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Abstract. Recently, high resolution 3 Tesla (T) Dynamic Contrast-
Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising
modality for detecting prostate cancer (CaP). Computer-aided diagnosis
(CAD) schemes for DCE-MRI data have thus far been primarily devel-
oped for breast cancer and typically involve model fitting of dynamic
intensity changes as a function of contrast agent uptake by the lesion.
Comparatively there is relatively little work in developing CAD schemes
for prostate DCE-MRI. In this paper, we present a novel unsupervised
detection scheme for CaP from 3 T DCE-MRI which comprises 3 distinct
steps. First, a multi-attribute active shape model is used to automati-
cally segment the prostate boundary from 3 T in vivo MR imagery.
A robust multimodal registration scheme is then used to non-linearly
align corresponding whole mount histological and DCE-MRI sections
from prostatectomy specimens to determine the spatial extent of CaP.
Non-linear dimensionality reduction schemes such as locally linear em-
bedding (LLE) have been previously shown to be useful in projecting
such high dimensional biomedical data into a lower dimensional subspace
while preserving the non-linear geometry of the data manifold. DCE-MRI
data is embedded via LLE and then classified via unsupervised consen-
sus clustering to identify distinct classes. Quantitative evaluation on 21
histology-MRI slice pairs against registered CaP ground truth estimates
yielded a maximum CaP detection accuracy of 77.20% while the popular
three time point (3TP) scheme yielded an accuracy of 67.37%.

1 Introduction

Prostatic adenocarcinoma (CaP) is the second leading cause of cancer related
deaths among males in the United States, with an estimated 186,000 new cases
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in 2008 (Source: American Cancer Society). Recently, high resolution 3 Tesla (T)
endorectal in vivo prostate Dynamic Contrast-Enhanced MRI (DCE-MRI) has
been shown to discriminate effectively between normal and cancerous regions [1].

Most current efforts in computer-aided diagnosis of CaP from DCE-MRI in-
volve pharmacokinetic curve fitting such as in the 3 Time Point (3TP) scheme [2].
Based on the curve/model fits these schemes attempt to identify wash-in and
wash-out points, i.e. time points at which the lesion begins to take up and flush
out the contrast agent. Lesions are then identified as benign, malignant or in-
determinate based on the rate of the contrast agent uptake and wash out. Vos
et al. [3] described a supervised CAD scheme for analysis of the peripheral zone
of the prostate. Pharmacokinetic features derived from curve fitting were used
to train the model and coarse quantitative evaluation was performed based on
a roughly registered spatial map of CaP on MRI. Area under the Receiver Op-
erating Characteristic (ROC) curve (AUC) was used as a measure of accuracy.
A mean AUC of 0.83 was reported. Due to the lack of perfect slice correspon-
dences between MRI and histology data and the large difference in the number of
slices between the two modalities, we suggest training a supervised classification
system based on such labels would be inappropriate.

The 3TP and pharmacokinetic modeling approaches assume linear changes
in the dynamic MR image intensity profiles. We have previously shown that
such data suffers from intensity non-standardness [4] wherein MR image intensi-
ties do not have fixed tissue-specific meaning within the same imaging protocol,
body region, and patient. Figures 1(a), (b), and (c) show the image intensity
histograms for the non-lesion areas within 7 3 T in vivo DCE-MRI prostate
studies for timepoints t = 2, t = 4, and t = 6 respectively. An obvious inten-
sity drift in the MR images can be seen in the apparent mis-alignment of the
intensity histograms. Non-linear dimensionality reduction methods such as lo-
cally linear embedding (LLE) [5] have been shown to faithfully preserve relative
object relationships in biomedical data from the high- to the low-dimensional
representation. Varini et al. [6] performed an exploratory analysis of breast DCE-
MRI data via different dimensionality reduction methods. LLE was found to be
more robust and accurate in differentiating between benign and malignant tis-
sue classes as compared to linear methods such as Principal Component Analysis
(PCA).

In this paper we present a comprehensive segmentation, registration and de-
tection scheme for CaP from 3 T in vivo DCE-MR imagery that has the following
main features: (1) a multi-attribute active shape model [7] is used to automat-
ically segment the prostate boundary, (2) a multimodal non-rigid registration
scheme [8] is used to map CaP extent from whole mount histological sections
onto corresponding DCE-MR imagery, and (3) an unsupervised CaP detection
scheme involving LLE on the temporal intensity profiles at every pixel location
followed by classification via consensus clustering [9]. Our proposed methodol-
ogy is evaluated on a per-pixel basis against registered spatial maps of CaP on
MRI. Additionally, we quantitatively compare our results with those obtained
from the 3TP method for a total of 21 histology-MRI slice pairs.
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Fig. 1. Image intensity histograms for non-cancerous regions in 7 in vivo 3 T DCE-
MRI prostate studies at time points (a) t = 2, (b) t = 4, and (c) t = 6. A very obvious
misalignment between the MR intensity histograms across the 7 DCE-MRI studies is
apparent at multiple time points.

2 Experimental Design

2.1 Data Description and Notation

A total of 21 3 T in vivo endorectal MR (T2-weighted and DCE protocols) im-
ages with corresponding whole mount histological sections (WMHS) following
radical prostatectomy were obtained from 6 patient datasets from the Beth Israel
Deaconess Medical Center. The DCE-MR images were acquired during and after
a bolus injection of 0.1 mmol/kg of body weight of gadopentetate dimeglumine
using a 3-dimensional gradient echo sequence (3D-GE) with a temporal resolu-
tion of 1 min 35 sec. Following radical prostatectomy, whole-mount sections of
the prostate were stained via Haemotoxylin and Eosin (H & E) and examined
by a trained pathologist to accurately delineate the presence and extent of CaP.

We define a 2D DCE-MR image CD,t = (C, fD,t) where C is a set of spatial
locations ci ∈ C, i ∈ {1, . . . , |C|}, |C| is the cardinality of C and t ∈ {1, . . . , 7}.
fD,t(c) then represents the intensity value at location c ∈ C at timepoint t. We
define a 2D T2-weighted (T2-w) MR image as CT2 = (C, fT2) and the corre-
sponding WMHS as CH. G(CH) is defined as the set of locations in the WMHS
CH that form the spatial extent of CaP (”gold standard”).

2.2 Automated Boundary Segmentation on in vivo MR Imagery

We have recently developed a Multi-Attribute, Non-initializing, Texture Recon-
struction based Active shape model (MANTRA) [7] algorithm. Unlike traditional
ASMs, MANTRA makes use of local texture model reconstruction to overcome
limitations of image intensity, as well as multiple attributes with a combined
mutual information metric. MANTRA also requires only a rough initialization
(such as a bounding-box) around the prostate to be able to segment the bound-
ary accurately.

Step 1 (Training): PCA is performed on expert selected landmarks along the
prostate border to generate a statistical shape model. A statistical texture model
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is calculated for each landmark point by performing PCA across patches of pix-
els sampled from areas surrounding each landmark point in each training image.

Step 2 (Segmentation): Regions within a new image are searched for the prostate
border and potential locations have patches of pixels sampled from around them.
The pixel intensity values within a patch are reconstructed from the texture
model as best possible, and mutual information is maximized between the re-
construction and the original patch to test for a border location. An active shape
model (ASM) is fit to such locations, and the process repeats until convergence.
Figure 2(a) shows an original sample T2-w image CT2. The final segmenta-
tion of the prostate boundary via MANTRA is seen in Figure 2(b) in green.
MANTRA is applied to segment the prostate boundary for all images CT2 and
CD,t, t ∈ {1, . . . , 7}.

2.3 Establishment of CaP Ground Truth on DCE-MRI Via Elastic
Multimodal Registration of Histology, T2-w, and DCE-MRI

This task comprises the following steps:

1. Affine alignment of CH to corresponding CT2 is done using our Combined Fea-
ture Ensemble Mutual Information (COFEMI) scheme, previously presented
in [8]. This is followed by elastic registration using thin plate splines (TPS)
warping based of CH (Figure 2(c)) to correct for non-linear deformations
from endorectal coil in CT2 (Figure 2(b)) and histological processing.

2. Having placed CT2 and CH in spatial correspondence, the histological CaP
extent G(CH) is mapped onto CT2 to obtain Gr(CT2) via the transformation
r determined in step 1.

3. MI-based affine registration of CT2 to CD,5 (chosen due to improved contrast)
is done to correct for subtle misalignment and resolution mismatch between
the MR protocols. It is known that the individual DCE time point images
CD,t, t ∈ {1, . . . , 7} are in implicit registration, hence requiring no alignment.

4. Mapping of histology-derived CaP ground truth Gr(CT2) (Figure 2(d)) onto
CD,5 to obtain GR(CD,5) via the transformation R determined in step 3.

(a) (b) (c) (d)

Fig. 2. (a) Original 3 T in vivo endorectal T2-w prostate MR image CT2 , (b) prostate
boundary segmentation via MANTRA in green, (c) corresponding WMHS CH with
CaP extent G(CH) outlined in blue by a pathologist, (d) result of registration of CH

and CT2 via COFEMI visualized by an overlay of CH onto CT2 . The mapped CaP extent
Gr(CT2) is highlighted in green.
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2.4 Classification of DCE-MRI Via LLE and Consensus Clustering

Locally Linear Embedding (LLE): For each pixel c within each DCE-
MR image CD,t, t ∈ {1, . . . , 7}, there is an associated intensity feature vector
F (ci) = [fD,t(ci)|t ∈ {1, . . . , 7}], ci ∈ C, i ∈ {1, . . . , |C|}. LLE [5] is used to em-
bed the set F = {F (c1) , F (c2) , . . . , F (cp)}, p = |C| to result in the set of lower
dimensional embedding vectors X = {XLLE (c1) , XLLE (c2) , . . . , XLLE (cp)}. Let
{cηi(1), . . . , cηi(m)} be the m nearest neighbors (mNN) of ci where ηi(m) is the
index of the mth neighbor of ci ∈ C. F (ci) is then approximated by a weighted
sum of its own mNN, F

(
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)
,F

(
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)
,. . . ,F

(
cηi(m)

)
by assuming local lin-

earity, thus allowing us to use Euclidean distances between the neighbors. The
optimal reconstruction weights are given by the sparse matrix WLLE ∈ �|C|×|C|:
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∑

j WLLE(i, j) = 1, ci, cj ∈ C. The low-dimensional projection of the points
in F that preserves the weighting in WLLE is determined by approximating each
projection XLLE (ci) as a weighted combination of its own mNN. The optimal
XLLE in the least squares sense minimizes
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where tr is the trace operator, XLLE = [XLLE (c1) , XLLE (c2) , . . . , XLLE (cp)],
L = (I − WLLE)

(
I − WT

LLE

)
and I is the identity matrix. The minimization of

(2) subject to the constraint XLLEXT
LLE = I (a normalization constraint that

prevents the solution XLLE ≡ 0) is an Eigenvalue problem whose solutions are
the Eigenvectors of the Laplacian matrix L.

Unsupervised classification via consensus k-means clustering: To over-
come the instability associated with centroid based clustering algorithms, we
generate N weak clusterings Ṽ 1

n , Ṽ 2
n , . . . , Ṽ k

n , n ∈ {0, . . . , N} by repeated appli-
cation of k-means clustering for different values of k ∈ {3, . . . , 7} on the low
dimensional manifold XLLE(c), for all c ∈ C, and combine them via consensus
clustering [9]. As we do not know a priori the number of classes (clusters) to
look for in the data, we vary k to determine upto 7 possible classes in the data. A
co-association matrix H is calculated with the underlying assumption that pixels
belonging to a natural cluster are very likely to be co-located in the same cluster
for each iteration. H(i, j) thus represents the number of times ci, cj ∈ C, i �= j

were found in the same cluster Ṽ k
n over N iterations. If H(i, j) = N then there

is a high likelihood that ci, cj do indeed belong to the same cluster. We apply
multidimensional scaling [10] (MDS) to H , which finds optimal positions for the
data points ci, cj in lower-dimensional space through minimization of the least
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squares error in the input pairwise similarites in H . A final unsupervised classi-
fication via k-means is used to obtain the stable clusters V 1

k
, V 2

k
, . . . , V q

k
, q = k

for all k ∈ {3, . . . , 7}.

3 Results

3.1 Qualitative Results

Representative results from experiments on 21 DCE-histology slice pairs are
shown in Figure 3 with each row corresponding to a different dataset. Corre-
sponding histology sections (not shown) were registered to DCE-MRI data (CD,5)
to obtain the ground truth estimate GR(CD,5) shown in Figures 3(a), 3(e), and
3(i) highlighted in green. Figures 3(b), 3(f) and 3(j) show the RGB scaled values
of XLLE(c) at every c ∈ C by representing every spatial location on the image
by its embedding co-ordinates and scaling these values to display as an RGB im-
age. Similar colors in Figures 3(b), 3(f) and 3(j) represent pixels embedded close
together in the LLE-reduced space. Each of the clusters V 1

k , V 2
k , . . . , V q

k for each
value of k ∈ {3, . . . , 7} are evaluated against GR(CD,5) and the cluster showing
the most overlap is considered to be the cancer class. Figures 3(c), 3(g), and 3(k)
show the result of plotting this cluster back onto the slice (in red). Figures 3(d),
3(h) and 3(l) show 3TP results based on the DCE images CD,t, t ∈ {1, . . . , 7}
in Figures 3(a), 3(e), and 3(i). Red, blue and green colors are used to represent
different classes based on the ratio w = Rate of wash-in

Rate of wash-out of the contrast agent
uptake. When w is close to 1, the corresponding pixel is identified as cancerous
area (red), when w is close to zero, the pixel is identified as benign (blue), and
green pixels are those are identified as indeterminate.

3.2 Quantitative Evaluation against Registered CaP Ground Truth
Estimates on DCE

For each of 21 slices, labels corresponding to the clusters V 1
k , V 2

k , . . . , V q
k , q = k,

for each k ∈ {3, 4, 5, 6, 7} are each evaluated against the registered CaP extent
on DCE-MRI (GR(CD,5)). The cluster label showing the largest overlap with this
ground truth is then chosen as the cancer class. This class is used to calculate
the sensitivity, specificity, and accuracy of our CAD system at a particular k
value for the slice under consideration. These values are then averaged across all
21 slices and are summarized in Table 1. The maximum sensitivity observed is
60.64% (k = 3), the maximum specificity is 84.54% (k = 7), and the maximum
accuracy is 77.20%(k = 7). We see a reduction in sensitivity as k increases
from 3 to 7, with a corresponding increase in specificity and accuracy. Using the
3TP technique (which assumes that only 3 classes can exist in the data), we
achieve a sensitivity of 41.53% and sensitivity of 70.04%. It can be seen that our
proposed technique has an improved performance as compared to the popular
state-of-the-art 3TP method across k ∈ {3, 4, 5, 6, 7}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. (a), (e), (i) showing the CaP extent GR(CD,5) on the DCE-MRI slice CD,5

highlighted in green via registration with corresponding histology (not shown), (b),
(f), (j) RGB visualization of the embedding coordinates from XLLE onto the slice,
(c), (g), (k) classification result from plotting the cluster in V 1

k , V 2
k , . . . , V q

k , q = k (for
k = 3) that shows the highest overlap with the ground truth GR(CD,5) back onto the
slice in red, (d), (h), (l) results from using the 3TP method on the DCE data. The
improved correspondence of the red regions in (c), (g), (k) with the ground truth over
the red regions in the 3TP results in (d), (h), (l) can be seen.

Table 1. CaP detection sensitivity and specificity at the pixel resolution averaged
over 21 3 T DCE-MRI datasets. These are compared for different values of k within
consensus clustering, as well as for the 3TP method.

k=3 k=4 k=5 k=6 k=7 3TP
Sensitivity 60.64 51.77 49.06 42.33 41.73 41.53
Specificity 65.80 76.24 79.60 83.30 84.54 70.04
Accuracy 64.54 71.30 74.20 76.65 77.20 67.37

Comparison against existing prostate DCE CAD: Analyzing the results
by Vos et al. [3] in differentiating between non-malignant suspicious enhancing
and malignant lesions in the prostate, reveal that their sensitivity of 83% corre-
sponds to a 58% specificity. These values were obtained by only considering the
peripheral zone of the prostate. Comparatively our metrics (60.64% sensitivity,
84.54% specificity, and 77.20% accuracy) have been achieved when examining
the whole of the prostate while utilizing a more rigorously registered CaP extent
for evaluation. We may hypothesize that had we similarly limited our analysis
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to the peripheral zone alone, our results would have been markedly superior
compared to those reported in [3].

4 Concluding Remarks

In this paper we have presented a novel comprehensive methodology for segmen-
tation, registration, and detection of prostate cancer from 3 Tesla in vivo DCE
prostate MR images. A multi-attribute active shape model based segmentation
scheme (MANTRA) was used to automatically segment the prostate from in vivo
DCE and T2-w images, following which a multimodal registration algorithm,
COFEMI, was used to map spatial extent of CaP from corresponding whole
mount histology to the DCE-MRI slices. Owing to the presence of MR image
intensity non-standardness we utilized a non-linear DR scheme (LLE) coupled
with consensus clustering to identify cancerous image pixels. Our CaP detection
results, 60.72% sensitivity, 83.24% specificity, and 77.20% accuracy compare very
favourably with results obtained by Vos et al [3] and were superior compared
to those obtained via the 3TP method (41.53% sensitivity, 70.04% specificity,
67.37% accuracy). Future work will focus on validating our methodology on a
much larger cohort of data.
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