
Hash Functions and RFID Tags: Mind the Gap

Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann,
Matt J.B. Robshaw, and Yannick Seurin

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
2 Orange Labs, Issy les Moulineaux, France

leander@rub.de, {abogdanov,cpaar,poschmann}@crypto.rub.de,
{matt.robshaw,yannick.seurin}@orange-ftgroup.com

Abstract. The security challenges posed by RFID-tag deployments are well-
known. In response there is a rich literature on new cryptographic protocols and
an on-tag hash function is often assumed by protocol designers. Yet cheap tags
pose severe implementation challenges and it is far from clear that a suitable hash
function even exists. In this paper we consider the options available, including
constructions based around compact block ciphers. While we describe the most
compact hash functions available today, our work serves to highlight the difficul-
ties in designing lightweight hash functions and (echoing [17]) we urge caution
when routinely appealing to a hash function in an RFID-tag protocol.

1 Introduction

With RFID tags on consumer items, the potential for wired-homes, and large-scale sen-
sor networks becoming a reality, we are on the threshold of a pervasive computing
environment. But along with these new applications come new, and demanding, secu-
rity challenges. The cryptographic research community has been quick to identify some
of the issues, and device authentication and privacy have received considerable atten-
tion. As a result a variety of new protocols have been proposed and in many of them,
particularly ones intended to preserve user privacy and to anonymize tag interactions, it
is assumed that a cryptographic hash function will be used on the tag.

However which hash function might be used in practice is rarely identified. Look-
ing at dedicated hash functions from the last 20 years, we have become used to their
impressive hashing speed (though this is a view that we might have to change in the
future). This fast throughput might lead some designers to believe that hash functions
are “efficient” in other regards and that they can be routinely used in low-cost environ-
ments. This is a mistake, a point that was convincingly made in a paper by Feldhofer
and Rechberger [17]. Generally speaking, current hash functions are not at all suitable
for constrained environments. They require significant amounts of state and the opera-
tions in current dedicated designs are not hardware friendly. This is not surprising since
modern hash functions were designed with 32-bit processors in mind, but it means that
very few RFID-oriented protocols appealing to a hash function could ever be used on a
modestly-capable tag.

In this paper we consider RFID tag-enabled applications and the use of hash func-
tions in RFID protocols. We then turn our attention to the design of hash functions in

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 283–299, 2008.
c© International Association for Cryptologic Research 2008

284 A. Bogdanov et al.

Table 1. An overview of the performance of some current compact algorithms where block ci-
phers are ordered by block and key size while hash functions are ordered by the size of the output

Key Block Cycles per Throughput at Logic Area
size size block 100KHz (Kbps) process GE rel.

Block ciphers

PRESENT-80 [6] 80 64 32 200 0.18µm 1 570 1
PRESENT-80 [7] 80 64 563 11.4 0.18µm 1 075 0.68
DES [42] 56 64 144 44.4 0.18µm 2 309 1.47
mCrypton [32] 96 64 13 492.3 0.13µm 2 681 1.71
PRESENT-128 [6] 128 64 32 200 0.18µm 1 886 1.20
TEA [54] 128 64 64 100 0.18µm 2 355 1.50
HIGHT [24] 128 64 34 188.2 0.25µm 3 048 1.65
DESXL [42] 184 64 144 44.4 0.18µm 2 168 1.38
AES-128 [16] 128 128 1 032 12.4 0.35µm 3 400 2.17

Stream ciphers

Grain [15] 80 1 1 100 0.13µm 1 294 0.82
Trivium [15] 80 1 1 100 0.13µm 2 599 1.66

Hash functions

Hash output Cycles per Throughput at Logic Area
size block 100KHz (Kbps) process GE rel.

MD4 [17] 128 456 112.28 0.13µm 7 350 4.68
MD5 [17] 128 612 83.66 0.13µm 8 400 5.35
SHA-1 [17] 160 1 274 40.18 0.35µm 8 120 5.17
SHA-256 [17] 256 1 128 45.39 0.35µm 10 868 6.92
MAME [53] 256 96 266.67 0.18µm 8 100 5.16

Section 3 and we explore whether a block cipher makes an appropriate starting point
for a compact hash function instead of a dedicated design.1

In Section 4 we instantiate lightweight hash functions using literature-based con-
structions and the compact block cipher PRESENT [6]. This allows us to implement a
range of representative constructions that, for their given parameter sets, are the most
compact hash functions available today. In Section 5 we then look at some challenging
problems in designing hash functions with greater hash output lengths. While the paper
reveals positive results, our work also serves to highlight the difficult issue of compact
hash functions; we therefore close the paper with problems for future research.

2 Cryptography and RFID Tags

When considering applications based around the deployment of RFID tags we are work-
ing with very specific applications with rather unique requirements. The difficulty of
implementing cryptography in such environments has spurred considerable research,
and this can be roughly divided into two approaches:

1 This relates to proposals for future work identified in [17].

Hash Functions and RFID Tags: Mind the Gap 285

1. Devise new algorithms and protocols for tag-based applications. Such new proto-
cols might use new cryptographic problems or might be based almost exclusively
on very lightweight operations, e.g. bitwise exclusive-or and vector inner-products.

2. Optimise existing algorithms and protocols so that they become suitable for RFID
tag-based applications. This approach might not give the compact results that some
of the more exotic proposals do, but the security foundations may be more stable.

The work in this paper is more in-line with the second approach—seeing what we can
do with what we have—though we hope it will be helpful to protocol designers. The
current state of the art for new compact block ciphers and stream ciphers is summarised
in Table 1 where most compact proposals offering 80-bit security seem to require 1 300–
1 600 gate equivalents (GE). For hash functions things are more complicated.

2.1 Hash Functions and Protocols for RFID Tags

Informally, a cryptographic hash function H takes an input of variable size and returns a
hash value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [33]. For a hash function with n-bit out-
put, compromising these should require 2n, 2n, and 2n/2 operations respectively. These
properties make hash functions very appealing in a range of protocols. For tag-based
applications, the protocols in question are often focused on authentication or on pro-
viding some form of anonymity and/or privacy [1,2,13,18,20,31,39]. However some
estimates suggest that no more than 2 000 GE are available for security in low-cost
RFID tags [26] and a glance at Table 1 shows that the hash functions available are un-
suitable in practice. When we consider what we need from a hash function in an RFID
tag-based application the following issues can be identified:

1. In tag-based applications we are unlikely to hash large amounts of data. Most tag
protocols require that the hash function process a challenge, an identifier, and/or
perhaps a counter. The typical input is usually much less than 256 bits.

2. In many tag-based applications we do not need the property of collision resistance.
Most often the security of the protocol depends on the one-way property. In certain
situations, therefore, it is safe to use hash functions with smaller hash outputs.

3. Applications will (typically) only require moderate security levels. Consequently
80-bit security, or even less, may be adequate. This is also the position taken in the
eSTREAM project [14]. An algorithm should be chosen according to the relevant
security level and in deployment, where success depends on every dollar and cent
spent, there is no point using extra space to get a 256-bit security level if 64-bit
security is all that is required.

4. While the physical space for an implementation is often the primary considera-
tion, the peak and average power consumption are also important. The time for a
computation will matter if we consider how a tag interacts with higher-level com-
munication and anti-collision protocols.

5. Some protocols use a hash function to build a message authentication code (MAC),
often by appealing to the HMAC construction [38]. When used as a MAC a num-
ber of interesting issues arise such as choosing an appropriate key length and un-
derstanding whether keys will be changed, something that will almost certainly be

286 A. Bogdanov et al.

impossible in most tag-enabled applications. There might also be the possibility of
side-channel analysis on the MAC. However such attacks will rarely be worthwhile
for cheap tag-enabled applications and we do not consider this issue further.

Taking account of these considerations allows us to make some pragmatic choices.
There will be applications that just require one-wayness and the application may only
require 80-bit or 64-bit security. Note that this is the view adopted by Shamir in the
proposal SQUASH for use in RFID tags [49]. For other applications we might like to see
80-bit security against collision attacks.

Since current hash functions of dedicated design are either too big or broken, we
first consider hash functions that are built around block ciphers. In particular we use the
compact block cipher PRESENT [6] as a building block and we consider the implemen-
tation of a range of hash functions offering 64-bit and 128-bit outputs using established
techniques. We also consider hash functions that offer larger outputs and we highlight
some design directions along with their potential hardware footprint.

3 Hash Function Constructions

Hash functions in use today are built around the use of a compression function and
appeal to the theoretical foundations laid down by Merkle and Damgård [11,34]. The
compression function h has a fixed-length input, consisting of a chaining variable and
a message extract, and gives a fixed-length output. A variety of results [12,25,27] have
helped provide a greater understanding of this construction and while there are some
limitations there are some countermeasures [4]. Since our goal is to obtain represen-
tative performance estimates, we will not go into the details of hash function designs.
Instead we will assume that our hash function uses a compression function in an ap-
propriate way and that the compression function takes as input some words of chaining
variable, represented by Hi, and some words of (formatted) message extract, represented
by Mi. We then restrict our focus to the cost of implementing the compression function.

In the hash function literature it is common to distinguish between two popular ways
of building a compression function. The first is to use a compression function of a
dedicated design and the second is to use an established, and trusted, block cipher.

3.1 Dedicated Constructions

The separation of dedicated constructions from block cipher-based constructions tends
to disguise the fact that even dedicated hash functions like SHA-1 [36] and MD5 [46]
are themselves built around a block cipher. Remove the feed-forward from compression
functions in the MD-family and we are left with a reversible component that can be used
as a block cipher (such as SHACAL [19] in the case of SHA-1). However the underlying
block cipher we are left with is rather strange and has a much larger-than-normal block
and key size combination. The problem with dedicated hash functions is that recent
attacks [51,52] have shown that there is much to learn in designing block ciphers with
such strange parameter sizes. There is therefore some value in considering approaches
that use a more “classical” block cipher as the basis for a compression function.

Hash Functions and RFID Tags: Mind the Gap 287

3.2 Block Cipher Constructions

The use of a block cipher as a building block in hash function design [10] is as old as
DES [35]. The topic has been recently revisited and Black et al. [5] have built on the
work of Preneel [44] to present a range of secure 2n- to n-bit compression functions
built around an n-bit block cipher that takes an n-bit key. Among these are the well-
known Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-Preneel constructions.

A hash function with an output of n bits can only offer a security level of 2n oper-
ations for pre-image and second pre-image attacks and 2n/2 operations against finding
collisions. While a security level of 128 bits is typical for mainstream applications, 80-
bit security is often a reasonable target for RFID tag-based applications. Either way,
there is a problem since the hash functions we need cannot always be immediately con-
structed out of the block ciphers we have to hand. This is not a new problem. But it is
not an easy one to solve either, and there has been mixed success in constructing 2n-bit
hash functions from an n-bit block cipher [8,10,28,29,30,43,45]. While limitations have
been identified in many constructions, work by Hirose [21,22] has identified a family
of double-block-length hash functions that possess a proof of security. These use block
ciphers with a key length that is twice the block length. Such a property is shared by
AES-256 [37] and PRESENT-128 [6] and so in Section 4.2 we consider the performance
of an Hirose-style construction instantiated using PRESENT-128.

When it comes to providing a replacement for SHA-1, the parameter sizes involved
provide a difficult challenge. If we are to use a 64-bit block cipher like PRESENT-128,
then in arriving at a hash function with an output of at least 160 bits we need a construc-
tion that delivers an output three times the block size (thereby achieving a 192-bit hash
function). There are no “classical” constructions for this and so Sections 5.1 and 5.2 il-
lustrate two possible design directions. These give representative constructions and we
use them to gauge the hardware requirements of different design approaches. We hope
that this will be of interest to future hash function designers.

4 Compact Hashing for 64- and 128-Bit Hash Outputs

In this section we will consider a variety of approaches to compact hashing when we
use the block cipher PRESENT [6] as a building block. PRESENT is a 64-bit SPN block
cipher which can be used with either an 80-bit or a 128-bit key. These will be referred to
as PRESENT-80 and PRESENT-128 and full details and design rationale for these ciphers
can be found in [6]. We denote encrypting a message M under the key K with PRESENT-
80 or PRESENT-128 to obtain the ciphertext C as C = E(M,K) and A‖B denotes the
concatenation of A and B.

4.1 Two Compact 64-Bit Proposals: DM-PRESENT-80 and DM-PRESENT-128

There are a variety of choices for building a 64-bit hash function from a 64-bit block ci-
pher. We will illustrate these with the Davies-Meyer mode where a single 64-bit chain-
ing variable Hi is updated using a message extract Mi according to the computation
H ′

i = E(Hi,M)⊕ Hi.

288 A. Bogdanov et al.

E

H ′
1

H1

M E E

H1 H2 M H1

c

H ′
1 H ′

2

Fig. 1. Compression functions for the 64-bit and 128-bit hash functions: DM-PRESENT-80 and
DM-PRESENT-128 (on the left) as well as H-PRESENT-128 (on the right)

In our case E denotes encryption with either PRESENT-80 or PRESENT-128, see Fig-
ure 1. Such hash functions will only be of use in applications that require the one-way
property and 64-bit security.2 At each iteration of the compression function 64 bits of
chaining variable and 80 bits (resp. 128 bits) of message-related input are compressed.
Therefore the two proposals DM-PRESENT-80 and DM-PRESENT-128 provide a simple
trade-off between space and throughput. We also provide figures for a serial and parallel
implementation of PRESENT, see Table 2.

While we have focused on using Davies-Meyer, it is important to note that these fig-
ures are a good indication of the cost for any single block-length hash function construc-
tion. If one prefers to implement Matyas-Meyer-Oseas or Miyaguchi-Preneel based on
PRESENT (instead of Davies-Meyer) then the cost of DM-PRESENT-80 will be a rea-
sonable guide. Moving away from PRESENT to a different block cipher will almost
certainly cause an increase to the space required for an implementation.

4.2 A Compact 128-Bit Proposal: H-PRESENT-128

When designing a 128-bit hash function from the 64-bit output block cipher PRESENT,
we have to appeal to so-called double-block-length hash function constructions. Natural
candidates are MDC-2 [10] and Hirose’s constructions [21,22]. These schemes possess
security proofs in the ideal cipher model, where the underlying block cipher is modeled
as a family of random permutations, one permutation being chosen independently for
each key. However MDC-2 is not an ideal construction [50] and so we base our 128-bit
hash function H-PRESENT-128 on the construction studied in [22].

The scheme H-PRESENT-128 is illustrated in Figure 1. The compression function
takes as input two 64-bit chaining variables and a 64-bit message extract, denoted by the
triple (H1,H2,M), and outputs the pair of updated chaining variables (H ′

1,H
′
2) according

to the computation

2 These properties are identical to those offered by the proposal SQUASH [49].

Hash Functions and RFID Tags: Mind the Gap 289

H ′
1 = E(H1,H2‖M)⊕ H1 and H ′

2 = E(H1 ⊕ c,H2‖M)⊕ H1

where E denotes PRESENT-128 and c is a non-zero constant that needs to be fixed [9].
Thus the chaining variable H1‖H2 is 128 bits long and 64 bits of message-related input
are hashed per iteration.

Hirose showed that, in the ideal cipher model, an adversary has to make at least 2n

queries to the cipher in order to find a collision with non-negligible advantage, where
n is the block size of the cipher. It is possible to make the same kind of analysis for
preimage resistance (see proof of Theorem 4 in [23]) and to show that any adversary
has to make at least 22n queries to the cipher to find a preimage. As for Section 4.1 our
implementation results are presented for both a parallel and serial implementation of
PRESENT-128, see Table 2. These results should be viewed as indicative of the cost of
a double-block-length construction using PRESENT. Since only one key schedule needs
to be computed per iteration of the compression function, the Hirose construction is
probably one of the most efficient constructions of this type, e.g. in the case of PRESENT

around 1000 GE can be saved in this way.

5 Compact Hashing for ≥ 160-Bit Hash Outputs

It is possible that some tag-enabled applications might need collision-resistance at a
security level of 280 operations. For this we need a hash output of 160 bits or greater.
However this is where the problems really begin and we consider two directions.

For the first, we continue the approach of the paper so far and we consider build-
ing a hash function with a hash output greater than 160 bits from PRESENT as is. So
in Section 5.1 we try to use PRESENT in this way and, using established results in the
literature, we make a proposal. However, at the same time, we use the very same results
to demonstrate that this approach is unlikely to be successful, a sentiment that is sup-
ported by our implementation results. Instead, for the second direction that is described
in Section 5.2, we move towards a dedicated hash function though we keep elements
of PRESENT in our constructions. Our dedicated proposals are deliberately simple and
obvious, and in this way we aim to provide some first results on the impact different
design choices might have in moving towards a new, compact, hash function.

5.1 Longer Hash Outputs Using PRESENT

Our goal is to build a hash function out of PRESENT that offers an output of at least 160
bits. Since PRESENT has a 64-bit block size, this means that we are forced to consider
a triple-block-length construction and we will end up with a 192-bit hash function.

Unfortunately very few designs for l-block length hash function with l ≥ 3 have been
studied so far. However Peyrin et al. [41] have identified some necessary conditions for
securely combining compression functions to obtain a new compression function with
a longer output. We can use these results and so, in the case we consider here, our
constituent compression functions will be based around PRESENT-128, i.e. we will use
DM-PRESENT-128 as the building block.

290 A. Bogdanov et al.

More background to the construction framework is given in [41]. However, within
this framework, efficiency demands that we keep to a minimum the number of com-
pression functions that we need to use, where each compression function is instantiated
by DM-PRESENT-128. For reasons of simplicity and greater design flexibility we re-
strict ourselves to processing only a single 64-bit message extract, and so our inputs to
C-PRESENT-192, where we use C as shorthand for “constructed”, consist of a quadru-
plet (H1,H2,H3,M) while the output is a triplet (H ′

1,H
′
2,H

′
3). The compression function

C-PRESENT-192 is illustrated in Appendix I and the output is computed as

H ′
1 = f (1)(H3,H1,H2)⊕ f (3)(H3 ⊕ M,H1,H2)⊕ f (5)(H2,H3,M)

H ′
2 = f (1)(H3,H1,H2)⊕ f (4)(H1,H3,M)⊕ f (6)(H1 ⊕ H2,H3,M)

H ′
3 = f (2)(M,H1,H2)⊕ f (4)(H1,H3,M)⊕ f (5)(H2,H3,M) ,

with f (i)(A,B,C) = E(A ⊕ ci−1,B‖C)⊕ A for different constants ci and E denotes en-
cryption with PRESENT-128.

This construction might seem too complicated, but this is exactly the point we wish
to make. The particular set of parameter values that are forced upon us when trying to
build a large-output hash function from a small block cipher means that there will be no
simple construction. More precisely, work in [41] shows that for any construction that
uses a compression function with parameters equivalent to PRESENT-128 along with
linear mixing layers to combine chaining variables and intermediate values, at least
six compression functions are needed to resist all currently-known generic attacks. We
must therefore use at least six independent calls to DM-PRESENT-128. The construction
C-PRESENT-192 attains this minimum and more details of the construction are given
in Appendix I. Our implementation results and estimates are given in Table 2, but the
performance profile for C-PRESENT-192 suggests that building directly on PRESENT is
unlikely to be a good way forward. Instead we consider some dedicated elements.

5.2 Dedicated Design Elements Inspired by PRESENT

Hash function design is notoriously difficult and so an interesting first step is to identify
some general approaches and to understand their security and performance trade-offs.
In this section we describe the results of some prototyping which tests a range of ap-
proaches and provides good background to our ongoing work. Our basic premise is to
stay close to the design elements of PRESENT and to modify the design so as to give
a block cipher with a much larger block size. We then adapt the key schedule in two
alternative ways with the first being a natural proposal and the second having strong
similarities to Whirlpool [3]. We give implementation results for both approaches.

Our schemes will continue to be based on the Davies-Meyer (DM) scheme Hi+1 =
E(Hi,Mi)⊕ Hi though the form of our encryption function E will now change. In gen-
eral, the encryption function E can be described as:

E : F
n
2 ×F

k
2 → F

n
2 ,

E : PLAINTEXT × KEY �→ CIPHERTEXT

The detailed description of PRESENT can be found in [6]. At a top-level we can write
the r-round encryption of the plaintext STATE as:

Hash Functions and RFID Tags: Mind the Gap 291

for i = 1 to r do
STATE ← STATE ⊕ eLayer(KEY, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)
KEY ← genLayer(KEY, i)

end for
STATE ← STATE ⊕ eLayer(KEY,r + 1),

where eLayer describes how a subkey is combined with a cipher STATE, sBoxLayer and
pLayer describe how the STATE evolves, and genLayer is used to describe the generation
of the next subkey.

When used in the DM mode we recast the plaintext and ciphertext as hash function
STATE and use the (formatted) message extract as the key. For ease of design we will
choose the parameters k and n so that k|n and 4|n, and both our proposals will have the
following (unmodified) structure:

for i = 1 to r do
STATE ← STATE ⊕ eLayer(MESSAGE, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)
MESSAGE ← genLayer(MESSAGE, i)

end for
STATE ← STATE ⊕ eLayer(MESSAGE,r + 1)

The following building blocks are unchanged between the two proposals and are merely
generalizations of the PRESENT structure to larger 160-bit block sizes.

1. sBoxLayer: This denotes use of the PRESENT 4-bit to 4-bit S-box S and it is applied
n/4 times in parallel.

2. pLayer: This is an extension of the PRESENT bit-permutation and moves bit i of
STATE to bit position P(i), where

P(i) =
{

i ·n/4 mod n − 1, if i ∈ {0, . . . ,n − 2}
n − 1, if i = n − 1.

It is in the specification of genLayer, which transforms the message of length k from
round-to-round, and eLayer : F

k
2 → F

n
2, that describes how the message extract is com-

bined with cipher state, that the two proposals differ.

PROP-1. For ease of comparison with PRESENT we keep exactly the same 80-bit key
input and the same 80-bit key schedule. Thus we modify a 160-bit chaining variable
using an 80-bit message input and, to make an implementation estimate, we use 64
rounds. This is equivalent to the parameters n = 160, k = 80, and r = 64. The sBoxLayer
and pLayer are as above and eLayer and genLayer are described as follows:

1. eLayer(MESSAGE, i) = MESSAGE‖genLayer(MESSAGE, i)
2. genLayer(MESSAGE, i) is defined as the 80-bit key schedule of PRESENT. Thus,

MESSAGE is rotated by 61 bit positions to the left, the left-most four bits are passed
through the PRESENT S-box, and the round counter i is exclusive-ored with some
bits of MESSAGE.

292 A. Bogdanov et al.

In words, we use the key schedule of PRESENT-80 exactly as is and at each round we
use what would be two successive 80-bit round keys. At each round the key schedule is
updated only once, so the same subkey is used once on the right-hand side and, in the
following round, on the left-hand side.

PROP-2. For the second proposal, we consider a structure that has some similarity
to Whirlpool. Our parameter set is n = 160 and k = 160 which allows us to use a
longer message extract at each iteration of the compression function. For prototyping
and implementation estimates we set r = 80. The building blocks eLayer and genLayer
are specified as:

1. eLayer(MESSAGE, i) = MESSAGE

2. genLayer(MESSAGE, i) = pLayer(sBoxLayer(MESSAGE ⊕ i)), being just a copy of
the data path with round constant addition.

In words, we imagine that our message extract is a 160-bit key and we process the key
in a key-schedule that is identical to the encryption process.

We estimated the hardware figures for different architectures when implementing
PROP-1 and PROP-2. Our implementation estimates range from a 4-bit width data path
(highly serialized) up to a 160-bit width data path which offers one round of processing
in one cycle. Since PROP-2 uses a very similar key schedule (i.e. message path) and
encryption routine, we can give a further two different implementation options: one
with a shared sBoxLayer between the data path and the message path and one with an
individual sBoxLayer. The results are summarized below with the efficiency eff. being
measured in bps/GE.

Understanding the best trade-offs for the different approaches is not easy. As one
can see, all three implementations scale nicely, though it seems that PROP-2 is more
efficient in terms of throughput per area when compared to PROP-1. On the other hand
PROP-1 offers a lower minimal achievable gate count, though at the cost of a higher cy-
cle count. Much would also depend on a thorough security analysis of any final proposal
and while some initial analysis in Appendix II suggests the possibility of optimizations
to an approach like PROP-2, this is something to explore in future work during the
design of an explicit proposal.

data path PROP-1 PROP-2 (shared) PROP-2 (ind.)
width area (GE) cycles eff. area (GE) cycles eff. area (GE) cycles eff.

4 2 520 5 282 1.2 3 010 6 481 0.82 3 020 3 281 1.62
16 2 800 1 322 4.33 3 310 1 621 2.92 3 380 821 5.77
32 3 170 662 7.64 3 730 811 5.11 3 860 411 10.09
80 4 270 266 14.09 4 960 325 9.29 5 300 165 18.3
160 4 830 134 24.73 5 730 163 15.29 6 420 83 30.03

6 Implementation of the Standard Constructions

To consider the efficiency of the standard constructions, we implemented two dif-
ferent architectures (round-based and serial) in VHDL and simulated using Mentor

Hash Functions and RFID Tags: Mind the Gap 293

Table 2. The performance of different hash functions based on the direct application of PRESENT.
For comparison with our hash functions with 128-bit output we include estimates for the AES-
based 128-bit hash function in Davies-Meyer mode. For comparison with MAME we include
estimates for the 256-bit hash function built from the AES in Hirose’s construction.

Hash Data Cycles Throughput Efficiency Logic Area
output path per at 100KHz (bps/GE) process GE
size size block (Kbps)

MD4 [17] 128 32 456 112.28 15.3 0.13µm 7 350
MD5 [17] 128 32 612 83.66 10 0.13µm 8 400
SHA-1 [17] 160 32 1 274 40.19 4.9 0.35µm 8 120
SHA-256 [17] 256 32 1 128 45.39 4.2 0.35µm 10 868
MAME [53] 256 256 96 266.67 32.9 0.18µm 8 100

In this paper

DM-PRESENT-80 64 64 33 242.42 109.5 0.18µm 2 213
DM-PRESENT-80 64 4 547 14.63 9.1 0.18µm 1 600
DM-PRESENT-128 64 128 33 387.88 153.3 0.18µm 2 530
DM-PRESENT-128 64 4 559 22.9 12.1 0.18µm 1 886
H-PRESENT-128 128 128 32 200 47 0.18µm 4 256
H-PRESENT-128 128 8 559 11.45 4.9 0.18µm 2 330
C-PRESENT-192 192 192 108 59.26 7.4 0.18µm 8 048
C-PRESENT-192 192 12 3 338 1.9 0.41 estimate 4 600
AES-based DM scheme 128 8 > 1 032 < 12.4 < 2.8 estimate > 4 400
AES-based Hirose scheme 256 8 > 1 032 < 12.4 < 1.3 estimate > 9 800

Graphics Modelsim SE PLUS 6.3a. Synopsys DesignCompiler version Z-2007.03-SP5
was used to synthesize the design to the Virtual Silicon (VST) standard cell library
UMCL18G212T3, which is based on the UMC L180 0.18µm 1P6M logic process and
has a typical voltage of 1.8 Volt. For synthesis we advised the compiler to use a clock
frequency of 100 KHz, a typical operating frequency for RFID applications.

We used Synopsys Power Compiler version Z-2007.03-SP5 to estimate the power
consumption of our implementations. At a clock frequency of 100 KHz DM-PRESENT-
80 consumes 6.28 µW in the round-based implementation and 1.83 µW in the serialized
implementation. The figures for the other designs are as follows: DM-PRESENT-128
7.49 µW and 2.94 µW , H-PRESENT-128 8.09 µW and 6.44 µW , and C-PRESENT-192
9.31 µW (round-based). Note that it is not easily possible to compare power consump-
tion of designs implemented in different technologies, hence we did not include these
figures in Table 2. However, the figures for SHA-256 (15.87 µW) and SHA-1 (10.68 µW)
provided by Feldhofer et Rechberger [17] are in the same range as ours.

The area requirements of DM-PRESENT-80 and DM-PRESENT-128 comprise of the
area requirements of the appropriate PRESENT cores and a 64-bit register to store the
chaining variable (around 510 GE). Additionally, in the round-based variants a 64-bit
XOR gate (170 GE) is required and in the serial variants a 4-bit XOR gate (10 GE).3

3 Note that contrary to the constructions presented in this article the round-based PRESENT cores
do not require a finite state machine nor do they contain clock-gated flip-flops. Therefore all
in this paper presented constructions require additional logic which increases the area.

294 A. Bogdanov et al.

For the area estimates of the AES-based Davies-Meyer and Hirose schemes we used the
smallest known (3 400 GE) AES implementation [16]. We estimated the area require-
ments for storing one bit to be 8 GE as stated in [16]. For the AES-based Davies-Meyer
scheme we assumed that at least one additional register would be required to store the
128-bit value H1 (1 024 additional GE), summing up to at least 4 400 GE in total.

The H-PRESENT-128 implementation consists of a modified PRESENT-128 core, a
PRESENT data path (1010 GE), a 64-bit register for the chaining variable (510 GE), and
two 64-bit multiplexer (340 GE). Additionally, the round-based variant requires two
64-bit XOR gates (340 GE) and the serial variant two 4-bit XOR gates (20 GE). The
AES-based Hirose scheme requires an AES implementation with 256-bit key length.
However, no such low-cost implementation has been reported so far. Therefore we esti-
mate the area requirements starting from the Feldhofer et al. [16] implementation with
a 128-bit key. At least 128 additional key bits (1 024 GE) have to be stored to achieve
an AES implementation with 256 bits key length, summing up to at least 4 400 GE. The
Hirose scheme requires two instantiations of the block cipher and the storage of one
intermediate value H1, which has the same size as the block size. All together we esti-
mate the AES-based Hirose scheme to require at least 9 800 GE. The serial variant of
C-PRESENT-192 was not implemented, because the figures for the round-based variant
and the estimations indicate large area requirements with more than 4500 GE. In fact
this large area requirement for both variants of C-PRESENT-192 was the main reason to
look for other constructions such as PROP-1 and PROP-2.

Table 2 summarizes our results and compares them to other hashing functions and
AES-based schemes. When the hash output length is 128 bits or lower, a construction
based around PRESENT seems to have potential. Certainly they are far more competitive
than current hash functions, the primary reason being that there exist efficient block
cipher-based constructions for this size of hash output. Even a larger block cipher such
as AES makes for a more compact hash function than current dedicated designs at this
security level, though the throughput suffers.

7 Conclusions

While compact hash functions are often proposed in protocols for RFID tags, there are
currently no sufficiently compact candidates to hand. Here we have explored the pos-
sibility of building a hash function out of a block cipher such as PRESENT. We have
described hash functions that offer 64- and 128-bit outputs based on current design
strategies. For their parameter sets these are the most compact hash function candi-
dates available today. In particular, H-PRESENT-128 requires around 4 000 GE, which
is similar to the best known AES implementation and about 50% smaller than the best
reported MD5 implementation. At the same time, H-PRESENT-128 requires between
20–30 times fewer clock cycles than compact AES and MD5 implementations, giving
it a major time-area advantage.

Obviously 128-bit hash functions are relevant for applications where a security-
performance trade-off is warranted. To obtain larger hash outputs there are severe com-
plications and we suspect that dedicated designs could be more appropriate. Clearly
there are many areas of open research, not least the design of very compact hash

Hash Functions and RFID Tags: Mind the Gap 295

functions. In parallel, it might also be worth revisiting tag-based protocols that use
hash functions to see if the same goals can be achieved in a different way.

References

1. An, Y., Oh, S.: RFID System for User’s Privacy Protection. In: IEEE Asia-Pacific Conference
on Communications, pp. 16–519. IEEE Computer Society, Los Alamitos (2005)

2. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-based RFID Protocol. In: 3rd
IEEE Conference on Pervasive Computing and Communications Workshops (PerCom 2005
Workshops), pp. 110–114. IEEE Computer Society, Los Alamitos (2005)

3. Baretto, P., Rijmen, V.: The Whirlpool Hashing Function,
http://paginas.terra.com.br/informatica/-paulobarreto/WhirlpoolPage.html

4. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA. Presented
at Second NIST Cryptographic Hash Workshop, August 24-25 (2006),
csrc.nist.gov/groups/ST/hash/

5. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-
Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
320–335. Springer, Heidelberg (2002)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,
Seurin, Y., Vikkelsoe, C.: Present: An Ultra-Lightweight Block Cipher. In: Paillier, P., Ver-
bauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

7. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for
Smart Devices - Security for 1000 Gate Equivalents. In: CARDIS 2008. Springer, Heidelberg
(to appear, 2008)

8. Brown, L., Pieprzyk, J., Seberry, J.: LOKI - A Cryptographic Primitive for Authentication
and Secrecy Applications. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS,
vol. 453, pp. 229–236. Springer, Heidelberg (1990)

9. Chang, D.: A Practical Limit of Security Proof in the Ideal Cipher Model: Possibility of
Using the Constant As a Trapdoo. In: Several Double Block Length Hash Functions. IACR
Cryptology ePrint Archive, Report 2006/481, http://eprint.iacr.org/2006/481

10. Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J., Brachtl, B.,
Schilling, M.: Data authentication using modification detection codes based on a public one
way encryption function. U.S. Patent No. 4,908,861 (March 13, 1990)

11. Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

12. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton University
(1999)

13. Dimitriou, T.: A Lightweight RFID Protocol to Protect Against Traceability and Cloning At-
tacks. In: Proceedings of IEEE International Conference on Security and Privacy of Emerg-
ing Areas in Communication Networks (SecureComm 2005), pp. 59–66. IEEE Computer
Society, Los Alamitos (2005)

14. ECRYPT Network of Excellence. The Stream Cipher Project: eSTREAM,
http://www.ecrypt.eu.org/stream

15. Good, T., Chelton, W., Benaissa, M.: Hardware Results for Selected Stream Cipher Candi-
dates. In: SASC 2007 (February 2007), http://www.ecrypt.eu.org/stream/

16. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Us-
ing the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 357–370. Springer, Heidelberg (2004)

http://paginas.terra.com.br/informatica/-paulobarreto/WhirlpoolPage.html
csrc.nist.gov/groups/ST/hash/
http://eprint.iacr.org/2006/481
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/

296 A. Bogdanov et al.

17. Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in RFID Pro-
tocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277,
pp. 372–381. Springer, Heidelberg (2006)

18. Gao, X., Xian, Z., Wang, H., Shen, J., Huang, J., Song, S.: An Approach to Security and Privacy
of RFID System for Supply Chain. In: IEEE International Conference on E-Commerce Tech-
nology for Dynamic E-Business, pp. 164–168. IEEE Computer Society, Los Alamitos (2004)

19. Handschuh, H., Knudsen, L.R., Robshaw, M.J.B.: Analysis of SHA-1 in Encryption Mode. In:
Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)

20. Henrici, D., Götze, J., Müller, P.: A Hash-based Pseudonymization Infrastructure for RFID
Systems. In: Georgiadis, P., Lopez, J., Gritzalis, S., Marias, G. (eds.) SecPerU 2006, pp.
22–27. IEEE Computer Society Press, Los Alamitos (2006)

21. Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In:
Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg
(2005)

22. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Rob-
shaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

23. Hirose, S.: How to Construct Double-Block-Length Hash Functions. In: Second Crypto-
graphic Hash Workshop, Santa Barbara (August 2006)

24. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee, J., Jeong,
K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

25. Joux, A.: Multi-Collisions in Iterated Hash Functions. Application to Cascaded Construc-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Hei-
delberg (2004)

26. Juels, A., Weis, S.A.: Authenticating Pervasive Devices With Human Protocols. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 198–293. Springer, Heidelberg (2005)

27. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less than 2n

Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer,
Heidelberg (2005)

28. Knudsen, L.R., Lai, X.: New Attacks on all Double Block Length Hash Functions of Hash
Rate 1, Including the Parallel-DM. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 410–418. Springer, Heidelberg (1995)

29. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) EU-
ROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

30. Lai, X., Waldvogel, C., Hohl, W., Meier, T.: Security of Iterated Hash Functions Based
on Block Ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390.
Springer, Heidelberg (1994)

31. Lee, S., Hwang, Y., Lee, D., Lim, J.: Efficient Authentication for Low-Cost RFID Systems.
In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan,
C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 619–627. Springer, Heidelberg (2005)

32. Lim, C., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of Low-
cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 243–258. Springer, Heidelberg (2005)

33. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton (1996)

34. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

35. National Institute of Standards and Technology. FIPS 46-3: Data Encryption Standard (DES)
(October 1999), http://csrc.nist.gov

http://csrc.nist.gov

Hash Functions and RFID Tags: Mind the Gap 297

36. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard (August
2002), http://csrc.nist.gov

37. National Institute of Standards and Technology. FIPS 197: Advanced Encryption Standard
(AES) (November 2001), http://csrc.nist.gov

38. National Institute of Standards and Technology. FIPS 198: The Keyed-Hash Message Au-
thentication Code (March 2002), http://csrc.nist.gov

39. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to Privacy-Friendly Tags.
In: RFID Privacy Workshop, MIT, Cambridge (2003)

40. Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based Hash Func-
tions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 432–443.
Springer, Heidelberg (2006)

41. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression Functions and
Block Cipher-Based Hash Functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

42. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Lightweight DES Variants Suited
for RFID Applications. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210.
Springer, Heidelberg (2007)

43. Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: Collision-Free Hash Functions
Based on Block Cipher Algorithms. In: Proceedings 1989 International Carnahan Confer-
ence on Security Technology, pp. 203–210. IEEE, Los Alamitos (1989)

44. Preneel, B.: Ph.D. thesis. Katholieke Universiteit Leuven (1993)
45. Quisquater, J.-J., Girault, M.: 2n-bit Hash-Functions Using n-bit Symmetric Block Cipher

Algorithms. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 102–109. Springer, Heidelberg (1990)

46. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992),
http://www.ietf.org/rfc/rfc1321.txt

47. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes
OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31.
Springer, Heidelberg (2004)

48. Seurin, Y., Peyrin, T.: Security Analysis of Constructions Combining FIL Random Oracles.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 119–136. Springer, Heidelberg (2007)

49. Shamir, A.: SQUASH - a New MAC With Provable Security Properties for Highly Con-
strained Devices Such As RFID Tags. In: Nyberg, K. (ed.) FSE 2008, Springer, Heidelberg
(to appear, 2008)

50. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)

51. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

52. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

53. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, J., Kucuk, O., Preneel, B.: MAME: A
Compression Function With Reduced Hardware Requirements. In: Paillier, P., Verbauwhede,
I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165. Springer, Heidelberg (2007)

54. Yu, Y., Yang, Y., Fan, Y., Min, H.: Security Scheme for RFID Tag. Auto-ID Labs white paper
WP-HARDWARE-022, http://www.autoidlabs.org/

Appendix I

Using current best practice we outline a representative design for a 192-bit hash func-
tion, named C-PRESENT-192 in the text. Some of the background to the design and its
implementation are given in Section 5.1 with some additional explanation below.

http://csrc.nist.gov
http://csrc.nist.gov
http://csrc.nist.gov
http://www.ietf.org/rfc/rfc1321.txt
http://www.autoidlabs.org/

298 A. Bogdanov et al.

E
H1

H2

H3

E

c1

H1

H2

M

E

c2

H1

H2

H3 ⊕ M

E

c3

H3

M

H1

E

c4

H3

M

H2

E

c5

H3

M

H1 ⊕ H2

H ′
1 H ′

2 H ′
3

Motivation. Our goal was to design a 192-bit hash function using PRESENT as the
fundamental building block and to use linear mixing layers both before and after the
compression functions. Within this framework, it has been shown that the minimum
number of compression functions that can be used is six. In addition, the output map-
ping should be a (6,3,3) binary linear error-correcting code, while the input mapping
must satisfy the following constraints:

1. Every external output block must depend on all external input blocks, no matter
which invertible transformation of the external inputs and outputs is applied.

2. Every pair of external input blocks must appear as an identified pair for every in-
vertible combination of external output blocks, where a pair (A,B) is said to be
identified when A and B both appear within the internal inputs to some f (i), and
this no matter which invertible transformation of the external inputs is applied.

The input mapping for our representative was selected from among those that satisfy
these conditions and that also minimize the number of key schedules used to hash one
block of message. By reducing the number of key schedules we increase the perfor-
mance of the scheme and, potentially, reduce the space required by an implementation.
It can be proved that for the parameter sets of interest to us here, the minimal number
of key schedules is two.

For the results of Peyrin et al. to hold, the compression functions f (i) have to be
ideal compression functions with respect to collision and preimage resistance (that is,
finding a collision or a preimage must require on average Θ(2n/2) and Θ(2n) evaluations
of the function respectively) and must behave independently. Each inner compression
function f (i) is built around PRESENT-128 in a way similar to the Davies-Meyer mode.
That way, the results of Black et al. [5] ensure that, in the ideal cipher model, finding
a collision (resp. a preimage) for the compression functions f (i) requires Θ(2n/2) (resp.
Θ(2n)) queries to the cipher. Hence, in the ideal cipher model, each inner compression
function f (i) is ideal in the sense defined above.

Hash Functions and RFID Tags: Mind the Gap 299

Making the six compression functions f (i) independent is not so easy. The most
secure way to do this would be to “tweak” the block cipher with e.g. the XE or XEX
construction of Rogaway [47]. However, these constructions are only efficient when one
has to compute ciphertexts for the same key and many different tweaks, which is not
our case. Using any known provably secure construction of a tweakable block cipher for
the C-PRESENT-192 scheme would imply one supplementary cipher call for each key,
thus increasing the number of block cipher calls per message block to eight. Instead we
might consider using the same kind of technique that is used in the Hirose construction
and we use five constants c1, . . . ,c5 to make the six instances of the compression func-
tion independent. In the absence of a structural weakness in PRESENT this is sufficient
for our purposes. Further, we are trying to estimate the space required for a construction
of this type and so this approach will help yield conservative estimates. The constants
were chosen to be linearly independent and of low Hamming weight. They are given by
c0 = 0 and ci = (0x0000000000000001)� (i−1) for i ≥ 1. While some limitations
of this construction follow from [48], assuming we can consider the inner compression
functions independent, Peyrin et al. show that there is no currently-known attack with
computational complexity less than brute-force on the larger compression function.

Appendix II

Our proposed design elements are not intended to be specifications. Nevertheless, some
preliminary analysis follows from the simple structures proposed. In particular, for a
fixed message block and two different chaining values we can apply Theorem 1 of [6]
directly. This states that at least 10 active S-boxes are involved in any 5-round differ-
ential characteristic. However, for the more important case of two different message
blocks, the analysis has to be slightly modified. The following two results on the differ-
ential behavior of the proposals can be viewed as a first step towards a deeper analysis:

Theorem 1. Let P(3)
(Δ1,Δ2) �→Δ be the probability of a differential characteristic over 3

rounds of PROP-1 with Δ2 �= 0, i.e. the probability that

PROP-13(H ⊕ Δ1,M ⊕ Δ2) = PROP-13(H,M)⊕ Δ,

where PROP-13 denotes three rounds of PROP-1. Then each 3-round differential char-

acteristic of this form has at least 4 active S-boxes and therefore P(3)
(Δ1,Δ2) �→Δ ≤ 2−8.

Theorem 2. Let P(Δ1,Δ2) �→Δ be the probability of a differential characteristic such that

PROP-2(H ⊕ Δ1,M ⊕ Δ2) = PROP-2(H,M)⊕ Δ

for Δ2 �= 0. Then P(Δ1,Δ2) �→Δ ≤ 2−400 for PROP-2.

Theorem 1 indicates that the probability of each 64-round differential characteristic can

be upper-bounded by (2−8)
64
3 ≈ 2−170. This observation as well as Theorem 2 show that

the differential properties may be strong enough to thwart pre-image, second pre-image
and collision attacks for the both proposals. Furthermore, Theorem 2 indicates that one
could probably decrease the number of rounds in PROP-2 without unduly compromis-
ing the security. The most appropriate trade-off remains an area of research.

	Hash Functions and RFID Tags: Mind the Gap
	Introduction
	Cryptography and RFID Tags
	Hash Functions and Protocols for RFID Tags

	Hash Function Constructions
	Dedicated Constructions
	Block Cipher Constructions

	Compact Hashing for 64- and 128-Bit Hash Outputs
	Two Compact 64-Bit Proposals: dm-Present-80 and dm-present-128
	A Compact 128-Bit Proposal: h-present-128

	Compact Hashing for 160-Bit Hash Outputs
	Longer Hash Outputs Using Present
	Dedicated Design Elements Inspired by present

	Implementation of the Standard Constructions
	Conclusions
	References

