Skip to main content

Ion Dynamics During the Polarized Growth of Arbuscular Mycorrhizal Fungi: From Presymbiosis to Symbiosis

  • Chapter
Mycorrhiza

The 450-million-year-old symbiosis between the majority of land plants and arbuscular mycorrhizal (AM) fungi is one of the most ancient, abundant, and ecologically important symbioses on earth (Remy et al. 1994; Taylor et al. 1995). The obligate biotrophic nature of the AM fungus makes it difficult to study and analyze the fungus in vitro (absence of roots), but it is conceivable that the early events in the evolution of mycorrhizal symbioses may have involved reciprocal genetic changes in ancestral plants and free-living fungi. The prospect makes this system a remarkably interesting one to characterize and fully understand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925-931

    CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824-827

    CAS  PubMed  Google Scholar 

  • Alessandro C. Ramos, Arnoldo R. Façanha and José A. Feijó. (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytologist 178:1, 177-188

    PubMed  Google Scholar 

  • Astrom H, Giovannetti M, Raudaskoski M (1994) Cytoskeletal components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol Plant Microb Interact 7:309-312

    Google Scholar 

  • Ayling SM, Smith SE, Smith FA (2000) Transmembrane electric potential difference of germ tubes of arbuscular mycorrhizal fungi responds to external stimuli. New Phytol 147:631-639

    Google Scholar 

  • Baekgaard L, Fuglsang AT, Palmgren MG (2005) Regulation of plant plasma membrane H+-and Ca2+-ATPases by terminal domains. J Bioenerg Biomembr 37:369-374

    CAS  PubMed  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Chamberland H, Lafontaine JG, Webb WW, Piché Y (1998) In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma 203:1-15

    Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y (1999a) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263-271

    CAS  PubMed  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Piché Y (1999b) Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209:77-89

    CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949-957

    CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002a) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Metabolism and transport in AM fungi. Plant Soil 244:189-197

    CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002b) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108-124

    CAS  PubMed  Google Scholar 

  • Barr R (1991) The possible pole of redox-associated protons in growth of plant-cells. J Bioenerg Biomembr 23:443-467

    CAS  PubMed  Google Scholar 

  • Bartnicki-Garcia S, Bracker CE, Gierz G, Lopez-Franco R, Lu HS (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J 79:2382-2390

    CAS  PubMed  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth-stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320-2325

    PubMed  Google Scholar 

  • Bécard G, Douds DD, Pfeffer PE (1992) Extensive invitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821-825

    PubMed  Google Scholar 

  • Bécard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol Plant Microb Interact 8:252-258

    Google Scholar 

  • Berbara RLL, Morris BM, Fonseca H, Reid B, Gow NAR, Daft MJ (1995) Electrical currents associated with arbuscular mycorrhizal interactions. New Phytol 129:433-438

    Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. Plos Biol 4:1239-1247

    CAS  Google Scholar 

  • Boavida LC, Vieira AM, Becker JD, Feijó JA (2005). Gametophyte interaction and sexual reproduction: how plants make a zygote. Int J Dev Biol. 49:615-632.

    PubMed  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189-214

    CAS  Google Scholar 

  • Bowman BJ (1983) Vanadate uptake in Neurospora crassa occurs via phosphate transport system II. J Bacteriol 153:286-291.

    CAS  PubMed  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microb Interact 13:693-698

    CAS  Google Scholar 

  • Bunney TD, van den Wijngaard PWJ, de Boer AH (2002) 14-3-3 protein regulation of proton pumps and ion channels. Plant Mol Biol 50:1041-1051

    CAS  PubMed  Google Scholar 

  • Campanoni P, Blatt MR (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exper Bot 58:65-74

    CAS  Google Scholar 

  • Cárdenas L, Feijó JA, Kunkel JG, Sanchez F, Holdaway-Clarke T, Hepler PK, Quinto C (1999) Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant J 19:347-352

    PubMed  Google Scholar 

  • Chabot S, Belrhlid R, Chenevert R, Piché Y (1992) Hyphal growth promotion invitro of the VA mycorrhizal fungus, Gigaspora margarita Becker and Hall, by the activity of structurally specific flavonoid compounds under CO2 enriched conditions. New Phytol 122:461-467

    CAS  Google Scholar 

  • Cheung AY, Wu HM (2007) Structural and functional compartmentalization in pollen tubes. J Exper Bot 58:75-82

    CAS  Google Scholar 

  • Cleland RE (1993) Role of acidification in cell-wall expansion. J Cell Biochem:4-4

    Google Scholar 

  • Corradi N, Kuhn G, Sanders IR (2004) Monophyly of beta-tubulin and H+-ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AM fungal genes. Fungal Genet Biol 41:262-273

    CAS  PubMed  Google Scholar 

  • Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P (2005) Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935-2947

    CAS  PubMed  Google Scholar 

  • DeBoer B (1997) Fusicoccin -a key to multiple 14-3-3 locks? Trends Plant Sci 2:60-66

    Google Scholar 

  • Feijó JA, Malho R, Obermeyer G (1995) Ion dynamics and its possible role during in-vitro pollen germination and tube growth. Protoplasma 187:155-167

    Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483-496

    PubMed  Google Scholar 

  • Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86-94

    PubMed  Google Scholar 

  • Feijó JA, Costa SS, Prado AM, Becker JD, Certal AC (2004) Signalling by tips. Curr Opin Plant Biol 7:589-598

    PubMed  Google Scholar 

  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol 3:577-591

    CAS  Google Scholar 

  • Felle HH, Herrmann A, Hanstein S, Huckelhoven R, Kogel KH (2004) Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp hordei. Mol Plant Microb Interact 17:118-123

    CAS  Google Scholar 

  • Ferrol N, Barea JM, Azcon-Aguilar C (2000) The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112-118

    CAS  PubMed  Google Scholar 

  • Finnie C, Andersen CH, Borch J, Gjetting S, Christensen AB, de Boer AH, Thordal-Christensen H, Collinge DB (2002) Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus? Plant Mol Biol 49:137-147

    CAS  Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3-6

    CAS  PubMed  Google Scholar 

  • Forbes PJ, Millam S, Hooker JE, Harrier LA (1998) Transformation of the arbuscular mycorrhiza Gigaspora rosea by particle bombardment. Mycol Res 102:497-501

    Google Scholar 

  • Franken P, Lapopin L, MeyerGauen G, Gianinazzi-Pearson V (1997) RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus, Gigaspora rosea. Mycologia 89:293-297

    CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249-257

    CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871-1883

    PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587-593

    Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65-71

    Google Scholar 

  • Gow NAR (1989) Circulating ionic currents in microorganisms. Adv Microb Physiol 30:89-123

    CAS  PubMed  Google Scholar 

  • Harris SD (2006) Cell polarity in filamentous. In: International review of cytology -a survey of cell biology, vol 251, pp 41-77

    Google Scholar 

  • Harris SD, Momany M (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391-400

    CAS  PubMed  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets Spitzenkorper: microscopy, genetics, and genomics converge. Eukaryotic Cell 4:225-229

    CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19-42

    CAS  PubMed  Google Scholar 

  • Helber N, Requena N (2008) Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 177:537-548

    CAS  PubMed  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142-2155

    CAS  PubMed  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159-187

    CAS  PubMed  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401-427

    CAS  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539-563

    CAS  Google Scholar 

  • Jolicoeur M, Germette S, Gaudette M, Perrier M, Bécard G (1998) Intracellular pH in arbuscular mycorrhizal fungi: a symbiotic physiological marker. Plant Physiol 116:1279-1288.

    CAS  PubMed  Google Scholar 

  • Kim YC, Wikstrom M, Hummer G (2007) Kinetic models of redox-coupled proton pumping. Proc Natl Acad Sci USA 104:2169-2174

    CAS  PubMed  Google Scholar 

  • Kropf DL, Caldwell JH, Gow NAR, Harold FM (1984) Trans-cellular ion currents in the water mold Achlya -aminoacid proton symport as a mechanism of current entry. J Cell Biol 99:486-496

    CAS  PubMed  Google Scholar 

  • Lambais MR (2006) Unraveling the signaling and signal transduction mechanisms controlling arbuscular mycorrhiza development. Sci Agric 63:405-413

    CAS  Google Scholar 

  • Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez-Sebastia C, Allen JW, Douds DD, Pfeffer PE, Shachar-Hill Y (2001) The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Plant Physiol 127:1287-1298

    CAS  PubMed  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319-1330

    CAS  PubMed  Google Scholar 

  • Lei J, Bécard G, Catford JG, Piché Y (1991) Root factors stimulate P32 uptake and plasmalemma ATPase activity in vesicular arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 118:289-294

    CAS  Google Scholar 

  • Maia LC, Kimbrough JW (1994) Ultrastructural studies on spores of Glomus intraradices. Int J Plant Sci 155:689-698

    Google Scholar 

  • Maia LC, Kimbrough JW, Benny GL (1994) Ultrastructure of Spore Germination in Gigaspora albida (Glomales). Mycologia 86:343-349

    Google Scholar 

  • Miller AJ, Vogg G, Sanders D (1990) Cytosolic calcium homeostasis in fungi -roles of plasma membrane transport and intracellular sequestration of calcium. Proc Natl Acad Sci USA 87:9348-9352

    CAS  PubMed  Google Scholar 

  • Miller AL, Gow NAR (1989) Correlation between profile of ion current circulation and root development. Physiol Plant 75:102-108

    Google Scholar 

  • Miller AL, Smith GN, Raven JA, Gow NAR (1991) Ion currents and the nitrogen status of roots of Hordeum vulgare and non-nodulated Trifolium repens. Plant Cell Environ 14:559-567

    CAS  Google Scholar 

  • Mimura T (1995) Homeostasis and transport of inorganic phosphate in plants. Plant Cell Physiol 36:1-7

    CAS  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta Biomembr 1465:1-16

    CAS  Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434-439

    CAS  PubMed  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2006) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol DOI:10.1104.

    Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817-845

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Sommarin M, Serrano R, Larsson C (1991) Identification of an autoinhibitory domain in the c-terminal region of the plant plasma membrane H+-ATPase. J Biol Chem 266:20470-20475

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis. Microb Ecol 52:575-582.

    PubMed  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta Rev Biomembr 1469:31-42

    CAS  Google Scholar 

  • Ramos AC, Martins MA, Facanha AR (2005) ATPpase and Pyrophosphatase activities in corn root microsomes colonized with arbuscular mycorrhizal fungi. Rev Brasil Ciencia Solo 29:207-213

    CAS  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2006) A H+ ion flux signature for the hyphal asymbiotic development of the am fungus Gigaspora margarita. International Congress of Mycorrhiza (ICOM 5), Granada, Spain.

    Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytologist 178:1, 177-188

    CAS  PubMed  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271-1274

    CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) 4-hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841-11843

    Google Scholar 

  • Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129-139

    CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocon A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540-1549

    CAS  PubMed  Google Scholar 

  • Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33-40

    CAS  PubMed  Google Scholar 

  • Riquelme M, Bartnicki-Garcia S (2004) Key differences between lateral and apical branching in hyphae of Neurosora crassa. Fungal Genet Biol 41:842-851

    PubMed  Google Scholar 

  • Robson GD, Prebble E, Rickers A, Hosking S, Denning DW, Trinci APJ, Robertson W (1996) Polarized growth of fungal hyphae is defined by an alkaline pH gradient. Fungal Genet Biol 20:289-298

    CAS  PubMed  Google Scholar 

  • Saito K, Kuga-Uetake Y, Saito M (2004) Acidic vesicles in living hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Plant Soil 261:231-237

    CAS  Google Scholar 

  • Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15:539-545

    CAS  PubMed  Google Scholar 

  • Scott DA, Docampo R (1998) Two types of H+-ATPase are involved in the acidification of internal compartments in Trypanosoma cruzi. Biochem J 331:583-589

    CAS  PubMed  Google Scholar 

  • Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352-4364

    CAS  PubMed  Google Scholar 

  • Siqueira JO, Sylvia DM, Gibson J, Hubbell DH (1985) Spores, germination, and germ tubes of vesicular-arbuscular mycorrhizal fungi. Can J Microbiol 31:965-972

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ, eds (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475-2482

    CAS  PubMed  Google Scholar 

  • Sward RJ (1981a) The structure of the spores of Gigaspora margarita .2. Changes accompanying germination. New Phytol 88:661-669

    Google Scholar 

  • Sward RJ (1981b) The structure of the spores of Gigaspora margarita .3. Germ-tube emergence and growth. New Phytol 88:667-669

    Google Scholar 

  • Tamasloukht M, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468-1478

    CAS  PubMed  Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560-573

    Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761-768

    Google Scholar 

  • Veraestrella R, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens .2. G-protein-mediated changes in host plasma-membrane redox reactions. Plant Physiol 106:97-102

    CAS  Google Scholar 

  • Viereck N, Hansen PE, Jakobsen I (2004) Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo P-31 NMR spectroscopy. New Phytol 162:783-794

    CAS  Google Scholar 

  • Vissenberg K, Feijó JA, Weisenseel MH, Verbelen JP (2001) Ion fluxes, auxin and the induction of elongation growth in Nicotiana tabacum cells. J Exper Bot 52:2161-2167

    CAS  Google Scholar 

  • Weisenseel MH, Nuccitelli R, Jaffe LF (1975) large electrical currents traverse growing pollen tubes. J Cell Biol 66:556-567

    CAS  PubMed  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma mem-brane H+-ATPase. Plant Cell 8:555-564

    CAS  PubMed  Google Scholar 

  • Zonia L, Cordeiro S, Tupy J, Feijó JA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. Plant Cell 14:2233-2249

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Feijó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramos, A.C., Façanha, A.R., Feijó, J.A. (2008). Ion Dynamics During the Polarized Growth of Arbuscular Mycorrhizal Fungi: From Presymbiosis to Symbiosis. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_12

Download citation

Publish with us

Policies and ethics