
D. Metaxas et al. (Eds.): MICCAI 2008, Part I, LNCS 5241, pp. 417–424, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Hierarchical Shape Statistical Model for Segmentation  
of Lung Fields in Chest Radiographs 

Yonghong Shi1 and Dinggang Shen2,*1 

1 Digital Medical Research Center, Fudan University, Shanghai, 200032, China 
Yonghong.Shi@fudan.edu.cn 

2 Department of Radiology and Biomedical Research Imaging Center 
University of North Carolina, Chapel Hill, NC 27599 

dgshen@med.unc.edu 

Abstract. The standard Active Shape Model (ASM) generally uses a whole 
population to train a single PCA-based shape model for segmentation of all test-
ing samples. Since some testing samples can be similar to only sub-population 
of training samples, it will be more effective if particular shape statistics ex-
tracted from the respective sub-population can be used for guiding image seg-
mentation. Accordingly, we design a set of hierarchical shape statistical models, 
including a whole-population shape model and a series of sub-population mod-
els. The whole-population shape model is used to guide the initial segmentation 
of the testing sample, and the initial segmentation result is then used to select a 
suitable sub-population shape model according to the shape similarity between 
the testing sample and each sub-population. By using the selected sub-
population shape model, the segmentation result can be further refined. To 
achieve this segmentation process, several particular steps are designed next. 
First, all linearly aligned samples in the whole population are used to generate a 
whole-population shape model. Second, an affinity propagation method is used 
to cluster all linearly aligned samples into several clusters, to determine the 
samples belonging to the same sub-populations. Third, the original samples of 
each sub-population are linearly aligned to their own mean shape, and the re-
spective sub-population shape model is built using the newly aligned samples in 
this sub-population. By using all these three steps, we can generate hierarchical 
shape statistical models to guide image segmentation. Experimental results 
show that the proposed method can significantly improve the segmentation per-
formance, compared to conventional ASM. 

Keywords: Active shape model, Hierarchical shape statistics; Chest radio-
graph. 

1   Introduction 

The utility of image processing technique in diagnostic chest radiology has increased 
with the growing acceptance of digital radiography. Many methods, such as automatic 
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detection of lung nodules, characterization of interstitial disease, and delineation  
of ribs, have been developed. In all these applications, the information inside the  
lung region is most interesting. Thus, the segmentation of lung regions becomes an 
important image processing procedure that has to be performed in most practical 
applications [1-3].  

Various methods have been applied to segment the lung fields from posterior-
anterior chest radiographs [1-5], and they roughly fall into four categories: 1) rule-
based segmentation methods have been used to detect the outline of ribcage or the 
diaphragm; 2) pixel-based methods were proposed to classify each pixel of an image 
into either lung field or background based on a multi-scale filter bank of Gaussian 
derivatives and a K-NN classifier; 3) hybrid methods were formulated by combining 
rule-based methods and pixel-based classification for lung field segmentation; and 4) 
deformable model-based methods, such as active shape model and active appearance 
model have been successfully applied in lung field segmentation. 

Among these four categories of segmentation algorithms, the active shape model 
(ASM) developed by Cootes et al. [4] was a prosperous starting point because of its 
ability to incorporate a priori information extracted from a training set and its flexibil-
ity to represent object shapes. In ASM, the use of PCA-based shape statistics trained 
on population samples ensures that the segmentation can produce plausible shapes. 
However, current shape-based segmentation methods generally use the whole popula-
tion samples to train a single PCA-based shape model and use it for segmentation of 
all testing samples. Since some testing samples can be similar to only sub-population 
of training samples, it will be more effective if particular shape statistics extracted 
from the respective sub-population can be used for guiding the segmentation [10-14]. 
However, it is not pre-known which sub-population shape information should be used 
for a new test image before segmenting it.  

We accordingly design a set of hierarchical shape statistical models, including a 
whole-population shape model and a series of sub-population shape models, to hierar-
chically guide image segmentation. In particular, the whole-population shape model is 
used to guide the initial segmentation of the testing sample, and the resulted segmen-
tation is used to select a suitable sub-population shape model according to the shape 
similarity between the testing sample and each sub-population. Thus, by using the 
selected sub-population shape model, the segmentation result can be further refined.  

To achieve this designed segmentation process, we will produce a set of hierar-
chical shape statistical models in the training stage as follows. First, all linearly 
aligned samples in the whole population are used to generate a whole-population 
shape model. Second, an affinity propagation method [9] is used to cluster all line-
arly aligned samples into several clusters, to determine samples belonging to the 
same sub-populations. Third, the original samples of each sub-population are line-
arly aligned to their own mean shape, and the respective sub-population shape 
model is built using the newly aligned samples in the sub-population. By using all 
these three steps, we can generate hierarchical shape statistical models to guide 
image segmentation. 

This paper is organized as follows. Section 2 introduces a strategy of our hierarchi-
cal shape statistical models for segmenting lung fields from chest radiographs. Sec-
tion 3 describes the experiments, and Section 4 concludes the paper. 
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2   Method 

2.1   Summary of ASM Algorithm   

For better describing our proposed method, we first summarize the main idea of ASM 
algorithm, and point out its potential limitation [2, 4]. The ASM scheme consists of 
two main elements: a global shape model and a local appearance model. 

A global shape model is built from a set of training samples, e.g., segmented lung 
fields [2, 6]. Each training image is described by n correspondence points, using a 
shape vector x = (x1, y1, …, xn, yn)

T. All shape vectors are linearly aligned by minimiz-
ing the sum of squared distances among all aligned shape vectors. By calculating the 
mean shape x  and the covariance matrix, the principal modes can be estimated. Thus, 
a new shape x  can now be represented as xbxx Φ+= , where Φ  contains the princi-

pal modes of variation of the shape model and xb  contains shape parameters. It has 

been proved that, if the specific shape statistics can be used for guiding the segmenta-
tion, the accuracy of segmentation can be highly improved [5]. This motivates us to 
build hierarchical shape statistical models for hierarchically guiding the image seg-
mentation in this study.  

In ASM, a local appearance model is constructed for each landmark by using the 
normalized first derivative profile. For enhancing the performance of ASM, several 
improvements for the local appearance model have been proposed. For example, the 
moments of local histograms extracted from the filtered versions of the images using 
a filter bank of Gaussian derivatives are considered to enhance the accuracy of ASM 
[7]. Also, scale invariant feature transform (SIFT) [8] is used to significantly improve 
the performance of ASM [5]. In this study, we will use SIFT to construct local ap-
pearance model.  

2.2   Hierarchical Shape Statistical Models 

In Introduction, we mentioned that we will build a set of hierarchical shape statistical 
models to guide image segmentation. A whole-population shape statistical model  
will be first built from all linearly aligned samples (c.f. Fig. 1(F)) as described in 
Section 2.1 above. Then, a series of sub-population shape statistical models will be 
built to better represent the shape variations within each sub-population. Sub-
populations will be generated from all aligned samples using an affinity propagation 
method [9], which can adaptively cluster the samples into a number of clusters (or 
sub-populations). The number of clusters (or sub-populations) will be automatically 
determined, based on the given shape similarity measure. Once we know the samples 
belonging to a particular sub-population, we can obtain their original shapes and then 
linearly normalize them into their own mean shape (c.f. Fig. 1(A)~(E)), which can be 
very different from the mean shape of whole population (c.f. Fig. 1(F)). Accordingly, 
we can use those particularly aligned samples to build a sub-population shape statisti-
cal model for each sub-population, using PCA technique. Details of this process are 
described next.  
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Fig. 1. Normalized samples in whole population (F), or in sub-populations (A~E). Sub-
populations are clustered by affinity propagation. There are totally five sub-populations from 
our normalized training samples. Note, the original samples belonging to the same sub-
population are re-normalized to their own mean shape (A~E), to represent their own variations. 

Clustering of sub-populations 
Clustering data by identifying a subset of representative examples (or exemplars) is 
important in many applications including ours. The k-means algorithm can be used to 
find such “exemplars”, by first randomly choosing an initial subset of data points and 
then iteratively refining it. However, this works well only when initial choice is close 
to a good solution. Contrary to the k-means algorithm, affinity propagation method 
[9] simultaneously considers all data points as potential exemplars, and then recur-
sively exchanges real-valued messages between data points until a high-quality set of 
exemplars and corresponding clusters emerges. Affinity propagation method can find 
clusters with much lower error than other methods, and it can complete in less time.  

Thus, we select this method to cluster our training samples into a number of sub-
populations. For example, for those spatially normalized samples (c.f. Fig. 1(F)), we 
obtained five sub-populations using affinity propagation (c.f. Fig. 1(A)~(E)). Original 
samples in each of these five sub-populations are re-normalized to their own mean 
shape. By overlapping all re-normalized shapes in each sub-population, we can obtain 
five figures in Fig. 1(A~E), which is different from the overlay of all normalized 
shapes in the whole population Fig. 1(F). 

These five figures clearly indicate that five sub-populations have very different 
emphases. For example, a sub-population in Fig. 1(A) has shapes of larger size, com-
pared to other sub-populations. For the sub-populations in Fig. 1(B) and Fig. 1(D), the 
size of right lung (left in the figure) is both larger than that of left lung, while the 
shapes of left lung in these two sub-populations are very different. On the other hand, 
sub-populations in Fig. 1(C) and Fig. 1 (E) have different sizes of lung, although their  
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Fig. 2. Original shape samples in five sub-populations of chest radiographs. Exemplars are 
highlighted by colored boxes. Shapes in the same sub-population are drawn by same color. 

overall global shapes are similar. This example intuitively indicates the importance of 
using sub-population shape statistics for better guiding image segmentation.  

Fig. 2 shows the selected original samples in each subpopulation. It can be ob-
served that different sub-populations have very different original shapes. 

Construction of hierarchical shape statistical models 
Both whole population shape statistical model and a series of sub-population shape 
statistical models are built using their own samples, as detailed below:  

• The whole population shape statistical model is built from all samples. All samples 
will be first normalized to the common shape space, to remove the difference of 
scale, size, shape and position among samples. The normalized samples are shown 
in Fig. 1(F) for visual inspection. Then, using PCA, these normalized samples can 
be used to build a whole-population shape statistical model, as used in ASM.  

• These normalized samples are clustered into sub-populations, such as five sub-
populations in our study (c.f. Fig. 1(A~E) and Fig. 2), by the affinity propagation 
method. Then, all original samples belonging to the same sub-population are  
re-normalized to their own mean shape (c.f. Fig. 1(A~E)). Thus, using PCA, a  
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sub-population shape statistical model can be built for each sub-population using its 
own normalized shape samples.  

2.3   Summary of Our Algorithm 

Our algorithm has two components, i.e., training and testing. In the training stage, we 
build hierarchical shape statistical models, which include a whole-population shape 
statistical model and a series of sub-population shape statistical models, as detailed in 
the subsection above.  

In the testing stage, for a given new testing sample, we first use SIFT-based local 
appearance model to deform our whole-population shape model. The obtained seg-
mentation will be constrained by the whole-population shape statistics. After the seg-
mentation is converged, we use the segmented shape to compute its similarity to each 
of sub-populations. The most similar one is selected as the particular sub-population 
that the testing sample belongs to. Thus, we can use the corresponding sub-population 
shape statistical model to refine the segmentation of the testing sample until the seg-
mentation procedure converges.  
 

3   Experiments 

The performance of our algorithm is evaluated by a JSRT/SCR database [2, 6]. The 
247 cases in this database are subdivided in two folds. Each fold contains an equal 
amount of normal cases and abnormal cases. Images in one fold were segmented with 
the images in the other fold as training set, and vice versa. All of the original radio-
graphs were down-sampled to the 256 by 256 resolution images. Two quantitative 
measures are used to evaluate the performance of the algorithms, i.e., the average 
overlay percentage and the average contour distance between automated segmentation 
result and manual segmentation result. 

To evaluate the performance of our hierarchical shape statistical model (SIFT-H), 
we compare the following four methods. SIFT-H denotes our algorithm which uses 
SIFT features for lung field matching and hierarchical shape statistical models for 
shape constraining. Intensity-H denotes the method that is similar to SIFT-H, except 
we use image intensity and gradient features to replace the SIFT features for lung 
field matching. The last two methods, SIFT-W and Intensity-W, are, respectively, 
similar to SIFT-H and Intensity-H, except that SIFT-W and Intensity-W use only 
whole-population shape statistics for shape constraining. 

Some qualitative segmentation results by SIFT-H are provided in Fig. 3. The top 
row shows the manual segmentations, and the bottom row shows the results by SIFT-
H. It can be seen that the results by SIFT-H are similar to the manual segmentations. 

For quantitative comparison, the average overlay percentage and the average con-
tour distance between the segmentation results and the ground truth of all 247 images 
are reported in Table 1 and Table 2, respectively. It can be seen that, when hierarchi-
cal shape statistical models are used, the average overlay percentages of SIFT-H 
(93.6%) and Intensity-H (89.1%) are much higher than those of SIFT-W (92.0%) and 
Intensity-W (87.0%). Similar conclusion can be drawn for the average contour dis-
tances in Table 2. It can be observed that the average contour distance is decreased  
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Fig. 3. Three chest radiographs with (top) manual and (bottom) automated segmentation of 
lung fields by SIFT-H 

Table 1. Average overlay percentage between manual segmentation and automated segmenta-
tion of all 247 images in the JSRT/SCR database (%) 

Algorithm Mean±std Minimum Median Maximum 
SIFT-H 93.6±2.88 80.0 93.9 96.3 

Intensity-H 89.1±4.42 70.6 90.8 95.8 
SIFT-W 92.0±3.1 78.3 92.8 96.1 

Intensity-W 87.0±7.4 60.8 89.2 95.4 

Table 2. Average contour distance between manual segmentation and automated segmentation 
of all 247 images in the JSRT/SCR database (unit in pixel) 

Algorithm Mean±std Minimum Median Maximum 
SIFT-H 1.56±0.62 0.85 1.53 4.62 

Intensity-H 2.82±0.77 0.94 2.76 5.63 
SIFT-W 1.78±0.78 0.96 1.64 6.79 

Intensity-W 3.10±1.95 1.03 2.36 9.69 

from SIFT-W (1.78 pixels) and Intensity-W (3.10 pixels) to SIFT-H (1.56 pixels) and 
Intensity-H (2.82 pixels), respectively, because of using hierarchical shape statistics. 
All of these results indicate that, no matter which kind of image features are used, the 
methods using hierarchical shape statistical models outperform those using only a 
whole-population shape statistical model. 

4   Conclusion 

We have presented a hierarchical shape statistical model to hierarchically guide the 
segmentation of lung fields from chest radiographs. This hierarchical shape statistical 
model includes both whole-population shape statistics and sub-population shape statis-
tics. The clustering of sub-populations from the whole training samples is completed 
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by an affinity propagation technique. Then, samples belonging to the same sub-
population are used to train the sub-population shape statistical model using PCA tech-
nique. In the applications, the whole-population shape statistical model is first used to 
guide the initial segmentation of a new test sample. The resulted segmentation is then 
used to determine which sub-population shape statistics should be used to refine the 
segmentation of the test sample. By using this proposed hierarchical segmentation 
strategy, the segmentation performance is highly improved, compared to the ASM 
using only whole-population shape statistics and the ASM using intensity/gradient 
features, rather than SIFT features. In this paper, the two-level shape statistical models 
are used, which can be potentially extended to multiple levels.  
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