
Information Supply Mechanisms in
Ubiquitous Computing, Crisis Management

and Workflow Modelling

Jurriaan van Diggelen, Robbert-Jan Beun, Rogier M. van Eijk,
and Peter J. Werkhoven

Institute of Information and Computing Sciences
Utrecht University, the Netherlands

{jurriaan,rj,rogier}@cs.uu.nl, peter.werkhoven@tno.nl

Abstract. The successful application of ubiquitous computing in crisis manage-
ment requires a thorough understanding of the mechanisms that extract infor-
mation from sensors and communicate it via PDA’s to crisis workers. Whereas
query and subscribe protocols are well studied mechanisms for information ex-
change between different computers, it is not straightforward how to apply them
for communication between a computer and a human crisis worker, with limited
cognitive resources. To examine the imposed cognitive load, we focus on the re-
lation of the information supply mechanism with the workflow, or task model, of
the crisis worker. We formalize workflows and interaction mechanisms in colored
Petri nets, specify various ways to relate them and discuss their pros and cons.

Keywords: Ubiquitous Computing, Notification Systems, Human-machine In-
teraction, Workflow Modelling, Petri Nets.

1 Introduction

Ubiquitous computing [20] is a model of human-computer interaction which offers spe-
cific application possibilities and which requires specific design methodologies. In this
paper, we will study the use of Workflow Modelling (WM) for designing Ubiquitous
Computing (UC) systems, in the domain of Crisis Management (CM). We shall briefly
explain these three disciplines and their relations below.

CM involves identifying an incident or a disaster, such as fire or a traffic accident,
and subsequently confronting and resolving it in order to minimize the damage. Infor-
mation transfer plays a crucial role in these activities. Lack of information (information
underload [11]) is often identified as a potential cause of mistakes as it leads to deci-
sions based on incomplete information. Also, too much information (cognitive overload
[10]) may cause errors, as it distracts the crisis worker from his or her primary tasks.

Ubiquitous computing provides an adequate way to bridge the information gap in
CM. UC aims at making hundreds of networked computing devices and sensors work
together to get the right information to the right person at the right time [4]. What
qualifies as right information then depends on the work that is performed by the crisis
team member.

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 72–83, 2008.
c© IFIP International Federation for Information Processing 2008

Information Supply Mechanisms in UC, CM and WM 73

This is how Workflow Modelling fits in. WM has proven itself as a successful method
to precisely describe a business process and optimize various aspects such as efficiency,
average completion time, and utilization of resources. In our opinion, WM is also a
promising approach to model work processes in the CM domain. In general, we believe
that WM yields valuable insights in the design phase of any UC system. The reason for
this is simple. If we expect a system to pro-actively present valuable information to its
user (as in UC), the system must know something about the user’s task. In this paper, we
will use the term workflow interchangeably with the term task, although in the literature
the two terms are sometimes used to denote slightly different things (we will come back
to this issue in Section 5). Therefore, WM can be regarded as a necessary part of the
design phase of the system.

Whereas UC, CM and WM are all well-developed research areas, the combina-
tion of the three disciplines raises several issues that have not yet been addressed in
the literature. In this paper, we tackle two of these issues, which are briefly described
below.

The first issue concerns the application of WM to CM. Current workflow manage-
ment techniques are typically tailored to business processes. Likewise, current workflow
analysis techniques are typically concerned with business goals, e.g. minimizing pro-
duction costs. To apply WM to the CM domain, the important aspects of CM should be
well-representable, such as ignorance, information underload, cognitive overload and
distraction. In this paper we will apply a WM technique which uses Petri Nets [16]. We
will show how the knowledge of the crisis worker can be modelled in this approach.
Furthermore, we will show how notions such as information underload and cognitive
overload can be mapped to well-known theoretical properties of Petri Nets.

The second issue concerns the application of WM to UC, i.e. the modelling of the
interaction mechanisms that are responsible for providing the crisis worker with the
right information. Two well-known interaction mechanisms in UC (and multi-agent
systems in general) are the Query protocol and the Publish/Subscribe protocol [3]. Both
of these protocols have been specified using various formal methods, among which
Petri Nets. Nevertheless, these specifications focus on the low level properties of the
interaction mechanisms, such as possible network failures, input buffer overloads and
so forth. Because UC and CM require us to consider the cognitive aspects of information
exchange, these specifications do not suffice. We will show that, by modelling various
interaction mechanisms directly in the workflow model, we can examine the effects of
these interaction mechanisms in terms of cognitive aspects. In fact, it appears that, next
to the query protocol, at least four different types of subscription mechanisms exist.
For each of the interaction mechanisms, we will give a Petri net specification and give
template design procedures to join these with the workflow model. Furthermore, we will
compare the different interaction mechanisms by evaluating their effects on resolving
information underload and preventing cognitive overload.

Section 2 presents workflow modelling. Section 3 discusses how information supply
mechanisms can be formalized in relation to a workflow. Analysis techniques are dis-
cussed in Section 4. Related work is discussed in Section 5, followed by a conclusion
and directions for future work in Section 6.

74 J. van Diggelen et al.

2 Workflow Modelling

Standard workflow modelling techniques distinguish between tasks, conditions and
cases. A task refers to an indivisible piece of work that needs to be done. The order
of these tasks is determined by conditions. The thing that is produced or modified as a
result of the work carried out, is called the case.

In crisis management, the case is the incident or crisis that is being handled, e.g. a
fire reported at the fire station. A condition represents the current state of the incident,
for example whether the fire is being fought by firemen or not. The tasks in this example
are the pieces of work carried out by the firemen, such as moving to the disaster area, or
extinguishing the fire. In the CM-workflows discussed in this paper, all tasks are carried
out by the same resource. We refer to this resource as the actor.

Workflows can be specified using Petri nets. Figure 1 specifies the workflow of the
fire example.

Extinguish

MoveBackMoveToP1 P2 P3

Fig. 1. The CM Workflow

A Petri net consist of places, transitions and tokens. Places are represented by ovals
and correspond to the conditions of the workflow. Transitions are represented by rect-
angles and correspond to tasks. Tokens are represented by black dots and correspond to
the cases being handled.

In Petri nets, transitions are the active components, i.e. they can move tokens from
input places (places connected by incoming arrows) to output places (places connected
by outgoing arrows). A transition can fire if a token resides at all of its input places.
After a transition has fired, it consumes a token at each of its input places and produces
a token at each of its output places.

In Figure 1, the transition MoveTo can fire, because place p1 contains a token. After
the transition has fired, place p1 is empty, and place p2 contains one token. In this
configuration, the transitions Extinguish and MoveBack can fire (it is undefined which
one of the two will actually fire). The process ends when the token arrives at place p3.

To model the characteristics of a case, known as case attributes, we extend the clas-
sical Petri net with color. In colored Petri nets, tokens have a value which can be used
in conditional statements at transitions and which can be altered by the firing of tran-
sitions. For example, suppose that the token in Figure 1 contains the value 〈fire:on ,
location:townhall〉1. The transition MoveTo contains a conditional statement that only
tokens with value fire:on can be consumed. This establishes that the firemen only move
to locations where a fire is burning. The transition MoveBack states that the token must
have the value fire:out. This prevents that the firemen leave the disaster area too quickly.

1 For readability, we have not included color information in the Petri net diagrams.

Information Supply Mechanisms in UC, CM and WM 75

Contrary to most WM techniques, token values do not represent what the character-
istics of the case actually are, but what the actor knows about the case. For example,
the transition Extinguish states that after the transition has fired the token has the value
fire:unknown. This represents that the firemen do not know whether their extinguishing
efforts have resulted in the fire going out. It may be that there are still flames inside
the building which are not visible from outside. For the fireman to continue with the
task Extinguish or MoveBack, he must know whether the fire is still burning or not. In
a ubiquitous computing environment, the fireman obtains this information via his PDA
which establishes a wireless connection with the fire sensors in the building. For a tech-
nical analysis on the interaction between the PDA and the sensors in the environment,
the reader is referred to [19].

In this paper, we are mainly concerned with the interaction between the PDA and
the crisis worker. In the next section, we discuss different ways in which the PDA can
present information to its user and how this can be modeled in the workflow.

3 Information Supply Mechanisms

To model an information supply mechanism, two additional Petri nets must be intro-
duced. For modularity, we have separated these Petri nets from the main workflow. Ad-
ditionally, the relations between these Petri nets and the main workflow are specified.

One Petri net model concerns the world, which is the ultimate source from which
information is obtained. Figure 2 shows a model of a dynamically changing world.
This Petri net simply replaces the value of the token in place p15 with a random value,
following either transition Update1 or Update2. This simple model is sufficient for our
purposes, but can be easily replaced by a more sophisticated world model, if required.

P15Update1 Update2

Fig. 2. World model

Another Petri net is used to model how information is obtained from the world and
how the interaction protocol provides access to this information. Throughout the rest of
this section, we will describe several simple models of well-known interaction mecha-
nisms, such as query and subscribe.

Most insight into the information supply mechanisms is provided by the way in
which the three individual Petri nets are combined into a whole. This aspect forms the
most important part of the remainder of this section. For the query mechanism, this is
described in Section 3.1. Three different kinds of subscribe mechanisms are described
in Section 3.2, and a conditional subscribe mechanism is presented in Section 3.3.

3.1 Query

The first interaction mechanism we will discuss is Query. The left-hand side of Figure 3
shows the workflow plus one additional transition to establish the coupling with the
query protocol. The places and transitions belonging to the workflow are colored grey.

76 J. van Diggelen et al.

The right-hand side of the figure shows the query protocol. The two Petri nets are cou-
pled by a so-called hierarchical transition (indicated by a double-lined box). The hier-
archical query transition in the WF-net achieves that place p2 (i.e. the place with which
the hierarchical transition is connected), becomes identical with the input/output place
of the query Petri net (place p4 which is labelled with “I/O”).

Query

Extinguish

MoveBackMoveTo

Query

Sense

Sensor

Answer

QueryINI/OI/O

Sensor

P1 P2 P3

P4

P5

P6Query

Fig. 3. Query

The mechanism works as follows. If the token arrives at place p2, both the transition
Query and the transition Extinguish are enabled. If the transition Query fires, the token
leaves the workflow net and arrives at place p5. The token stays there until the transi-
tion Answer fires. This transition produces a token at place p4 (or equally well p2) with
some of the token attributes replaced by the attributes of the token in p6. The token in
p6 represents the current sensor reading, which is occasionally updated by the hierar-
chical transition Sense. The Petri net behind this transition is the world model depicted
in Figure 2. In this way, the token in p6 is regularly updated with up-to-date world in-
formation. Note that the token in p6 is not removed when the Answer transition fires,
as it is connected with a double-headed arrow (it is both an input and an output place).

We will characterize this information supply mechanism by discussing interruption
and optionality.

As appears from the Petri net specification, the mechanism causes a major interrup-
tion of the main workflow process. Firstly, the task Query must be performed, which is
not a part of the workflow process. After that, the token arrives at place p5, which is
also not part of the workflow process. It must wait until the transition Answer fires to
return to the main workflow.

The other issue is that the obtaining of information is optional. This is because in place
p2, two transitions may be enabled at the same time, i.e. Extinguish and Query. Hence,
the fireman may choose not to ask for an information update and carry out the Extinguish
immediately. The benefit may be time savings. The drawback may be ignorance.

3.2 Subscribe

Besides querying, a common interaction mechanism in ubiquitous computing and peer-
to-peer systems is the Publish-Subscribe protocol [15]. By subscribing to a piece of
information, a continuous flow of information is initiated. There are three ways in which
this information may actually be absorbed by the actor: non-interruptive,non-optional;
interruptive,optional or interruptive,non-optional.

Information Supply Mechanisms in UC, CM and WM 77

Figure 4 specifies the non-interruptive, non-optional subscribe mechanism. One can
think of this subscribe mechanism as the low fuel light on the dashboard of a car. It
guarantees that information is delivered to the driver (it is non-optional) and does not
require any effort (its is non-interruptive).

In the Petri net specification, the workflow model (on the left) is coupled with the
subscribe model (on the right) using a fusion set.2 (called Fusion 1). Multiple places
that occur in the same fusion set become identical. The mechanism works as follows.
The subscribe protocol contains a token in place p6 which represents the content of
the subscription, for example fire:on. If this content matches the current sensor reading
(represented by the token in p7), the transition Notify fires. Otherwise, the transition
Remain Silent fires. The token in place p5 (and likewise p3) is provided with up-to-date
token attributes as a result of this firing. The information arrives at the actor during
the execution of his tasks, i.e. the information in the token of p3 is blended with the
information in the token of the workflow.

Fusion 1Fusion 1

Extinguish

MoveBackMoveTo

Remain
Silent

Notify

Sense

Sensor

Fusion Fusion 1

Sensor

P1 P2

P3

P4

P5

P6 P7

Fig. 4. Subscribe 1 (non-interruptive, non-optional)

Contrary to the Query mechanism, this communication mechanism does not cause
any interruption. This is expressed in the Petri net specification by the fact that the case
token can never leave the workflow model. Furthermore, the obtaining of up-to-date
information is not optional but is enforced by the model.

Some information is too complex to be conveyed without interruption as it requires
some mental processing by the receiver. For these cases, an interruptive subscribe mech-
anism can be used. Figure 5 shows an interruptive, optional subscription mechanism.
One can think of this subscribe mechanism as the clock on a mobile phone. The phone
maintains up-to-date information which the owner can choose to consult by investing a
little effort, namely getting it out of his pocket.

In the specification p4,p5,p6 and p7 are identical, and contain a token which rep-
resents up-to-date information about the world. When the transition Consult fires, the
token attributes of this token are passed to the token in the workflow model.

2 The difference of assembling Petri nets with a fusion set instead of with a hierarchical tran-
sition, is that when the hierarchical transition occurs multiple times in the main Petri net,
multiple instances of the sub-Petri net are created. This is not the case when places from the
same fusion set occur multiple times in the main Petri net.

78 J. van Diggelen et al.

Extinguish

MoveBackMoveTo

Consult

Fusion 1Fusion 1

Consult

Fusion 1Fusion 1

Consult

Fusion 1Fusion 1

Remain
Silent

Notify

Sense

Sensor

Fusion Fusion 1

Sensor

P1 P2 P3

P4 P5 P6

P7

P8 P9

Fig. 5. Subscribe 2 (interruptive, optional)

This interaction mechanism causes a little interruption. This appears from the fact
that the Consult task (which is not part of the workflow model) must be carried out. As
with the Query mechanism, the obtaining of information is optional.

Yet another type of subscribe mechanism is the interruptive, non-optional subscription,
as depicted in Figure 6. This mechanism can be thought of as a mobile phone, i.e. when
it rings, the owner is forced to consult it before he can continue with the task at hand.

This specification uses two fusion sets. Fusion 1 consists of p4,p6,p8 and represents
that there is currently a notification to be processed. Fusion 2 consists of p5,p7 and p9 and
represents that there is currently no notification to be processed. The notification protocol
(shown on the right of the figure) ensures that a token cannot be in the groups Fusion 1 and
Fusion 2 at the same time. This is because, when Notify fires, the token is removed from
Fusion 2 and added to Fusion 1. The only way that the token can return to Fusion 2 is via
Consult, which removes a token from Fusion 1 and adds a token to Fusion 2. Therefore,
when a token resides in Fusion 1 the tasks in the workflow are blocked (because all tasks
require a token to be present in Fusion 2). This means that the actor has no choice but to
consult the notification. After the transition Consult has fired the token is moved from
Fusion 1 to Fusion 2, and the workflow tasks are enabled again.

Like the previous subscribe protocol we discussed, this mechanism causes a little
interruption due to the Consult task. However, this subscribe mechanism is not optional,
i.e. when a notification is sent, the actor has no choice but to turn his attention to it.

Extinguish

MoveBackMoveTo

ConsultConsult

Notify
P1 P2 P3

P4 P6 P7P5

P8 P9

P10 P11

Sense
Fusion Fusion 1 Fusion Fusion 1

Fusion Fusion 1

Fusion Fusion 2 Fusion Fusion 2

Fusion Fusion 2

Fusion Sensor

Fig. 6. Subscribe 3 (interruptive, non-optional)

Information Supply Mechanisms in UC, CM and WM 79

3.3 Conditional Subscribe

By using a conditional subscription, a user requests to receive notifications of some-
thing only if some condition holds. For example, the fireman may request to receive
notifications about fire:out only when he is at the disaster area, and not when he is at
the office. In order to realize such a notification system, the system must be context-
aware [1], i.e. it must know the user’s location and adapt its behavior to it. Although
for every communication mechanism discussed so far, a context-aware variant can be
specified, we focus on a variant of the interruptive, non-optional subscribe mechanism
(Subscribe 3 in Figure 6). As an example of this conditional subscribe mechanism, one
can think of a context-aware mobile phone, which automatically shuts off when the user
enters a lecture hall.

The specification of the conditional subscribe is depicted in Figure 7. This specifi-
cation uses a third fusion set Fusion 3, consisting of p13, p14 and p15 (see the world
model in Figure 2). The purpose of this fusion set is to model the effect of task exe-
cution on the world (place p15). For example, the transition MoveTo updates the token
in place p13 (and p15) to represent the information that the fireman is no longer at the
office but at the disaster area. The Sense transition is specified such that it also obtains
information about the location of the fireman (for example, using GPS). An extra place
is added (p12), which represents the condition when the subscription applies (in our ex-
ample, that the fireman is not at the office). Like the protocols discussed before, place
p10 represents the information to which the actor is subscribed (in our example fire:out).

Extinguish

MoveBackMoveTo

ConsultConsult

Notify
P1 P2 P3

P4 P6 P7P5

P8 P9

P10 P11

Sense
Fusion Fusion 1 Fusion Fusion 1

Fusion Fusion 1

Fusion Fusion 2 Fusion Fusion 2

Fusion Fusion 2

Fusion Sensor

P12

Fusion Fusion 3Fusion Fusion 3

P13 P14

Fig. 7. Conditional Subscribe (interruptive, non-optional)

With respect to interruption and choice, this protocol has the same properties as the
third subscribe protocol (Figure 6). It causes a little interruption when a notification
is received and the owner of the device has no choice but to process the incoming
notifications.

3.4 Comparison

The differences between the five information supply mechanisms discussed in this sec-
tion are summarized below. We have used three degrees to indicate interruption. High
interruption (+) means that a transition and a place are visited which are not part of
the workflow model. Medium interruption (+/-) means that only a transition is executed

80 J. van Diggelen et al.

which is not part of the workflow model. No interruption (-) means that no states and
transitions are executed which are not part of the workflow. Optionality can be positive
(+), when the actor has a choice to obtain information, or negative (-) when there is no
such choice. Context aware (+) means that the information supply mechanism behaves
differently depending on at which place the actor resides at that moment. Otherwise,
the system is not context aware (-).

Query Subscr1 Subscr2 Subscr3 CondSubscr3
Interruption + − +/− +/− +/−
Optionality + − + − −

Context aware − − − − +

As we have argued before, a context aware variant can be made also for the other in-
formation supply mechanisms. This would yield three more protocols. With respect to
the properties of Interruption and Optionality, there are six possible combinations. We
believe that the four combinations we have covered are the only sensible ones. A pro-
tocol with optionality and no interruption is impossible because a choice can only be
modeled by introducing a transition which is not part of the workflow, which would
cause interruption again. A protocol with high interruption but no optionality would be
possible, but not very useful, because the second subscribe mechanism can be used for
the same purpose, causing only medium interruption.

4 Analysis Techniques

We have implemented the Petri nets described in this paper in CPN-tools [5], a tool for
modelling and validating colored Petri nets. Using this tool, several kinds of errors in
the model can be detected.

Firstly, there are the trivial structural errors in the design model. The transitions and
tokens may be wrongly connected, the transitions may be configured in a way which
conflicts with the token values, or the data structures may contain syntactic errors. In
these cases, the CPN-tool will simply generate a syntax error stating that the Petri net
is incorrect.

More interesting are the errors in the crisis management model which the Petri net
represents. For the workflow part of the model, all analysis techniques can be used which
have been developed for workflow analysis [17]. For example, it can be checked whether
the workflow terminates, i.e. whether the token eventually arrives at a place which is the
final destination (in our example, this is place p3). Another important property for work-
flow Petri nets is the boundedness property. This property states that every place will
never contain more than a certain number of tokens. This is important because otherwise
the relation between the token and the case that it represents becomes unclear.

In the remainder of this section, we describe some validation criteria that are specific
to the combination of workflow models and information supply mechanisms.

The first issue we discuss is information underload. In our workflow model, we have
represented the information needs of the actor [18] as the preconditions of a task. For
example, the transition MoveBack in Figure 1 can only fire if fire has the value out.
Because the precondition of the task Extinguish is fire:on, a token with value fire:

Information Supply Mechanisms in UC, CM and WM 81

unknown in p2 can go nowhere. In Petri net theory, such a situation is called deadlock.
Many algorithms exist to compute deadlock situations efficiently. In our crisis manage-
ment models, deadlock indicates information underload of the actor, which should be
resolved by adding information supply mechanisms. For example, the workflow model
in Figure 1 suffers from information underload. This is because after the transition Ex-
tinguish has fired the value of fire is unknown and the net is in a deadlock situation. The
other models (in Figure 3, 4, 5, 6, 7), do not lead to a deadlock situation and thus do not
suffer from information underload.

As mentioned before, another important problem in crisis management is cognitive
overload, i.e. when the actor receives too much information to be able to stay focussed
on his main tasks. In our framework, we can measure the expected cognitive load of the
information supply mechanisms by performing a simulation analysis. Using CPN-tools,
the execution of a Petri net can be simulated to analyze how the token moves through
the transitions and places. By applying a counter to some of the transitions and places
that do not belong to the main workflow (such as consult in our example), an indicator
is obtained on the expected cognitive load.

We have applied this simulation analysis to the Petri-nets described in this paper.
Because the workflow and world model are very simple, this analysis merely confirmed
the properties which we had already theoretically determined in Section 3.4. In a more
realistic scenario, however, the workflow is much larger and the actor might obtain his
information from multiple sources which makes it impossible to theoretically foresee
all possible behaviors of the model. In these cases, a simulation analysis provides a
valuable contribution to what can be theoretically assessed.

5 Related Work

We will divide our discussion on related work into three categories, corresponding to
the different purposes for which our approach can be used.

Firstly, our approach can be viewed as a formalization of an interaction protocol.
Petri-net formalizations of computer-computer interaction have a long tradition in com-
puter science (e.g. [9], [2]). However, theories on human-computer interaction are usu-
ally not mathematically formalized. For example, [8] identifies an attention-utility
trade-off in notification systems. The costs of notification are defined as the amount
of attention removed from the user’s primary task. The benefits of a notification system
are characterized along three dimensions, i.e. comprehension, reaction and interruption.
Another approach addressing this trade-off focusses on peripheral information displays
[7]. This work presents experimental results on what we would call a non-interruptive,
non-optional subscribe mechanism (Subscribe 1). Whereas these approaches nicely
identify the different aspects that are important in human-computer communication,
they do not provide a formal underpinning. We believe that our Petri-net formaliza-
tion of human-computer communication is useful to make the attention-utility trade-off
more precise, resulting in a better understanding of the different aspects involved.

A second way to view our approach is as a method for analysing and evaluating
interactive systems. For this purpose, task models are frequently applied, e.g. Concur-
TaskTrees [14]. Whereas task models and workflows are tightly related [6], there are
also some differences. We will discuss some relevant correspondences and differences

82 J. van Diggelen et al.

between ConcurTaskTree models and Petri-net workflow models below. Both models
allow the representation of concurrency, have an intuitive graphical syntax, and can be
automatically verified. A difference is that task models are usually hierarchically struc-
tured whereas workflows are not. Because for our purposes, it suffices to view the work
process at one level of abstraction, this restriction of workflow models is not problem-
atic. Another difference is that Petri-nets are suitable for modelling information flows
at a high level of detail (as proven by the popularity of Petri-net based communica-
tion protocols), whereas it is not clear how this can be done in a task model. Because
modelling information flows is crucial to our approach, we have chosen for Petri-net
workflows instead of ConcurTaskTree models.

A third way to apply the results described in this paper is as a model to be used by
the computer at runtime (as is proposed in [13]). For example, it can be used by a PDA
to adjust its notification style by estimating the cognitive load it imposes on its user.
Because our model is computational, it can be applied to this purpose.

6 Conclusion and Future Research

In this paper, we have characterized different information supply mechanisms by spec-
ifying their relation with a workflow. This allows us to precisely capture those aspects
of query and subscribe mechanisms that are important for human crisis workers. In
general, we believe the techniques proposed in this paper provide valuable insights for
modelling the interaction between humans and multi-agent systems.

We have identified two promising directions for future research. Firstly, we plan to
apply more advanced workflow modelling techniques to enable a more thorough analy-
sis of crisis management. One option would be to extend the Petri nets with time. This
would allow us to estimate the average completion time of the process, and to study the
influence of different information supply mechanisms on this. Another option would be
to use adaptive workflows, which is the area of workflow management concerned with
modelling exceptions on the normal course of action. Particularly for crisis manage-
ment, this aspect is highly relevant.

Another direction for future research is concerned with agent-organizational aspects
of workflow modelling [12]. It is typically unknown at design time which sensors will
be available at the time and place a crisis takes place. Therefore, it should be possible to
discover and invoke sensors that provide valuable information at runtime. In workflow
modelling, this is called resource allocation, i.e. assigning a resource to a task in an
efficient way. In our case, the resource is a sensor and the task is making a measurement.
We plan to investigate how results from resource allocation can be used to enhance
efficiency in ubiquitous computing, for example to decide which sensor can best be
queried for which type of information.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better
understanding of context and context-awareness, pp. 304–307 (1999)

2. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using colored petri nets for conversation
modeling. In: Dignum, F., Greaves, M. (eds.) Issues in Agent Communication, pp. 178–192.
Springer, Heidelberg (2000)

Information Supply Mechanisms in UC, CM and WM 83

3. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-
guage. In: Proceedings of CIKM, pp. 456–463. ACM Press, New York (1994)

4. Fischer, G.: User modeling in human-computer interaction. In: User Modeling and User-
Adapted Interaction, vol. 11. Springer, Heidelberg (2001)

5. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and CPN tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology
Transfer 9(3), 213–254 (2007)

6. Kristiansen, R., Traetteberg, H.: Model-based user interface design in the context of work-
flow models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 227–239. Springer, Heidelberg (2007)

7. Maglio, P.P., Campbell, C.S.: Tradeoffs in displaying peripheral information. In: CHI 2000:
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 241–
248. ACM Press, New York (2000)

8. McCrickard, D.S., Chewar, C.M.: Attuning notification design to user goals and attention
costs. Commununications of the ACM 46(3), 67–72 (2003)

9. Mikkilineni, K., Chow, Y.-C., Su, S.: Petri-net-based modeling and evaluation of pipelined
processing of concurrent database queries. IEEE Transactions on Software Engineer-
ing 14(11), 1656–1667 (1988)

10. Neerincx, M., Griffioen, E.: Cognitive task analysis: harmonizing tasks to human capacities.
Ergonomics 39(4), 543–561 (1996)

11. Netten, N., Bruinsma, G., van Someren, M., de Hoog, R.: Task-adaptive information distribu-
tion for dynamic collaborative response. Special Issue on Emergency Management Systems
of the International Journal of Intelligent Control and Systems (IJICS) 11(4), 237–246 (2006)

12. Oliveira, M.D., Cranefield, S., Purvis, M.: Normative spaces in institutional environments
by the means of commitments, reputation and colored petri nets. In: Proceedings of the 8th
International Workshop on Agent Oriented Software Engineering (AOSE) (2007)

13. Pangoli, S., Paternó, F.: Automatic generation of task-oriented help. In: UIST 1995: Pro-
ceedings of the 8th annual ACM symposium on User interface and software technology, pp.
181–187. ACM Press, New York (1995)

14. Paternò, F., Mancini, C., Meniconi, S.: Concurtasktrees: A diagrammatic notation for speci-
fying task models. In: INTERACT 1997: Proceedings of the IFIP TC13 Interantional Confer-
ence on Human-Computer Interaction, pp. 362–369. Chapman and Hall, Boca Raton (1997)

15. Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first
order logic. Personal Ubiquitous Computing 7(6), 353–364 (2003)

16. van der Aalst, W., van Hee, K.: Workflow management: models, methods, and systems. MIT
Press, Cambridge (2002)

17. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

18. van Diggelen, J., Beun, R.J., van Eijk, R.M., Werkhoven, P.J.: Modeling decentralized infor-
mation flow in ambient environments. In: Proceedings of ambient intelligence developments
(AmI.D 2007) (2007)

19. van Diggelen, J., Beun, R.J., van Eijk, R.M., Werkhoven, P.J.: Agent communication in ubiq-
uitous computing: the ubismart approach. In: Proceedings of the Seventh International Con-
ference on Autonomous Agents and Multi-agent Systems (AAMAS 2008), pp. 813–820.
ACM Press, New York (2008)

20. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75 (1991)

	Information Supply Mechanisms in Ubiquitous Computing, Crisis Management and Workflow Modelling
	Introduction
	Workflow Modelling
	Information Supply Mechanisms
	Query
	Subscribe
	Conditional Subscribe
	Comparison

	Analysis Techniques
	Related Work
	Conclusion and Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

