
E. Luque, T. Margalef, and D. Benítez (Eds.): Euro-Par 2008, LNCS 5168, pp. 632–641, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Efficient Processing of Continuous Join Queries Using
Distributed Hash Tables

Wenceslao Palma1, Reza Akbarinia2, Esther Pacitti1, and Patrick Valduriez1

1 Atlas Team, INRIA and LINA, University of Nantes, France
{FirstName.LastName}@univ-nantes.fr,

{Patrick.Valduriez}@inria.fr

2 School of Computer Science, University of Waterloo, Canada
rakbarin@cs.uwaterloo.ca

Abstract. This paper addresses the problem of computing approximate answers
to continuous join queries. We present a new method, called DHTJoin, which
combines hash-based placement of tuples in a Distributed Hash Table (DHT)
and dissemination of queries using a gossip style protocol. We provide a per-
formance evaluation of DHTJoin which shows that DHTJoin can achieve sig-
nificant performance gains in terms of network traffic.

1 Introduction

Recent years have witnessed major research interest in data stream management sys-
tems. A data stream is a continuous and unbounded sequence of data items. There are
many applications that generate streams of data including financial applications [7],
network monitoring [23], telecommunication data management [6], sensor networks
[5], etc. Processing a query over a data stream involves running the query continu-
ously over the data stream and generating a new answer each time a new data item ar-
rives. Due to the unbounded nature of data streams, it is not possible to store the data
entirely in a bounded memory. This makes difficult the processing of queries that need
to compare each new arriving data with past ones. We are interested in systems which
have limited main memory but that can tolerate an approximate query result which has a
maximum subset of the result. An example of such queries is join queries which are
very important for many applications. As an example, consider a network monitoring
application that needs to issue a join query over traffic traces from various links, in or-
der to monitor the total traffic that is common among three links L1, L2 and L3 over the
last 10 minutes. Each link (stream) contains tuples each one with a packet identifier pid
and the packet size. This query can be posed using a declarative language such as CQL
[3], which is a relational query language for data streams, as follows:

 Select sum (L1.size)
 From L1[range 10 min], L2[range 10 min], L3[range 10 min]
 Where L1.pid=L2.pid and L2.pid=L3.pid

A common solution to the problem of processing join queries over data streams is

to execute the query over a sliding window [11] that maintains a restricted number of

 Efficient Processing of Continuous Join Queries Using Distributed Hash Tables 633

recent data items. This allows queries to be executed in a finite memory and in an
incremental manner by generating new answers when a new data item arrives.

In this paper, we address the problem of computing approximate answers to win-
dowed stream joins over data streams. Our solution involves a scalable distributed
sliding window that takes advantage of the free computing power of DHT networks
and can be equivalent to thousands of centralized sliding windows. Then, we propose
a method, called DHTJoin, which deals with efficient execution of join queries over
all data items which are stored in the distributed sliding window. DHTJoin combines
hash-based placement of tuples in the DHT and dissemination of queries using a gos-
sip style protocol. We evaluated the performance of DHTJoin through simulation. The
results show the effectiveness of our solution compared with previous work.

The rest of this paper is organized as follows. In Section 2, we introduce our sys-
tem model and define the problem. In Section 3 we describe DHTJoin. Section 4, de-
scribes a performance evaluation of our solution through simulation using Simjava. In
Section 5, we discuss related work. Finally, Section 6 concludes.

2 System Model and Problem Definition

In this section we introduce a general system model for processing data streams over
DHTs, with a DHT model, a stream processing model and a gossip dissemination
system. Then, we state the problem.

2.1 DHT Model

In our system, the nodes of the overlay network are organized using a DHT protocol.
While there are significant implementation differences between DHTs [19][22], they
all map a given key k onto a peer p using a hash function and can lookup p efficiently,
usually in O(log n) routing hops where n is the number of peers. DHTs typically pro-
vide two basic operations [22]: put(k, data) stores a key k and its associated data in
the DHT using some hash function; get(k) retrieves the data associated with k in the
DHT. Tuples and continuous queries are originated at any node of the network. Nodes
insert data in the form of relational tuples and each query q is represented in SQL.
Tuples and queries are timestamped to represent the time that are inserted in the net-
work by some node. Additionally, each query is associated with a unique key used to
identify it in query grouping and to relate it to the node that submitted it.

2.2 Stream Processing Model

A data stream Si is a sequence of tuples ordered by an increasing timestamp where
i∈[1..m] and m≥2 denotes the number of input streams. At each time unit, a number
of tuples of average size li arrives to stream Si. We use λi to denote the average arrival
rate of a stream Si in terms of tuples per second.

Many applications are interested in making decisions over recently observed tuples
of the streams. This is why we maintain each tuple only for a limited time. This leads
to a sliding window Wi over Si that is defined as follows. Let T(Wi) denotes the size of
Wi in terms of seconds, i.e. the maximum time that a tuple is maintained in Wi. Let

634 W. Palma et al.

TS(s) be a function that denotes the arrival time of a tuple s∈S, and t be current time.
Then Wi is defined as Wi = {s| s∈Si ∧ t-TS(s) ≤ T(Wi)}.

Tuples continuously arrive at each instant and expire after T(Wi) time steps (time
units). Thus, the tuples under consideration change over time as new tuples get added
and old tuples get deleted. In practice, when arrival rates are high and the memory
dedicated to the sliding window is limited, it becomes full rapidly and many tuples
must be dropped before they naturally expire. In this case, we need to decide whether
to admit or discard the arriving tuples and if admitted, which of the existing tuples to
discard. This kind of decision is made using a load-shedding strategy [14][21] which
yields that only a fraction of the complete result will be produced.

2.3 Gossip Dissemination System

The basic idea behind gossiping [15][26] is to have all nodes collaborating to dis-
seminate information into the entire network using a partial view stored in a local list
of size L. To this end, when a node wishes to disseminate a message or receive it for
the first time, it picks k nodes from its local list and sends them the message. Initializ-
ing and maintaining the local list at each node in face of dynamic changes in the net-
work is done by a membership protocol. The number of gossip targets, k, is a typical
configuration parameter called fanout. The sum of the k links between nodes specifies
an overlay network on top of the existing network topology.

If a node receives a message for the second time, it simply discards the message. A
relatively inexpensive optimization is to never forward a message back to the node it
was just received from. Due to their inherent redundancy, gossip dissemination sys-
tems are able to mask network omissions and also node failures. In order to evaluate
the performance of gossip dissemination systems, it is essential to define a set of
metrics:

• Hit Ratio: the number of nodes that receive a sent message. Ideally, a gossip
dissemination system should always achieve a hit ratio of 100%, that is, to
reach every node in the network.

• Dissemination Speed: the time a message requires to reach every node in
the network. It depends of network latency and the number of hops a mes-
sage takes to reach the last node. In our evaluation we focus on the latter
factor.

• Message Overhead: the number of redundant times that a message is for-
warded during its dissemination.

An effective dissemination system assures a high Hit Ratio, a fast dissemination
speed, and has a low message overhead.

2.4 Problem Definition

In this paper, we deal with the problem of processing join queries over data streams.
A data stream is a sequence of tuples ordered by monotonically increasing time-
stamps. The timestamps are generated using the KTS service [1] which is a distrib-
uted service that deals with generating monotonically increasing timestamps in DHTs.
Each tuple and query have a timestamp that may either be implicit, i.e. generated by

 Efficient Processing of Continuous Join Queries Using Distributed Hash Tables 635

the system at arrival time, or explicit, i.e. inserted by the source at creation time.
However, we do not include the timestamp attribute in the schema of the stream.
Formally, the problem can be defined as follows. Let Σ={S1,S2,……, Sm} be a set of
relational data streams, and Q={Q1,Q2,....,Qn} be a set of join queries specified on
these data streams. Our goal is to provide an efficient method to execute Q over Σ in
terms of network traffic.

3 DHTJoin Method

Using structured overlay P2P networks in data stream processing environments is a
novel research topic [13]. We can take advantage of it strengths to support queries
over data streams [4]. The main issues for processing continuous queries in DHTs are
the following: how to route data and queries to peers in an efficient way; how to pro-
vide a data storage mechanism for storing relational data; and how to provide a good
approximate answer to join queries.

We describe our solution for continuous join query processing using DHTs. Our
method has two steps: indexing of tuples and dissemination of queries. A tuple in-
serted by a node is indexed, i.e., stored at another node using DHT primitives only if
there is a query that requires it. To assure the knowledge of that query to the entire
network, it is disseminated using a gossip protocol.

3.1 Indexing Tuples

Existing DHT implementations such as Chord [22] are robust: they use simple algo-
rithms with provable properties even under frequent node failures, departures and re-
joins. To answer a query, we consider different kinds of peers. The first kind is
Stream Reception Peers (SRP) which are responsible for disseminating queries and
indexing tuples to the second kind of peers named Stream Query Peers (SQP). SQPs
are responsible for executing queries over the arriving tuples using their local sliding
windows, and sending the results to the third kind of node(s) named User Query Peer
(UQP). To support dissemination of queries each node is a gossip node and for index-
ing of tuples each node is a DHT peer. Note that the distribution between SRP, SQP
and UQP is functional and the same peer can have all of these functionalities.

The tuples arrive at any SRP and are indexed onto SQPs if there exists a query that
requires it. A join processing algorithm is executed at each SQP that receives the tu-
ples sent by an SRP. In our solution, the tuples are indexed in SQPs. Each arriving
tuple is entirely indexed in an SQP using a join attribute value as storage key, usually
in O(log n) routing hops where n is the number of peers.

Let us describe our indexing method for three streams S1, S2 and S3. However, our
method is not limited to three streems and works on any number of streams. Let A be
the set of attributes of S1, S2 and S3. Let s1, s2, and s3 be tuples belonging to S1, S2 and
S3 respectively and val(s a) be a function that returns the value of an attribute a∈ A in
tuple s. Let h be a uniform hash function that hashes its inputs into a DHT key, i.e. a
number which can be mapped by the DHT onto a peer. For indexing a tuple s1 that
arrives at a SRP, each tuple obtains an index key computed as key= h(S1,val(s1,a)) and
is then indexed in a SQP using put(key,s1) only if there exists a query that requires this

636 W. Palma et al.

tuple indexed by using the value of attribute a. For s2 and s3 tuples, we proceed in the
same way. All tuples of S1, S2 and S3 having the same value in attribute a get indexed
at the same SQP. Join operations are performed on the tuples stored within sliding
windows. Let Wi denote a sliding window on stream Si. We use time-based sliding
windows where T(Wi) is the size of the window in time units. At time t, a tuple be-
longs to Wi if it has arrived in the time interval [t- T(Wi),t].

To illustrate, let us consider an equijoin query over three streams S1, S2 and S3.
Once a S1-tuple arrives onto a SRP we verify if a query requires this tuple indexed by
some attribute, if so, we index the tuple and execute a Join processing algorithm at
each SQP that receives SRP tuples. Processing a join query over timestamp based
sliding windows with three input relational streams S1, S2 and S3 is done as follows.
Upon each arrival of a new tuple from stream S1 to W1, expired tuples in W2 and W3
are invalidated, then for each W2-tuple we evaluate the join of W3 with the arriving
tuple and probe the result set. A load shedding procedure is executed over W1’s buffer
if there is not enough memory to insert the tuple. The UQP receives the tuples from
SQPs. At any time, a SQP could contain a collection of tuples representing a portion
of the join query result. The join query result is inserted into a local queue and sent to
the peer that submitted the query. The output of the join sent to that peer (an UQP
node) consists of all pairs of tuples s1∈ S1, s2∈ S2 and s3∈ S3 such that s1.a= s2.a=s3.a
and, a time t, both s1∈ W1, s2∈ W2 and s3∈ W3.

3.2 Disseminating Queries

A query q can originate at any of the nodes and is disseminated to the whole network.
This dissemination allows a global knowledge of queries and to index tuples using an
attribute value only if there exists a query that requires it. However, disseminating q
can be difficult if nodes have only limited knowledge of the members of the network.
This knowledge is stored in a local list of size L and we must assure a Hit Ratio of
100%. We assume a network of N nodes. Intuitively, the requirement for assuring a
Hit Ratio of 100% is that the components of the local list form a strongly connected
directed graph over all nodes. For example, if we use the Chord protocol we can build
a local list of size 1 with an immediate successor pointer from the finger table and
disseminate a query in N hops without redundant messages. However, the dissemina-
tion speed is very slow. To accelerate the dissemination process we can consider a
local list composed by an immediate successor pointer from the finger table and the
predecessor pointer, used to walk counter clockwise around the Chord ring, main-
tained by the Chord protocol. In this case, the dissemination speed is reduced to N/2
hops with 2 redundant messages. Considering that a tuple can be indexed in log(N)
hops we must increase the dissemination speed as high as possible. To this end, we
can increase the fanout by exploiting the entire finger table and increase the dissemi-
nation speed to log(N) hops, i.e., we disseminate a query as fast as a tuple index but
that implies redundant messages. Redundancy provides tolerance to dynamic envi-
ronments but excessive redundancy leads to excessive network traffic.

In addition, with predecessor and successor pointers of the Chord protocol we can
form a strongly bidirectional connected directed graph that assures a 100% Hit Ratio
and with the entire finger table, we can increase the dissemination speed as fast as a
tuple index.

 Efficient Processing of Continuous Join Queries Using Distributed Hash Tables 637

3.3 Optimization

Achieving a dissemination speed of queries equal to log(N) hops (taking advantage of the
Chord finger table) yields an increase in the number of forwarded messages. We propose
an optimization to decrease considerably the number of redundant messages without de-
creasing the dissemination speed and guaranteeing a 100% Hit Ratio. Our solution is as
follows. Each time a node originates a query, it builds a gossip message that consists of
the query, its own identifier and its gossip targets: the successor and predecessor pointers
and its finger table. Upon reception of a new gossip message, a node builds its gossip
targets considering the intersection of the nodes received with the arriving message, its
own identifier and its own gossip targets. Thus, we can decrease the number of redundant
messages to 1/2log(N) (see our performance evaluation), while maintaining the same
dissemination speed and assuring a 100% of Hit Ratio.

4 Performance Evaluation

To test our DHTJoin method, we implemented a simulator using SimJava [20] running
on a Linux PC with a 3.4 Ghz Pentium Processor and 512 megabytes of RAM. Our
simulator is based on Chord which is a simple and efficient DHT. To simulate a peer,
we use a SimJava entity that performs all tasks that must be done by a peer in the DHT,
in the dissemination system and in the stream window-based join processing.

We generate arbitrary input data streams consisting of synthetic asynchronous data
items with no tuple-level semantics. We have a schema of 4 relations, each one with
10 attributes. In order to create a new tuple we choose a relation and assign values to
all its attributes using a Zipf distribution with a default parameter of 0.9. The max
value of the domain of the join attribute is fixed to 1000. Tuples on streams are gener-
ated at a constant rate of 30 tuples per second. Queries are generated with a mean ar-
rival rate of 0.02, i.e., a query arrives every 50 seconds on average. The network size
is set to 1024 nodes. In all experiments, we use time-based sliding windows of 50
seconds. For each of our tests, we run the simulator for 300 seconds. In order to assess
our approach, we compare the network traffic of DHTJoin against a complete imple-
mentation of RJoin [13] which is the most relevant related work (see Section 5).
RJoin uses incremental evaluation based on tuple indexing and query rewriting over
distributed hash tables. In RJoin a new tuple is indexed twice for each attribute it has;
wrt the attribute name and wrt the attribute value. A query is indexed waiting for
matching tuples. Each arriving tuple that is a match causes the query to be rewritten
and reindexed at a different node. The network traffic is the total number of messages
needed to index tuples and disseminate a query in DHTJoin or to index tuples and
perform query rewriting in RJoin.

In order to show the effectiveness of the dissemination of queries, we use the Hit
Ratio, Dissemination Speed and Message Overhead metrics. The fanout parameter is
set to 2, m/2, m and mOPT, with m equal to log(N). The fanout value mOPT includes the
optimization process presented in Section 3.

In the rest of this section, we evaluate network traffic and the effectiveness of gos-
sip dissemination.

638 W. Palma et al.

Fig. 1. Effect of Tuples Arrival Rate Fig. 2. Effect of Query Arrival Rate

Fig. 3. Effect of Number of Joins Fig. 4. Dissemination progress

4.1 Network Traffic

In this section, we investigate the effect of tuples’ arrival rate, query’s arrival rate and
number of joins on the network traffic. The network traffic of RJoin and DHTJoin
grows as the tuples’ arrival rate grows. In RJoin, as more tuples arrive, the number of
messages related to the indexing of tuples and query rewriting increases (see Figure
1). As expected, DHTJoin generates significantly less messages because a high tu-
ples’ arrival rate does not mean more indexing of tuples. The reason is that before
indexing a tuple, DHTJoin checks for the existence of a query that requires it. In Fig-
ure 2, we show that, as more queries arrive, RJoin generates more query rewriting
messages. However, DHTJoin generates more messages only if new queries related to
new different values used in the tuples arrive in the system. Figure 3 shows that more
join require more network traffic. RJoin generates more query rewriting when there
are more joins in the queries. However, in DHTJoin the network traffic increases only
if the arriving queries require of attributes not present in the other queries. The reason
is that with the dissemination of queries, DHTJoin can avoid the unnecessary index-
ing of tuples that are not required by the queries

In summary, due to the integration of query dissemination and hash-based place-
ment of tuples our approach avoids the excessive traffic generated by RJoin which is
due to its method of indexing tuples.

 Efficient Processing of Continuous Join Queries Using Distributed Hash Tables 639

4.2 Gossip Dissemination

To evaluate the effectiveness of gossip dissemination of queries, we post a query
originated randomly at any node. In this experiment, we show the dissemination
speed and look at the evolution of dissemination in terms of the number of nodes that
have not yet been contacted as a function of the hops taken. Figure 4 shows that our
method yieds a complete dissemination, i.e., a Hit Ratio of 100% in log(N) hops. This
is because the nodes of the local list form a strongly connected directed graph over all
nodes. Our proposed optimization to reduce message overhead produces no changes
in the speed of the dissemination.

If a query is disseminated as fast as possible we avoid excessive store time of tu-
ples waiting for a query and we can generate join tuples as early as possible. Thus, we
state that a query must be disseminated as fast as a tuple. In Figure 5, we confirm this
and we can see that the higher the fanout the dissemination speed increases to reach
the same speed as a tuple index. However, if we choose a higher fanout, we incur
message overhead which overload the network. Conversely, we can choose a lower
fanout to obtain a minimal overhead, as shown in Figure 6, but this incurs slower dis-
semination, as shown in Figure 5. To reduce message overhead we ran experiments to
include the optimization proposed in Section 3. In Figure 5, we show that with a fan-
out mOPT, we obtain a fast dissemination and at the same time, as shown in Figure 6,
we reduce the message overhead to 1/2log(N) wrt a fanout m.

5 Related Work

A DHT can serve as the hash table that underlies many parallel hash-based join algo-
rithms. However, our approach provides Internet-level scalability. Our work is related
to many studies in the field of centralized and distributed continuous query processing
[12][10][24][6][17]. In PIER [12], a query processor is used on top of a DHT to proc-
ess one-time join queries. Recent work on PIER has been developed to process only
continuous aggregation queries. PeerCQ [10] was developed to process continuous
queries on top of a DHT, However, PeerCQ does not consider SQL queries and the
data is not stored in the DHT. Borealis [24], TelegraphCQ [6] and DCAPE [17] have
been developed to process continuous queries in a cluster setting and many of their
techniques for load-shedding and load balancing are orthogonal to our work. The
most relevant previous work regarding the utilization of a structured overlay P2P
network is [13] which proposes RJoin, an algorithm that uses incremental evaluation.

Fig. 5. Speed of dissemination Fig. 6. Message Overhead

640 W. Palma et al.

This incremental evaluation is based on tuple indexing and query rewriting over dis-
tributed hash tables. A major difference in our work differs is that our tuple index
mechanism indexes tuples only if there exists a query that requires it.

Large-scale information dissemination based on gossip protocols are essential for ap-
plications such as replicated database maintenance [8], publish/subscribe systems [9] and
distributed failure detection [25]. These approaches do not consider a structured overlay
setting. The probabilistic dissemination algorithm named Randcast proposed in [15]
spreads messages very fast but fails to reach every node in the network. In [18] the
authors propose a technique that leverages simple social network principles enabling
nodes to select gossip targets intelligently. This work shows experimentally that gossip
dissemination on the Chord overlay fails to deliver the messages to every node in the
network. Our work instead shows that it is possible to reach every node in the network
forming a strongly bidirectional connected directed graph composed by predecessor and
successor pointers. In [16] the authors assure a good tradeoff between message overhead
and reliability guarantee using a connection graph called a Harary graph. However, its
principal drawback is the maintenance of such graph that requires global knowledge of
membership. In our work, the structure that supports the membership protocol is sup-
ported by the structured overlay and does not require global knowledge of membership
for its maintenance. The most relevant previous work regarding dissemination is the hy-
brid dissemination proposed in [26]. This works uses deterministic links to assure a com-
plete dissemination. However, our work differs in the presence of a structured overlay
and a membership protocol based on its routing table.

6 Conclusion

In this paper, we proposed a new method, called DHTJoin, for processing continuous
join queries using DHTs. DHTJoin combines hash-based placement of tuples and
dissemination of queries using a gossip style protocol. Our performance evaluation
shows that DHTJoin obtains significant performance gains due to our schema of
global knowledge of queries based on a gossip protocol. This schema has a low mes-
sage overhead and avoids the excessive traffic produced by the tuple index method
and the query rewriting of RJoin. Our results demonstrate that the total number of
messages transmitted by DHTJoin is always fewer that RJoin wrt tuple arrival rate,
query arrival rate and number of joins.

As future work, we plan to address the problem of efficient execution of top-k join
queries over data streams using DHTs taking advantage of the best position algo-
rithms [2] which can be used in many distributed and P2P systems for efficient proc-
essing of top-k queries.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Data currency in replicated DHTs. In: ACM Int.
Conf. on Management of Data (SIGMOD), pp. 211–222 (2007)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best Position Algorithms for Top-k Queries. In:
Int. Conf. on Very Large Databases (VLDB), pp. 495–506 (2007)

3. Arasu, A., Babu, S., Widom, J.: An Abstract Semantics and Concrete Language for
Continuous Queries over Streams and Relations. Technical Report, DataBase Group,
Stanford University (2002)

 Efficient Processing of Continuous Join Queries Using Distributed Hash Tables 641

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data
Streams. In: ACM Symp. on Principles of Database Systems (PODS) (2002)

5. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Int. Conf. on
Mobile Data Management (2001)

6. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. Conf. on Innovative Data Systems Research (CIDR) (2003)

7. Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System
for Internet Databases. In: ACM Int. Conf. on Management of Data (SIGMOD) (2000)

8. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J.: Epidemics Algorithms for
Replicated DB Maintenance. In: ACM Int. Conf. on Management of Data (SIGMOD) (1987)

9. Eugster, P., Guerraoui, R., Handurukande, S., Kermarrec, A., Kouznetsov, P.: Lightweight
Probabilistic Broadcast. In: Int. Conf. Dependable Systems and Networks (DSN) (2001)

10. Gedik, B., Liu, L.: PeerCQ: A Descentralized a Self-Configuring Peer-to-Peer Information
Monitoring System. In: Int. Conf. on Distributed Computing Systems (ICDCS) (2003)

11. Golab, L., Özsu, T.: Processing Sliding Windows Multi-Joins in Continuous Queries over
Data Streams. In: Int. Conf. on Very Large Data Bases (VLDB) (2003)

12. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.: Queying the
Internet with PIER. In: Int. Conf. on Very Large Databases (VLDB) (2002)

13. Idreos, S., Liarou, E., Koubarakis, M.: Continuous Multi-Way Joins over Distributed Hash
Tables. In: Int. Conf. on Extending Database Technology (EDBT) (to appear, 2008)

14. Kang, J., Naughton, J.F., Viglas, S.: Evaluating windows joins over unbounded streams.
In: IEEE Int. Conf. on Data Engineering (ICDE) (2003)

15. Kermarrec, A., Massoulié, L., Ganesh, A.: Probabilistic Realiable Dissemination in Large-
Scale Systems. IEEE Trans. Par. Distr. Syst. 14(2), 248–258 (2003)

16. Lin, M.-J., Marzullo, K., Masini, S.: Gossip versus Deterministic Flooding: Low Message
Overhead and High-Reliability for Broadcasting on Small Networks. In: Int. Symp. On
Distributed Computing (2000)

17. Liu, B., Jbantova, M., Momberger, B., Rundensteiner, E.A.: A dynamically Adaptive
Distributed System for Processing Complex Continuous Queries. In: Int. Conf. on Very
Large Data Bases (VLDB) (2005)

18. Patel, J.A., Gupta, I., Contractor, N.: JetStream: Achieveing Predictable Gossip
Dissemination by Leveraging Social Network Principles. In: IEEE Int. Symp. on Network
Computing and Applications (NCA) (2006)

19. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A Scalable Content-
Addressable Network. In: Proc. of SIGCOMM (2001)

20. SimJava, http://www.dcs.ed.ac.uk/home/hase/simjava/
21. Srivastava, U.: Widom J. Memory-limited Execution of Windowed Stream Joins. In: Int.

Conf. on Very Large Data Bases (VLDB) (2004)
22. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications. In: Proc. of SIGCOMM (2001)
23. Sullivan, M., Heybey, A.: Tribeca: A System for Managing Large Databases of Network

Traffic. In: USENIX Annual Technical Conf. (1998)
24. Tatbul, N., Zdonik, S.: Window-Aware Load Shedding for Aggregations Queries over

Data Streams. In: Int. Conf. on Very Large Data Bases (VLDB) (2006)
25. Van Renesse, R., Minsky, Y., Hayden, M.: A Gossip-Style Failure Detection Service. In:

ACM/IFIP/USENIX Int. Middleware Conf. (1998)
26. Voulgaris, S., Van Steen, M.: Hybrid Dissemination: Adding Determinism to Probabilistic

Multicasting in Large-Scale P2P Systems. In: ACM/IFIP/USENIX Int. Middleware Conf.
(2007)

	Efficient Processing of Continuous Join Queries Using Distributed Hash Tables
	Introduction
	System Model and Problem Definition
	DHT Model
	Stream Processing Model
	Gossip Dissemination System
	Problem Definition

	DHTJoin Method
	Indexing Tuples
	Disseminating Queries
	Optimization

	Performance Evaluation
	Network Traffic
	Gossip Dissemination

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

