed kth bit of y.

4. Compute average power signal for each of the sets Sb and Sb where |Sb| +
|Sb| = N :

Side Channel Analysis of Some Hash Based MACs 117

APb[t] = 1/|Sb|
∑

Sit∈Sb

Sit

APb[t] = 1/|Sb|
∑

Sit∈Sb

Sit

5. Following the Hamming weight model of [31], the power consumed by the
target XOR operation depends on the Hamming weight of the manipulated
data. When there is a large power consumption, that is when APb[t] �
APb[t], the target bit of z is 1 since the other bits behave randomly and the
averaging eliminates their effect. This DPA bias signal is used to verify the
guess of the secret key bit b of y.

6. By repeating the above steps, the whole secret key y can be recovered. How-
ever, it is enough to reclassify the input x and compute average power signal
for the new sets using the power signal samples collected in the first instance.

Reverse DPA (RDPA) attack. It is a minor variant of DPA where instead
of known input a known output is used.

Lemma 2. An RDPA attack is mounted on a MAC function with the target
XOR operation z = x ⊕ y (see Figure 2) to detect the fixed secret key input y
where z is a public variable which may not be controlled.

x

y z(secret and fixed) (public and variable)

Fig. 2. The RDPA attack model

The RDPA attack on such a MAC function is outlined below:

1. Guess a certain bit of the secret input y and run the MAC algorithm for N
random values of input x and collect the discrete time power signals for the
XOR operation.

2. Observe the output z for all these N values and sort it out into two groups
depending on whether the target bit of input x is 0 or 1.

3. Compute the average power consumption for each group and verify the cor-
rectness of the original guess bit of y using the averages.

These results are also applicable when other SCA attacks such as timing or
electro magnetic analysis are mounted on the MACs [36].

4 DPA Analysis of Type-1 Schemes

In this section, we perform DPA analysis of the Type-1 MAC schemes. Some
of these MACs have their own padding rules whereas some others follow the
padding functionality defined for the MD hashes.

118 P. Gauravaram and K. Okeya

4.1 BNMAC and Its One-Key Variants

Yasuda [43] proposed BNMAC as an alternative to HMAC to achieve higher
performance than HMAC when it is implemented with the slower SHA-2 family.
BNMAC uses an alternative hash function framework to the MD called hyper
Merkle-Damg̊ard (HMD). Yasuda also proposed two practical variants of BN-
MAC that use only one secret key.

Hyper Merkle-Damg̊ard. An arbitrary length message m to be processed
using a HMD hash function H is split into blocks as m = m[1]‖m[2]‖ . . .m[2t −
1]‖m[2t] such that |m[2i−1]| = n and |m[2i]| = b for i = 1, 2, . . . , t. The interme-
diate hash value H [i] at any iteration i is given by H [i] = hH[i−1]⊕m[2i−1](m[2i])
where H [0] is the IV of H .

BNMAC and its variants. If k1 and k2 are two independent and random
secret keys then the BNMAC function is defined by:

BNMACk1,k2(m) = hk1(Hk2(m)‖1b−n)

BNMAC always uses a secure one-to-one padding for m so that the size of
m is always a multiple of b + n blocks. The first variant is BNMAC1k(m) =
hk1(Hk2(m)‖1b−n) where the two keys k1 and k2 are derived from the key k as
given by k1 = hk(1b) and k2 = hk(0b). The second variant is BNMAC2k(m) =
hk(Hhk(0b)(m)‖1b−n).

DPA attacks on BNMAC and its variants. By assuming b = n, we
can instantiate BNMAC with any of the twelve PGV schemes. Then we have
|k1| = |Hk2(m)|. In this setting, the first and second set of n input bits to the
compression function h correspond to the chaining value and the message block of
h. At every iteration i of BNMACk1,k2(m), the XOR operation H [i−1]⊕m[2i−1]
would become the target on which we mount the DPA attack to recover the pre-
vious secret state information H [i − 1] where H [0] is the secret key k2. In fact,
this inner key recovery attack on BNMAC is independent of the security of the
compression function as the target XOR operation on which we mount the DPA
attack is external to the compression function.

Once the key k2 is recovered, we can mount the DPA attack on the target oper-
ation k1 ⊕Hk2(m) = BNMACk1,k2(m) based on hj where j ∈ {2, 4, 6, 8, 9, 10, 11,
12} to recover the secret key k1. We can mount RDPA attack on this target
operation for BNMAC based on hj where j ∈ {5, (3, 1), (3, 2), (7, 1), (7, 2)} to
recover the secret key k1. There is no target XOR operation for BNMAC based
on hj where j ∈ {1, (3, 3), (7, 3)} on which we could mount the DPA attacks to
recover the key k1. These attacks also apply to BNMAC1 and BNMAC2.

Forging BNMAC. Recovering only k2, BNMAC based on any secure h can
be existentially forged with just one oracle query as follows:

1. Query the BNMAC oracle with m = m[1]‖m[2]‖ . . .m[2t] and obtain its tag
BNMACk1,k2(m).

Side Channel Analysis of Some Hash Based MACs 119

2. Forge BNMAC by computing the tag BNMACk1,k2(m∗) of the message
m∗ = m[1]‖m[2]‖h(m[1] ⊕ k2‖m[2]) ⊕ (m[1] ⊕ k2)‖m[2]‖ . . .m[2t] such that
BNMACk1,k2(m∗) = BNMACk1,k2(m).

Note that one can trivially find collisions for the HMD hash. BNMAC invoked
with the PGV schemes for which both keys can be recovered can be universally
forged by computing the tag for any given message.

4.2 Enveloped Merkle-Damg̊ard (EMD) Transform

Bellare and Ristenpart [2] proposed a variant of MD called EMD which works
as a MAC when its keyed compression function is a PRF.

EMD construction. An arbitrary length message m to be processed using
EMD scheme H is split into b-bit blocks m[1]‖m[2]‖ . . .m[t − 1] and incomplete
bits are filled in the last block m[t] where b ≥ n + 64. The last 64 bits of m[t]
contain the binary format of |m|. At any iteration i of H , the intermediate hash
value is given by H [i] = hH[i−1](m[i]) where 1 ≤ i ≤ t − 1 and H [0] is the IV of
H . The hash value is H [t] = hH[0]∗(H [t − 1]‖m[t]) where H [0]∗ is the IV of the
final compression function h and H [0] 	= H [0]∗. The constraint b > n allows us
to use only h5 as the compression function for the EMD hash.

Keying EMD. The EMD construction keyed through its IVs is defined by
EMDk1,k2(m) = hk1(Hk2(m[1]‖m[2]‖ . . .m[t − 1])‖m[t]).

Trail secret key-recovery of keyed EMD. We can mount the RDPA attack
on the target operation k1 ⊕ GHk2 (m)‖m[t](k1) = EMDk1,k2(m) in the outer
compression function of EMD MAC based on h5 to recover the secret key k1.
Note that the control over b−n−64-bit input in the block m[t] does not provide
us any additional advantage to recover the key k1. Once we know the key k1,
the current security proof of EMD MAC does not guarantee its security against
forgery attacks.

4.3 Merkle-Damg̊ard with Permutation (MDP)

Hirose, Park and Yun [18] proposed a minor variant of the MD called Merkle-
Damg̊ard with permutation (MDP). MDP keyed through its chaining value
works as a MAC when the underlying keyed compression function is a PRF
and secure against a very mild related-key attack.

MDP construction. The MDP construction is obtained by processing the
last intermediate hash value of MD using a fixed permutation π. An arbi-
trary length message m to be processed using MDP is split into b-bit blocks
m[1]‖m[2]‖ . . .‖m[t]. At any iteration i of the MDP construction, the interme-
diate hash value is given by H [i] = hH[i−1](m[i]) where 1 ≤ i ≤ t − 1. The hash
value of m is H [t] = hπ(H[t−1])(m[t]). The message m is padded such that the
last l bits of m[t] contain |m| in the binary format. We can instantiate MDP
using any of the twelve PGV schemes.

120 P. Gauravaram and K. Okeya

Keyed MDP. The MDP scheme keyed through its IV works as a MAC and
is called KMDP in [18]. For 1 ≤ i ≤ t, the KMDP function is defined by
KMDPk(m) = hπ(H[t−1])(hk(m[i])).

DPA analysis of KMDP. The DPA attack can be mounted on the tar-
get XOR operation H [i − 1] ⊕ m[i] = H [i] of KMDP based on hj for j ∈
{2, 3(1), 4, 6, 7(1), 8, 9, 10, 11, 12} to recover the secret key k where H [0] = k.
KMDP based on h5 is vulnerable to a variant of the RDPA attack as outlined
below:

1. Consider a variable 2-block message m = m[1]‖m[2] where the first b − l − 2
bits of m[2] contain the information followed by the padding bits 1‖0 and
then the binary format of b + b − l − 2-bit length of the true message in the
last l bits of m[2].

2. We repeat the following for N2 number of random values of m to collect N
values of H [1]:
– Choose m[1] and fix it. Mount the RDPA attack on the target opera-

tion π(H [1]) ⊕ Gm[2](π(H [1])) = KMDPk(m) in the second iteration of
KMDP to recover the secret π(H [1]) by collecting tags KMDPk(m) for
N values of m by varying the first b− l−2 bits of m[2]. We then compute
π−1(π(H [1])) to obtain the output H [1] of the first iteration.

3. Finally, we recover the key k by mounting the RDPA attack on the target
operation k ⊕ Gm[1](k) = H [1] in the first compression function by using N
values of H [1] recovered in step 2.

Similarly, RDPA attack can also be mounted on the BNMAC function based on
h3(2) and h7(2) to detect the secret key k. In practice, about N = 100, 000 ≈ 217

samples are required to mount the RDPA attack once on the target operation
of a MAC function implemented in an IC chip [36]. Hence, about 235 runs of
the compression function of KMDP based on hj where j ∈ {5, 3(2), 7(2)} imple-
mented on an IC chip are required to recover the secret key.

KMDP based on h1, h3(3) and h7(3) does not have a target XOR operation on
which we could mount the DPA attacks. KMDP based on the PGV compression
functions that are vulnerable to the DPA attacks can be universely forged for
any given message.

4.4 Multilane NMAC

L-lane NMAC and HMAC algorithms. Yasuda [44] proposed a provably
secure n-bit L-Lane NMAC (L ≥ 2), which we call LNMAC, to increase the se-
curity level of n-bit NMAC from 2n/2 to 2n evaluations against forgery attacks.
LNMAC uses L lanes of an MD hash to process an arbitrary length message.
Each lane of LNMAC uses an independent random secret key of size n bits as
the IV of the hash function in that lane. The proof of security of LNMAC as a
PRF and hence as a MAC requires b ≥ 2n. This condition on b allows us to invoke

Side Channel Analysis of Some Hash Based MACs 121

the LNMAC algorithm with only h5 out of twelve PGV schemes. The 2NMAC
function is defined below where i = 1, 2, . . . , t and τ is the authentication tag:

2NMACk(m) = hk′(hk′
1
(m[i])‖hk′

2
(m[i])‖0b−2n) = τ

Trail secret key-recovery of LNMAC. There is no target XOR operation
in 2NMAC based on h5 on which we can mount the DPA attack to recover the
secret keys k′

1 and k′
2. Now let u = G(hk′

1
(m[i])‖hk′

2
(m[i])‖0b−2n)(k′). We can mount

the RDPA attack on the target operation k′ ⊕ u = τ in the last compression
function to recover the secret key k′. Similarly, we can recover the key k′ for
LNMAC as this RDPA attack is independent of the number of lanes. Once we
know the trail secret key of LNMAC, its security proof does not guarantee its
MAC security.

4.5 O-NMAC

The MAC function O-NMAC was proposed as a one-key variant of NMAC in [14].
O-NMAC computes a linear-XOR checksum using the intermediate hash values
of the MD hash function and process it as a final message block. While O-
NMAC was analysed informally in [14], a security proof for O-NMAC as a MAC
function was provided in [25] under the name Enveloped Checksum Merkle-
Damg̊ard (ECM) transform. The O-NMAC function keyed through its IV with
a random key k is defined by:

O-NMACk(m) = h⊕t
i=1hH[i−1](m[i])(hk(m)‖m′)

where m is split into b-bit blocks m[1]‖m[2]‖ . . .m[t] with the last block m[t]
having the binary encoded format of m in its last l bits, H [0] = k, H [i] =
hH[i−1](m[i]) and m′ contains the padding bits including the length encoding of
the n-bit value hk(m) in its last l bits. We assume |k| = b = n. Then there is
no need to pad hk(m) with the bits m′. Note that if the message has only one
block then a separate block is used to pad it. Hence, at least three iterations of
the compression function h are required to compute the authentication tag of
an arbitrary length message using O-NMAC.

DPA analysis of O-NMAC. The DPA attack can be mounted on the tar-
get XOR operation H [i − 1] ⊕ m[i] = H [i] of O-NMAC based on hj for j ∈
{2, 3(1), 4, 6, 7(1), 8, 9, 10, 11, 12} to recover the secret key k where H [0] = k.
Hence, O-NMAC instantiated with these PGV schemes can be universally forged.

When we try to mount the RDPA attack on O-NMAC instantiated with h5,
say using a 2-block message m = m[1]‖m[2], both operands on the left hand
side of the expression H [2] ⊕ GH[1]⊕H[2](H [2]) = O-NMACk(m) are variable.
Hence, we cannot mount the RDPA attack. Similar analysis holds for O-NMAC
implemented with h3(2) and h7(2). There is no target XOR operation in O-
NMAC based on hj where j ∈ {1, 3(3), 7(3)} on which we could mount the DPA
attacks.

122 P. Gauravaram and K. Okeya

5 DPA Analysis of Type-2 Schemes

In this section, we perform DPA analysis of the NMAC setting of the Type-2
hash schemes which can also be extended to their HMAC version.

5.1 MDC-2 Hash Function in the NMAC Setting

MDC-2 hash function. MDC-2 [11,32] is a 2n-bit provably secure hash func-
tion based on an n-bit ideal block cipher [39]. MDC-2 is an MD mode of MMO
scheme (h1) in parallel paths. We follow the description of MDC-2 in [39] which
is generalised for any ideal block cipher G with the same key and block sizes. If
H [0] and H ′[0] are two different IVs then the intermediate hash value of MDC-2
at any iteration i is defined by H [i]‖H ′[i] = h1

H[i−1](m[i])‖h1
H′[i−1](m[i]).

MDC-2 hash function in the NMAC setting. Let k1 = k′
1‖k∗

1 and k2 =
k′
2‖k∗

2 be any two 2n-bit keys such that k′
1,k∗

1 ,k′
2 and k∗

2 are four random and
independent keys each of n bits. Then the MDC-2 hash in the NMAC setting is
defined by MDC-2k1,k2(m) = h1

k1
(H1

k2
(m)). At any iteration i, the intermediate

hash value of this MAC is given by H [i]‖H ′[i] = h1
H[i−1](m[i])‖h1

H′[i−1](m[i])
where H [0] = k1 and H ′[0] = k2.

DPA analysis. There is no target XOR operation in the compression function
of MDC-2k1,k2(m) on which we could mount the DPA attacks to recover the
secret keys.

Remark 1. MDC-4 [8, 29] is an extended MDC-2 which uses two sequential ex-
ecutions of MDC-2 to process one message block. The DPA analysis of keyed
MDC-2 is also applicable to keyed MDC-4. Similarly, NMAC version of the MD
mode of the MAME compression function [45] which uses a novel block cipher
algorithm in the MMO mode is also secure against our DPA attacks when its
block cipher algorithm is assumed to be ideal and secure against side channel
attacks. The MAME compression function was claimed to be transformed to a
light weight hash function using any domain extension algorithm and such hash
function can withstand side channel attacks when it is used as a key derivation
function. We note that not all MAC or key derivative versions of such hash
modes may resist DPA attacks even when the block cipher of MAME is ideal.
For example, BNMAC based on MAME can be existentially forged.

5.2 Grindahl Compression Function in the NMAC Setting

Grindahl compression function design. The Grindahl compression func-
tion [24] h processes every block m[i] by concatenating it with the previous
state H [i − 1] using the permutation G and then truncates the output of G
to n-bit state H [i]. At any iteration i, its intermediate hash value is defined
by H [i] = h′(G(m[i]‖H [i − 1])) where h′ is the truncation function. When h is
iterated in the MD mode, the output of the permutation of the last message

Side Channel Analysis of Some Hash Based MACs 123

block (padded block) is not truncated; instead an output transformation with a
pre-defined number of blank rounds is executed followed by the truncation step
to output n-bit hash value.

Keying Grindahl compression function. The MD hash iteration of Grindahl
compression function can be defined in the NMAC setting using two random and
independent secret keys k2 and k1. The initial value H [0] of the hash function is
replaced with the key k2 and a key k1 is used as a key to the outer compression
function h. The outer function may require more than one iteration if blank
rounds are also defined for the outer function. Its HMAC version can be defined
as in HMAC where the two keys k1 and k2 are derived from a master key k.

DPA analysis of Keyed Grindahl. There is no target XOR operation in the
NMAC setting of Grindahl on which we could mount the DPA attacks when the
block algorithm G is ideal. This result complements the claim of [24] on using
a side channel resistant AES implementation as the underlying block cipher
to protect the keyed implementations of Grindahl members from side channel
attacks. Note that the collision attack on Grindahl-256 [37], a specific 256-bit
hash function following the design strategy of Grindahl compression function
has no influence on our analysis as our analysis assumes an ideal G independent
of any specific details.

5.3 Wide-Pipe Hash Construction in the NMAC Setting

Wide-pipe hash. The wide-pipe hash construction [27] uses a large compres-
sion function h : {0, 1}2n × {0, 1}b → {0, 1}2n to process a b-bit message block
where b ≥ 2n and once the complete message is processed, it uses a function
h′ : {0, 1}2n → {0, 1}n to truncate 2n-bit output to an n-bit hash value. We
assume that the least n significant bits of the output are truncated to produce
high order n bits as the hash value.

NMAC with wide-pipe. As noted in [44], a variant of HMAC can be con-
structed using wide-pipe hash with an n-bit key k. Similarly, we can construct
NMAC using wide-pipe hash with two independent n-bit keys k1 and k2. Let
k = k1‖k1 and k′ = k2‖k2 be two 2n-bit keys keyed through the IV of the in-
ner/outer wide-pipe hashes of NMAC. We call keyed wide-pipe as WNMAC and
define it by WNMACk,k′(m) = h′(hk′(h′(Hk(m)))).

DPA analysis of WNMAC. For WNMAC based on hj for j ∈ {2, 3(1), 4,
6, 7(1), 8, 9, 10, 11, 12}, the secret key k can be recovered by mounting the DPA
attack on the target XOR operation H [i − 1] ⊕ m[i] = H [i] in the function hj

where H [0] = k as for NMAC. For WNMAC based on h5, we can mount the
RDPA attack on the target XOR operation Gh′(Hk(m))(k′)⊕k′ = hk′(h′(Hk(m)))
to recover the high order n bits of k′ which are equal to the tag WNMACk,k′(m)
and then recover k′. Similarly, we can mount the RDPA attack on WNMAC

124 P. Gauravaram and K. Okeya

based on hj where j ∈ {3(2), 7(2)}. There is no target XOR operation in WN-
MAC based on hj where j ∈ {1, 3(3), 7(3)} on which we could mount the DPA
attacks.

Remark 2. Protecting a hash based MAC function from the DPA attacks by
masking target XOR or addition operations requires developing a whole new
hardware module for that MAC function instead of using a widely implemented
DPA resistant hardware module of a cryptographic algorithm such as a block
cipher. Hence, constructing DPA resistant hash based MACs by using combi-
nations of appropriate key settings and provably secure hash and compression
function modes that do not expose any target XOR or addition operations when
they are combined with DPA resistant cryptographic hardware modules allows
us to reuse these hardware modules.

6 Conclusion

Our research leaves a number of questions open: Among these, the most inter-
esting is, how to design a secure hash mode which can be turned into a DPA
resistant provably secure MAC when it is instantiated with any of the secure
PGV schemes. The other interesting question is on defining provably secure
MAC versions or NMAC settings for some new hash function frameworks such
as HAIFA [6] and double-pipe hash [27] invoked with 12 PGV schemes and anal-
yse them against DPA attacks. The final question is how to plug an alternative
hash framework to MD into NMAC/HMAC? We believe that our work and fu-
ture developments in this area of research would provide much needed insights
to the designers of hash functions who compete in the AHS process.

Acknowledgments. Many thanks to William Burr and John Kelsey for their
encouragement, discussions on the subject and timely responses to our questions
regarding SHA-3 evaluation process. We also thank Shoichi Hirose and Krystian
Matusiewicz for comments on our paper.

References

1. ANSI. ANSI X9.31:1998: Digital Signatures Using Reversible Public Key Cryptog-
raphy for the Financial Services Industry (rDSA). American National Standards
Institute (1998)

2. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer, Hei-
delberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

Side Channel Analysis of Some Hash Based MACs 125

5. Bellovin, S.M., Rescorla, E.K.: Deploying a New Hash Algorithm. In: Proceedings
of NDSS. Internet Society (February 2006)

6. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007) (Accessed on 5/14/2008),
http://eprint.iacr.org/2007/278

7. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

8. Bosselaers, A., Preneel, B.: Final Report of RACE Integrity Primitives Evalua-
tion RIPE-RACE 1040. In: Bosselaers, A., Preneel, B. (eds.) RIPE 1992. LNCS,
vol. 1007, pp. 31–67. Springer, Heidelberg (1995)

9. Burr, W.: Personal Communication regarding Frequently Asked Questions on AHS
Competition (March 2008)

10. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

11. Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J.,
Brachtl, B., Schilling, M.: Data authentication using modification dectection codes
based on a public one way encryption function. U.S. Patent No. 4,908,861, March
13 (1990)

12. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

13. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

14. Gauravaram, P.: Cryptographic Hash Functions: Cryptanalysis, Design and Ap-
plications. PhD thesis, Information Security Institute, Queensland University of
Technogy (June 2007)

15. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect
Damg̊ard-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

16. Gauravaram, P., McCullagh, A., Dawson, E.: Collision Attacks on MD5 and SHA-
1: Is this the “Sword of Damocles” for Electronic Commerce?. In: AusCERT R &
D Stream, pp. 1–13 (2006)

17. Gauravaram, P., Okeya, K.: An Update on the Side Channel Cryptanalysis of
MACs Based on Cryptographic Hash Functions. In: Srinathan, K., Rangan, C.P.,
Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Hei-
delberg (2007)

18. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

19. ISO/IEC 10118-2. Information Technology - Security Techniques- Hash Functions-
Hash functions using an n-bit block cipher. ISO (2000)

20. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

21. Kelsey, J.: How Should We Evaluate Hash Submissions?. In: ECRYPT Hash Func-
tion Workshop (2007) (Accessed on 02/13/2008),
http://csrc.nist.gov/groups/ST/hash/documents/kelsey-ECRYPT2007.pdf

http://eprint.iacr.org/2007/278
http://csrc.nist.gov/groups/ST/hash/documents/kelsey-ECRYPT2007.pdf

126 P. Gauravaram and K. Okeya

22. Kelsey, J.: How to Choose SHA-3?.In: ECRYPT Hash Function Workshop (2008)
(Accessed on 07/26/2008),
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf

23. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
than 2n̂ Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

24. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

25. Lei, D., Chao, L.: Extended Multi-Property-Preserving and ECM-construction. In:
Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 361–372. Springer, Heidelberg (2007)

26. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit Sized Boolean and Arithmetic Op-
erations and Its Application to IDEA, RC6, and the HMAC-Construction. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219. Springer,
Heidelberg (2004)

27. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

28. McEvoy, R.P., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power
analysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2008)

29. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography, ch. 9, pp. 321–383. CRC Press, Boca Raton (1997)

30. Merkle, R.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

31. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis at-
tacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology, pp. 151–162. USENIX Association (1999)

32. Meyer, C., Schilling, M.: Secure program load with manipulation detection code.
In: Proceedings of the 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM 1988), Paris, pp. 111–130 (1988)

33. NIST. Federal Information Processing Standard (FIPS PUB 198) The Keyed-Hash
Message Authentication Code (HMAC) (March 2002)

34. NIST. Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. Docket No: 070911510-7512-01
(November 2007)

35. NIST. Federal Information Processing Standard (FIPS PUB 180-3) Secure Hash
Standard (2007)

36. Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based
Hash Functions.. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 432–443. Springer, Heidelberg (2006)

37. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

38. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

39. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf

Side Channel Analysis of Some Hash Based MACs 127

40. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

41. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

42. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

43. Yasuda, K.: Boosting Merkle-Damg̊ard Hashing for Message Authentication. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer,
Heidelberg (2007)

44. Yasuda, K.: Multilane HMAC - Security beyond the Birthday Limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

45. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Küçük, Ö., Preneel,
B.: MAME: A Compression Function with Reduced Hardware Requirements. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165.
Springer, Heidelberg (2007)

	Side Channel Analysis of Some Hash Based MACs: A Response to SHA-3 Requirements
	Introduction
	Our Approach
	Our Results and Their Significance
	Guide to the Paper

	Hash Functions
	NMAC and HMAC

	Side Channel Attacks on Hash Based MACs
	Differential Power Analysis (DPA) Attack

	DPA Analysis of Type-1 Schemes
	BNMAC and Its One-Key Variants
	Enveloped Merkle-Damgård (EMD) Transform
	Merkle-Damgård with Permutation (MDP)
	Multilane NMAC
	O-NMAC

	DPA Analysis of Type-2 Schemes
	MDC-2 Hash Function in the NMAC Setting
	Grindahl Compression Function in the NMAC Setting
	Wide-Pipe Hash Construction in the NMAC Setting

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

