
Chapter 4

An Introduction to Networks
in Epidemic Modeling

Fred Brauer

Abstract We use a stochastic branching process to describe the beginning
of a disease outbreak. Unlike compartmental models, if the basic reproduc-
tion number is greater than one there may be a minor outbreak or a major
epidemic with a probability depending on the nature of the contact network.
We use a network approach to determine the distribution of outbreak and
epidemic sizes.

4.1 Introduction

The Kermack–McKendrick compartmental epidemic model assumes that the
sizes of the compartments are large enough that the mixing of members is
homogeneous, or at least that there is homogeneous mixing in each subgroup
if the population is stratified by activity levels. However, at the beginning of
a disease outbreak, there is a very small number of infective individuals and
the transmission of infection is a stochastic event depending on the pattern
of contacts between members of the population; a description should take
this pattern into account.

It has often been observed in epidemics that there is a small number of
“superspreaders” who transmit infection to many other members of the pop-
ulation, while most infectives do not transmit infections at all or transmit
infections to very few others [17]. This suggests that homogeneous mixing at
the beginning of an epidemic may not be a good assumption. The SARS epi-
demic of 2002–2003 spread much more slowly than would have been expected
on the basis of the data on disease spread at the start of the epidemic. Early
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in the SARS epidemic of 2002–2003 it was estimated that R0 had a value
between 2.2 and 3.6. At the beginning of an epidemic, the exponential rate
of growth of the number of infectives is approximately (R0 − 1)/α, where
1/α is the generation time of the epidemic, estimated to be approximately 10
days for SARS . This would have predicted at least 30, 000 cases of SARS in
China during the first four months of the epidemic. In fact, there were fewer
than 800 cases reported in this time. An explanation for this discrepancy is
that the estimates were based on transmission data in hospitals and crowded
apartment complexes. It was observed that there was intense activity in some
locations and very little in others. This suggests that the actual reproduction
number (averaged over the whole population) was much lower, perhaps in the
range 1.2–1.6, and that heterogeneous mixing was a very important aspect
of the epidemic.

4.2 The Probability of a Disease Outbreak

Our approach will be to give a stochastic branching process description of
the beginning of a disease outbreak to be applied so long as the number of
infectives remains small, distinguishing a (minor) disease outbreak confined
to this stage from a (major) epidemic which occurs if the number of infec-
tives begins to grow at an exponential rate . Once an epidemic has started
we may switch to a deterministic compartmental model, arguing that in a
major epidemic contacts would tend to be more homogeneously distributed.
However, if we continue to follow the network model we would obtain a some-
what different estimate of the final size of the epidemic. Simulations suggest
that the assumption of homogeneous mixing in a compartmental model may
lead to a higher estimate of the final size of the epidemic than the prediction
of the network model.

We describe the network of contacts between individuals by a graph with
members of the population represented by vertices and with contacts between
individuals represented by edges. The study of graphs originated with the
abstract theory of Erdös and Rényi of the 1950s and 1960s [3–5], and has
become important more recently in many areas, including social contacts
and computer networks, as well as the spread of communicable diseases. We
will think of networks as bi-directional, with disease transmission possible in
either direction along an edge.

An edge is a contact between vertices that can transmit infection. The
number of edges of a graph at a vertex is called the degree of the vertex. The
degree distribution of a graph is {pk}, where pk is the fraction of vertices
having degree k. The degree distribution is fundamental in the description of
the spread of disease. Initially, we assume that all contacts between an infec-
tive and a susceptible transmit infection, but we will relax this assumption
in Sect. 4.3.
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We think of a small number of infectives in a population of susceptibles
large enough that in the initial stage we may neglect the decrease in the size
of the susceptible population. Our development begins along the lines of that
of [7] and then develops along the lines of [6, 14, 16]. We assume that the
infectives make contacts independently of one another and let pk denote the
probability that the number of contacts by a randomly chosen individual is
exactly k, with

∑∞
k=0 pk = 1. In other words, {pk} is the degree distribution

of the vertices of the graph corresponding to the population network.
For convenience, we define the generating function

G0(z) =
∞∑

k=0

pkzk.

Since
∑∞

k=0 pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be
differentiated term by term. Thus

pk =
G

(k)
0 (0)
k!

, k = 0, 1, 2, · · · .

It is easy to verify that the generating function has the properties

G0(0) = p0, G0(1) = 1, G′
0(z) > 0, G′′

0(z) > 0.

The mean degree, which we denote by < k >, is

< k >=
∞∑

k=1

kpk = G′
0(1).

More generally, we define the moments

< kj >=
∞∑

k=1

kjpk, j = 1, 2, · · ·∞.

When a disease is introduced into a network, we think of it as starting at
a vertex (patient zero) who transmits infection to every individual to whom
this individual is connected, that is, along every edge of the graph from the
vertex corresponding to this individual. We assume that this initial vertex has
been infected by a contact outside the population (component of the network)
being studied. For transmission of disease after this initial contact we need to
use the excess degree of a vertex. If we follow an edge to a vertex, the excess
degree of this vertex is one less than the degree. We use the excess degree
because infection can not be transmitted back along the edge whence it came.
The probability of reaching a vertex of degree k, or excess degree (k − 1),
by following a random edge is proportional to k, and thus the probability
that a vertex at the end of a random edge has excess degree (k − 1) is a
constant multiple of kpk with the constant chosen to make the sum over k
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of the probabilities equal to 1. Then the probability that a vertex has excess
degree (k − 1) is

qk−1 =
kpk

< k >
.

This leads to a generating function G1(z) for the excess degree

G1(z) =
∞∑

k=1

qk−1z
k−1 =

∞∑

k=1

kpk

< k >
zk−1 =

1
< k >

G′
0(z),

and the mean excess degree, which we denote by < ke >, is

< ke > =
1

< k >

∞∑

k=1

k(k − 1)pk

=
1

< k >

∞∑

k=1

k2pk − 1
< k >

∞∑

k=1

kpk

=
< k2 >

< k >
− 1 = G′

1(1).

We let R0 = G′
1(1), the mean excess degree. This is the mean number of

secondary cases infected by patient zero and is the basic reproduction number
as usually defined; the threshold for an epidemic is determined by R0.

Our next goal is to calculate the probability that the infection will die
out and will not develop into a major epidemic. We begin by assuming that
patient zero is a vertex of degree k of the network. Suppose patient zero
transmits infection to a vertex of degree j. We let zn denote the probability
that this infection dies out within the next n generations. For the infection
to die out in n generations each of these j secondary infections must die out
in (n − 1) generations. The probability of this is zn−1 for each secondary
infection, and the probability that all secondary infections will die out in
(n − 1) generations is zj

n−1. Now zn is the sum over j of these probabilities,
weighted by the probability qj of j secondary infections. Thus

zn =
∞∑

j=0

qjz
j
n−1 = G1(zn−1).

Since G1(z) is an increasing function, the sequence zn is an increasing
sequence and has a limit z∞, which is the probability that this infection will
die out eventually. Then z∞ is the limit as n → ∞ of the solution of the
difference equation

zn = G1(zn−1), z0 = 0.

Thus z∞ must be an equilibrium of this difference equation, that is, a solution
of z = G1(z). Let w be the smallest positive solution of z = G1(z). Then,
because G1(z) is an increasing function of z, z ≤ G1(z) ≤ G1(w) = w for
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0 ≤ z ≤ w. Since z0 = 0 < w and zn−1 ≤ w implies

zn = G1(zn−1) ≤ G1(w) = w,

it follows by induction that

zn ≤ w, n = 0, 1, · · · ∞.

From this we deduce that
z∞ = w.

The equation G1(z) = z has a root z = 1 since G1(1) = 1. Because the
function G1(z) − z has a positive second derivative, its derivative G′

1(z) − 1
is increasing and can have at most one zero. This implies that the equation
G1(z) = z has at most two roots in 0 ≤ z ≤ 1. If R0 < 1 the function
G1(z) − z has a negative first derivative

G′
1(z) − 1 ≤ G′

1(1) − 1 = R1 − 1 < 0

and the equation G1(z) = z has only one root, namely z = 1. On the other
hand, if R0 > 1 the function G1(z)−z is positive for z = 0 and negative near
z = 1 since it is zero at z = 1 and its derivative is positive for z < 1 and z
near 1. Thus in this case the equation G1(z) = z has a second root z∞ < 1.

The probability that the disease outbreak will die out eventually is the sum
over k of the probabilities that the initial infection in a vertex of degree k
will die out, weighted by the degree distribution {pk} of the original infection,
and this is ∞∑

k=0

pkzk
∞ = G0(z∞).

To summarize this analysis, we see that if R0 < 1 the probability that the
infection will die out is 1. On the other hand, if R0 > 1 there is a solution
z∞ < 1 of

G1(z) = z

and there is a probability 1−G0(z∞) > 0 that the infection will persist, and
will lead to an epidemic. However, there is a positive probability G0(z∞) that
the infection will increase initially but will produce only a minor outbreak
and will die out before triggering a major epidemic. This distinction between
a minor outbreak and a major epidemic, and the result that if R0 > 1 there
may be only a minor outbreak and not a major epidemic are aspects of
stochastic models not reflected in deterministic models.
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4.3 Transmissibility

Contacts do not necessarily transmit infection. For each contact between in-
dividuals of whom one has been infected and the other is susceptible there
is a probability that infection will actually be transmitted. This probability
depends on such factors as the closeness of the contact, the infectivity of
the member who has been infected, and the susceptibility of the susceptible
member. We assume that there is a mean probability T , called the trans-
missibility, of transmission of infection. The transmissibility depends on the
rate of contacts, the probability that a contact will transmit infection, the
duration time of the infection, and the susceptibility. The development in
Sect. 4.2 assumed that all contacts transmit infection, that is, that T = 1.

In this section, we will continue to assume that there is a network describ-
ing the contacts between members of the population whose degree distribu-
tion is given by the generating function G0(z), but we will assume in addition
that there is a mean transmissibility T .

When disease begins in a network, it spreads to some of the vertices of the
network. Edges that are infected during a disease outbreak are called occupied,
and the size of the disease outbreak is the cluster of vertices connected to the
initial vertex by a continuous chain of occupied edges.

The probability that exactly m infections are transmitted by an infective
vertex of degree k is (

k

m

)

Tm(1 − T )k−m.

We define Γ0(z, T ) be the generating function for the distribution of the
number of occupied edges attached to a randomly chosen vertex, which is
the same as the distribution of the infections transmitted by a randomly
chosen individual for any (fixed) transmissibility T . Then

Γ0(z, T ) =
∞∑

m=0

[ ∞∑

k=m

pk

(
k

m

)

Tm(1 − T )(k−m)

]

zm

=
∞∑

k=0

pk

[
k∑

m=0

(
k

m

)

(zT )m(1 − T )(k−m)

]

(4.1)

=
∞∑

k=0

pk[zT + (1 − T )]k = G0(1 + (z − 1)T ).

In this calculation we have used the binomial theorem to see that

k∑

m=0

(
k

m

)

(zT )m(1 − T )(k−m) = [zT + (1 − T )]k.

Note that



4 An Introduction to Networks 139

Γ0(0, T ) = G0(1−T ), Γ0(1, T ) = G0(1) = 1, Γ ′
0(z, T ) = TG′

0(1+(z−1)T ).

For secondary infections we need the generating function Γ1(z, T ) for the
distribution of occupied edges leaving a vertex reached by following a ran-
domly chosen edge. This is obtained from the excess degree distribution in
the same way,

Γ1(z, T ) = G1(1 + (z − 1)T )

and

Γ1(0, T ) = G1(1−T ), Γ1(1, T ) = G1(1) = 1, Γ ′
1(z, T ) = TG′

1(1+(z−1)T ).

The basic reproduction number is now

R0 = Γ ′
1(1, T ) = TG′

1(1).

The calculation of the probability that the infection will die out and will
not develop into a major epidemic follows the same lines as the argument in
Sect. 4.2 for T = 1. The result is that if R0 = TG′

1(1) < 1 the probability
that the infection will die out is 1. If R0 > 1 there is a solution z∞(T ) < 1 of

Γ1(z, T ) = z,

and a probability 1−Γ0(z∞(T ), T ) > 0 that the infection will persist, and will
lead to an epidemic. However, there is a positive probability Γ1(z∞(T ), T )
that the infection will increase initially but will produce only a minor out-
break and will die out before triggering a major epidemic.

Another interpretation of the basic reproduction number is that there is
a critical transmissibility Tc defined by

TcG
′
1(1) = 1.

In other words, the critical transmissibility is the transmissibility that makes
the basic reproduction number equal to 1. If the mean transmissibility can
be decreased below the critical transmissibility, then an epidemic can be
prevented.

The measures used to try to control an epidemic may include contact
interventions, that is, measures affecting the network such as avoidance of
public gatherings and rearrangement of the patterns of interaction between
caregivers and patients in a hospital, and transmission interventions such as
careful hand washing or face masks to decrease the probability that a contact
will lead to disease transmission.
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4.4 The Distribution of Disease Outbreak
and Epidemic Sizes

We define H0(z, T ) to be the generating function for the distribution of out-
break sizes corresponding to a randomly chosen vertex. In a corresponding
way, we define H1(z, T ) to be the generating function for the sizes of the
clusters of connected vertices reached by following a randomly chosen edge.

For the generating function H1(z, T ), it is easy to verify that [H1(z, T )]2

represents the distribution function for the sum of the infected cluster sizes
for two vertices, and similarly for higher powers. If we begin on a randomly
chosen edge, the probability that the vertex at the end of this edge has degree
k is qk, and each of the k vertices connected to it has a distribution of infected
cluster sizes given by H1(z, T ). Then

H1(z, T ) = z

∞∑

m=0

[ ∞∑

k=m

qk

(
k

m

)

Tm(1 − T )(k−m)

]

z(H1(z, T ))m

= z
∞∑

k=0

qk

[
k∑

m=0

(
k

m

)

(TH1(z, T ))m(1 − T )(k−m)

]

= z

∞∑

k=0

qk[TH1(z, T ) + (1 − T )]k = zG1(1 + (H1(z, T ) − 1)T ).

Thus
H1(z, T ) = zΓ1(H1(z, T ), T ). (4.2)

Similarly, the size of the cluster reachable from a randomly chosen vertex is
distributed according to

H0(z, T ) = zΓ0(H1(z, T ), T ). (4.3)

The mean size of the disease outbreak is H ′
0(1, T ). We calculate this by

implicit differentiation of (4.2) after using implicit differentiation of (4.3) to
calculate H ′

1(z, t).
Implicit differentiation of (4.2) gives

H ′
1(z, T ) = Γ1(H1(z, T ), T ) + zΓ ′

1(H1(z, T ), T )H ′
1(z, T )

=
Γ1(H1(z, T ), T )

1 − zΓ ′
1(H1(z, T ), T )

(4.4)

H ′
1(1, T ) =

Γ1(H1(1, T ), T )
1 − Γ ′

1(H1(1, T ), T )
.

Then implicit differentiation of (4.3) using (4.4) gives
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H ′
0(z, T ) = Γ0(H1(z, T ), T ) + zΓ ′

0(H1(z, T ), T )H ′
1(z, T ) (4.5)

= Γ0(H1(z, T ), T ) + zΓ ′
0(H1(z, T ), T )

Γ1(H1(z, T ), T )
1 − zΓ ′

1(H1(z, T ), T )
.

Because
H1(1, T ) = 1, Γ1(H1(1, T ), T ) = Γ1(1, T ) = 1,

this reduces to

H ′
0(1, T ) = 1 +

Γ ′
0(1, T )

1 − Γ ′
1(1, T )

= 1 +
TG′

0(1)
1 − TG′

1(1)
= 1 +

TG′
0(1)

1 −R0
.

This expression for the mean outbreak size is valid if R0 = TG′
1(1) < 1.

There is a phase transition at R0 = 1. A “giant” component of the graph
appears, and there is a major epidemic. If R0 ≥ 1, we exclude the “giant”
component of the graph from the definition of H1(z, T ) and then H1(1, T )<1.
Because of (4.2) we must have

H1(1, T ) = Γ1(H1(1, T ))

and therefore H1(1, T ) must be the second root z∞(T ) of

Γ1(z, T ) = z

as found in Sect. 4.3. In this case, Γ0(z∞(T )) is the probability that there will
be only a small disease outbreak and 1 − Γ0(z∞(T )) is the probability that
there will be an epidemic.

If R0 < 1, H1(1, T ) = 1, z∞(T ) = 1, and the probability of an epidemic
is 0. If there is an epidemic, we define S(T ) to be the fraction of the graph
affected by the infection, the epidemic size. Above the epidemic threshold,

H0(1, T ) = 1 − S(T ),

and

S(T ) = 1 − H0(1, T ) = 1 − Γ0(H1(1, T ), T ) = 1 − Γ0(z∞(T ), T ),

where z∞(T ) = Γ1(z∞(T ), T ) = H1(1, T ). Thus the size of the epidemic, if
an epidemic occurs, is equal to the probability of an epidemic.

Compartmental models assume homogeneous mixing, corresponding to a
Poisson network. As we shall see in the next section, for a Poisson network,

Γ0(z, T ) = Γ1(z, T ) = eR0(z−1).

Then the equation Γ1(z, T ) = z is

eR0(z−1) = z,
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and the size of the epidemic is 1− z∞(T ). This is equivalent to the final size
relation for a deterministic compartmental model [7, Sect. 1.3].

More sophisticated network analysis makes it possible to predict such
quantities as the probability that an individual will set off an epidemic, the
risk for an individual of becoming infected, the probability that a cluster of
infections will set off a small disease outbreak when the transmissibility is
less than the critical transmissibility, and how the probability of an epidemic
depends on the degree of patient zero, the initial disease case [12,14].

4.5 Some Examples of Contact Networks

The above analysis assumes that there is a known generating function G0(z)
or, equivalently, a degree distribution {pk}. In studying a disease outbreak, we
need to know the degree distribution of the network. If we know the degree
distribution we can calculate the basic reproduction number and also the
probability of an epidemic. What kinds of networks are observed in practice
in social interactions? There are some standard examples.

If contacts between members of the population are random, corresponding
to the assumption of mass action in the transmission of disease, then the
probabilities pk are given by the Poisson distribution

pk =
e−cck

k!

for some constant c. To show this, we think of a probability of contact c∆t
in a time interval ∆t, and we let

n =
1

∆t
.

Then the probability of k contacts in a time interval ∆t is
(

n

k

)

(
c

n
)k(1 − c

n
)n−k,

where (
n

k

)

=
n!

k!(n − k)!

is the binomial coefficient. We rewrite this probability as

n(n − 1)(n − 2) · · · (n − k + 1)
nk

ck

k!
(1 − c

n )n

(1 − c
n )k

.

We let ∆t → 0, or n → ∞. Since



4 An Introduction to Networks 143

n(n − 1)(n − 2) · · · (n − k + 1)
nk

→ 1, (1 − c

n
)k → 1,

and
(1 − c

n
)n → e−c,

the limiting probability that there are k contacts is

pk =
e−cck

k!
.

Then the generating function is

G0(z) = e−c
∞∑

k=0

ck

k!
zk = e−cecz = ec(z−1) ,

and
G′

0(z) = cec(z−1), G′
0(1) = c.

The generating function for the Poisson distribution is ec(z−1). Then G1(z) =
G0(z), and R0 = TG′

1(1) = cT, so that

Γ1(z, T ) = G1(1 + (z − 1)T ) = eR0(z−1).

The commonly observed situation that most infectives do not pass on
infection but there are a few “superspreading events” [17] corresponds to
a probability distribution that is quite different from a Poisson distribution,
and could give a quite different probability that an epidemic will occur. For
example, taking T = 1 for simplicity, if R0 = 2.5 the assumption of a Poisson
distribution gives z∞ = 0.107 and G0(z∞) = 0.107, so that the probability of
an epidemic is 0.893. The assumption that nine out of ten infectives do not
transmit infection while the tenth transmits 25 infections gives

G0(z) = (z25 + 9)/10, G1(z) = z24, z∞ = 0, G0(z∞) = 0.9,

from which we see that the probability of an epidemic is 0.1. Another example,
possibly more realistic, is to assume that a fraction (1− p) of the population
follows a Poisson distribution with constant r while the remaining fraction p
consists of superspreaders each of whom makes L contacts. This would give
a generating function

G0(z) = (1 − p)er(z−1) + pzL

G1(z) =
r(1 − p)er(z−1) + pLzL−1

r(1 − p) + pL
,

and

R0 =
r2(1 − p) + pL(L − 1)

r(1 − p) + pL
.
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For example, if r = 2.2, L = 10, p = 0.01, numerical simulation gives

R0 = 2.5, z∞ = 0.146,

so that the probability of an epidemic is 0.849.
These examples demonstrate that the probability of a major epidemic de-

pends strongly on the nature of the contact network. Simulations suggest that
for a given value of the basic reproduction number the Poisson distribution
is the one with the maximum probability of a major epidemic.

It has been observed that in many situations there is a small number
of long range connections in the graph, allowing rapid spread of infection.
There is a high degree of clustering (some vertices with many edges) and
there are short path lengths. Such a situation may arise if a disease is spread
to a distant location by an air traveller. This type of network is called a
small world network. Long range connections in a network can increase the
likelihood of an epidemic dramatically.

A third kind of network frequently observed is a scale free network. In
a random network, the quantity pk approaches zero very rapidly (exponen-
tially) as k → ∞. A scale free network has a “fatter tail”, with pk approaching
zero as k → ∞ but more slowly than in a random network. In an epidemic
setting it corresponds to a situation in which there is an active core group but
there are also “superspreaders” making many contacts. In a scale free net-
work, pk is proportional to k−α with α a constant. In practice, α is usually
between 2 and 3. Often an exponential cutoff is introduced in applications of
scale free networks in order to make G′

0(1) < ∞ for every choice of α, so that

pk = Ck−αe−k/θ.

The constant C, chosen so that
∑∞

k=0 pk = 1, can be expressed in terms of
logarithmic integrals.

These examples indicate that the probability of an epidemic depends
strongly on the contact network at the beginning of a disease outbreak. The
study of complex networks is a field which is developing very rapidly. Some
basic references are [15, 18], and other references to particular kinds of net-
works include [1, 2, 13, 19]. Examination of the contact network in a disease
outbreak situation may lead to an estimate of the probability distribution for
the number of contacts [11,12], and thus to a prediction of the course of the
disease outbreak.

A recent development in the study of networks in epidemic modeling is
the construction of very detailed networks by observation of particular loca-
tions. The data that goes into such a network includes household sizes, age
distributions, travel to schools, workplaces, and other public locations. The
networks constructed are very complex but may offer a great deal of realism.
However, it is very difficult to estimate how sensitive the predictions obtained
from a model using such a complex network will be to small changes in the
network. Nevertheless, simulations based on complicated networks are the
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primary models currently being used for developing strategies to cope with
a potential influenza pandemic. This approach has been followed in [8–10].

An alternative to simulations based on a very detailed network would be
to analyze the behaviour of a model based on a simpler network, such as
a random network or a scale-free network with parameters chosen to match
the reproduction number corresponding to the detailed network. A truncated
scale free network would have superspreaders and thus may be closer than a
random network to what is often observed in actual epidemics.

4.6 Conclusions

We have described the beginning of a disease outbreak in terms of the de-
gree distribution of a branching process, and have related this to a contact
network. There is a developing theory of network epidemic models which is
not confined to the early stages [12,14]. This involves more complicated con-
siderations, such as the way in which a contact network may change over
the course of an epidemic. We have restricted our attention to the beginning
of an epidemic in order not to have to examine these complications. There
are many aspects of network models for epidemics that have not yet been
studied.

While we have suggested using a deterministic compartmental model once
an epidemic is underway, it may be reasonable to go beyond the simplest
Kermack–McKendrick epidemic model. Heterogeneity of contact rates, age
structure, and other aspects of an actual epidemic can be modeled. Ideally,
for the initial stages of an epidemic we would like to use a network some-
where between the over-simplification of a random network and the extreme
complication of an individual-based model.

References

1. R. Albert & A.-L. Barabási: Statistical mechanics of complex networks, Rev. Mod.
Phys. 74, 47–97 (2002).

2. A.-L. Barabási & R. Albert: Emergence of scaling in random networks, Science 286,
509–512 (1999).
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