
IDE Dataflow Analysis in the Presence of Large
Object-Oriented Libraries�

Atanas Rountev, Mariana Sharp, and Guoqing Xu

Ohio State University, USA

Abstract. A key scalability challenge for interprocedural dataflow anal-
ysis comes from large libraries. Our work addresses this challenge for
the general category of interprocedural distributive environment (IDE)
dataflow problems. Using pre-computed library summary information,
the proposed approach reduces significantly the cost of whole-program
IDE analyses without any loss of precision. We define an approach for
library summary generation by using a graph representation of dataflow
summary functions, and by abstracting away redundant dataflow facts
that are internal to the library. Our approach also handles object-oriented
features, by employing an IDE type analysis as well as special handling
of polymorphic library call sites whose target methods depend on the
future (unknown) client code. Experimental results show that dramatic
cost savings can be achieved with the help of these techniques.

1 Introduction

Interprocedural dataflow analysis plays an important role in compilers and var-
ious software tools. A key scalability challenge for analysis algorithms comes
from large libraries. Systems are inevitably built with standard libraries (e.g.,
Java J2SE or C++ STL), domain-specific libraries (e.g., graphics, linear algebra,
etc.), and middleware (e.g., EJB). The size of the client code is often a small
fraction of the size of the library code being used by that client code.

In this paper we focus on whole-program interprocedural dataflow analysis
for Java. However, the proposed approach should also be applicable to other
object-oriented languages. Our target is a general category of dataflow problems
referred to as interprocedural distributive environment (IDE) problems [1]. The
goal is to reduce the cost of whole-program IDE analyses by using pre-computed
library summary information. Library code is analyzed independently of any
client code, in oder to produce a library summary stored on disk; this summary
is reusable for subsequent analysis of any client code. The summary-generation
analysis produces a precise summary: the solution for the client code, computed
using the summary, is as precise as the solution what would have been computed
if we were to use a whole-program analysis of client+library code.

Existing work by Sagiv et al. [1] already provides a solution for one key prob-
lem: the representation and manipulation of dataflow functions. Based on their
� This material is based upon work supported by NSF under grant CCF-0546040.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 53–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 A. Rountev, M. Sharp, and G. Xu

techniques, we define a general approach for library summary generation. One
important problem is that the summary may contain redundant dataflow facts
that do not affect the analysis of the client code. We solve this problem through
abstracted versions of summary functions, in order to filter out callee-local de-
tails. Another key problem are polymorphic library call sites whose target meth-
ods depend on the future (unknown) client code. We propose the use of IDE
type analysis to identify a subset of these sites that are client-independent and
can be processed precisely. The client-dependent call sites are left unresolved in
the summary, until client code becomes available. This approach also handles
library callback sites that may invoke callback methods defined in future clients.

Contributions. This work makes the following specific contributions:

– Whole-program analysis. A general framework for whole-program IDE anal-
yses for object-oriented programs, which extends the classical approach for
procedural languages [2,3,4,1] through an IDE type analysis (Section 2).

– Summary-generation analyses. A general algorithm for summary generation
with abstracted summary functions, capturing the dataflow effects of sets of
control-flow paths, with special treatment of polymorphic calls.

– Dependence analysis and type analysis. Two instances of the general ap-
proach: an IDE data dependence analysis that plays an important role in
the construction of system dependence graphs, and an IDE type analysis.

– Experimental evaluation. A study using the 10238 classes of the Java li-
braries, and 20 client programs. The experimental results show that dramatic
cost savings can be achieved with the help of these techniques

2 Whole-Program IDE Dataflow Problems

In interprocedural distributive environment (IDE) dataflow problems [1], the
dataflow facts are maps (“environments”) from some set of symbols D to lattice
elements from a semi-lattice L. The IDE class is a general category of dataflow
problems, examples of which are copy-constant propagation and linear-constant
propagation [1], object naming analysis [5], 0-CFA type analysis [6,7,8], and all
IFDS (interprocedural, finite, distributive, subset) problems [3] such as reach-
ing definitions, available expressions, live variables, truly-live variables, possibly-
uninitialized variables, flow-sensitive side-effects [9], some forms of may-alias and
must-alias analysis [4], and interprocedural slicing [10].

A program is represented by an interprocedural control-flow graph (ICFG).
Each call expression is represented by two nodes: a call-site node and a return-
site node. Interprocedural edges connect a call-site node with the start node
of the invoked procedure p, and the exit node of p with the return-site node
(assuming a single exit node per procedure.) An intraprocedural edge may also
be added from the call-site to the return-site [1]. A valid ICFG path has (call-site,
start) and (exit, return-site) edges that are properly matched [2,3,1].

An environment is a map D → L where D is a finite set of symbols and L is
a finite-height meet semi-lattice with a top element � and a meet operator ∧.
Let Env (D, L) be the set of all environments for a given pair (D, L). The meet

IDE Dataflow Analysis in the Presence of Large O-O Libraries 55

operator ∧ extended to environments is env1 ∧ env2 = λd.(env1(d) ∧ env2(d)).
The top element in Env (D, L), denoted by Ω, is λd.�. For any env ∈ Env(D, L),
d ∈ D, and l ∈ L, env [d �→ l] denotes an environment in which each symbol d′

is mapped to env(d′), except for d which is mapped to l.
Functions t : Env (D, L) → Env(D, L) are environment transformers. A dis-

tributive transformer t distributes over ∧. An instance of an IDE problem is
(G, D, L, M) where G is the ICFG and M is a map that associates distributive
transformers with the edges of G. A safe analysis for an IDE problem computes
an over-approximation of the meet-over-all-valid-paths solution for any node n:
the solution at n is ≤ the meet of fq(Ω) for all valid paths q from the start node
of the program to n, where fq is the composition of the transformers of q’s edges.

Some problems are naturally defined with the approximation that any or-
dering of statements in a procedure is possible; these are intraprocedurally
flow-insensitive problems. They can be encoded by conceptually modifying each
procedure’s CFG to represent arbitrary compositions and meets of transformers,
using a switch-in-a-loop structure [11]. In this case all nodes in the same proce-
dure have the same solution. A context-insensitive problem does not distinguish
the different calling contexts of a procedure. A flow- and context-insensitive
problem can be modeled by a single conceptual switch-in-a-loop graph for the
entire program; in this case all program statements have the same solution.
Solving IDE Problems. Sagiv et al. [1] define a technique for precise com-
putation of the meet-over-all-valid-paths solution, based on the “functional”
approach by Sharir and Pnueli [2]. The first phase on the functional approach
computes a summary function φn for each ICFG node n, representing the so-
lution at n as a function of the solution at the start node of the procedure p
containing n. If n is the exit node of p, φn is a summary function for the entire
procedure p. During a bottom-up traversal of the SCC-DAG of the call graph,
the functions for p’s callees are used to model the effects of calls made by p. In
the second phase, the actual solution is determined at each ICFG node through
top-down propagation based on the summary functions. It is possible to merge
these two phases, resulting in a single top-down algorithm which computes φn

incrementally only for lattice elements that reach p’s entry. The work in [1] ap-
plies this technique to IDE problems (where φn are environment transformers)
by using a compact graph representation for transformers; as a result, a summary
function can be modeled by a (small) graph. The composition, meet, and appli-
cation of transformers can be implemented as inexpensive graph operations, and
the analysis algorithms can be designed based on a generalized form of graph
reachability (essentially, graph summarization along valid paths).

2.1 Interprocedural Dependence Analysis

To illustrate the general approach for solving IDE problems, we will use a partic-
ular form of interprocedural dependence analysis for Java.1 For each method m

1 Without loss of generality, the subsequent discussion assumes a certain simplified
program representation (based on Jimple in the Soot analysis framework [12]). For
brevity, details of this representation are provided elsewhere [13].

56 A. Rountev, M. Sharp, and G. Xu

with a non-void return type, the analysis computes the set of formal parameters
of m on which the return value of m may depend directly or transitively. This
output is essentially a set of transitive-dependence summary edges [10] which
play a key role in a variety of analyses for interprocedural slicing, program refac-
toring, change impact analysis, etc. For simplicity, we restrict the discussion to
data dependencies (control dependencies are easy to add to the formulation, and
are handled by our implementation), non-exceptional flow of control, and stack
memory locations (i.e., dependencies through the heap are not modeled; they
could be added using a conservative approach which maps each expression x.fld
to a single abstract location fld). Even with these restrictions, the analysis ex-
hibits the essential features of flow- and context-sensitive IDE analyses.

We propose an IDE formulation2 in which D is the set of all local variables and
formal parameters, and the L is the powerset of the set F of formal parameters,
with partial order ⊇ and meet ∪. For any env ∈ Env(D, L), the value of env(d)
for local/formal d in method m is the set of formal parameters f of m such that
the current value of d may directly or transitively depend on the value that f
had at the start of m. The final solutions at statements return x in a method m
are used to find all formals of m on which its return value may depend.3 Each
such formal parameter defines an interprocedural transitive dependence which
is a key component for the construction of the system dependence graph [10].

For an assignment d := expr{d1, . . . , dk}, where the side-effect-free non-call
expression expr uses di ∈ D, and the input environment is env , the transformed
environment is env [d �→

⋃
i env(di)]. Here d becomes dependent on every for-

mal f on which some di is dependent. If expr does not use any di ∈ D (e.g.,
it is a constant expression), the transformed environment is env [d �→ ∅]. For all
other non-call statements, as well as for calls without return values, the trans-
former is the identity function. A call d := m(d1, . . . , dk), can be treated as a
sequence of actual-to-formal assignments, followed by the summary function for
the callee method m, followed by an assignment of m’s return value to d (with
filtering due to scope changes). It is easy to prove that these transformers are
distributive.

In general, an environment transformer can be represented by a bipartite
directed graph with 2(|D|+1) nodes [1]. In each partition, |D| nodes are labeled
with d ∈ D, and one node is labeled with a special symbol Λ. The edges in the
graph are labeled with functions L → L. For the dependence analysis from above,
there are only two kinds of edge labels: the identity function λl.l and the constant
function λl.∅. Examples of these graphs are shown in Figure 1. The key property
of this representation is that it is closed under transformer composition and meet.
In essence, transformer meet corresponds to graph union, and composition is
similar to graph transitive closure (with edge label composition).

2 While inspired by [4], our formulation differs significantly from this previous work.
3 In this case, a solution captures the effects of same-level valid paths [4] — that is,

paths with the same number of calls and returns, starting at method entry. The
solution at method entry is Ω[fi �→ {fi}]: each formal fi of the method depends on
itself, and every other d ∈ D is mapped to ∅ (i.e., d does not yet have dependencies).

IDE Dataflow Analysis in the Presence of Large O-O Libraries 57

Fig. 1. Graph representation of environment transformers t

2.2 Type Analysis

The standard IDE formulation is applicable to procedural languages. For object-
oriented languages, polymorphic calls require resolution of target methods, which
can be done by any call graph construction analysis. We propose the use of one
such approach: 0-CFA type analysis [7,6,8]. This analysis has been investigated
extensively, and has been shown to be a good compromise between cost and
precision [14]. We we have restated 0-CFA as an IDE problem, which makes it a
natural choice for use in a general IDE framework. Consider any IDE analysis A
which requires a call graph in order to construct its ICFG. One option is to run
0-CFA as a pre-processing step before A. Alternatively, 0-CFA can be embedded
in A by using the product of 0-CFA’s environment set and A’s environment set,
resulting in a generalized type-aware version of A.

Intraprocedural IDE type analysis. First, we briefly outline the formulation
of intraprocedural 0-CFA analysis for Java as an IDE problem. Let D be the
set of all local variables, formal parameters (including this), and fields. Also,
let T be the set of all types that correspond to objects created at run time. An
environment is a map D → 2T . The powerset 2T is a lattice with partial order
⊇ and meet ∪. For any environment env and local/formal/field d ∈ D, the value
of env(d) is a set of types for the run-time objects that may be referred to by d.

For brevity, we discuss only the following two categories of statements; our
implementation handles the general case. First, in d := alloc(X), an object of
type X is created and a reference to it is assigned to d ∈ D. The environment
transformer in this case is λenv .env [d �→ env(d)∪{X}]; that is, type X is added
to the set of types for d. Second, for an assignment d1 := d2 where d1, d2 ∈ D, the
transformer is λenv .env [d1 �→ env(d1)∪env(d2)]: the set of types for d2 is added
to the set of types for d1. These transformers are distributive, and therefore this
is an IDE problem. Since 0-CFA is a flow-insensitive analysis, the transformers
do not perform “kills” — i.e., (t(env))(d) ⊇ env(d) for any transformer t.

In our formulation, the intraprocedural aspects of 0-CFA are equivalent to
combining all transformers for a method’s body through transformer composi-
tion and meet. The resulting transformer is the intraprocedural solution for a
method. If transformers are represented by graphs (as defined in [1]), intraproce-
dural 0-CFA computes a fixed point under the corresponding graph operations.
The resulting graph is a “one-hop” representation of all intraprocedural 0-CFA
effects of a method: given some input environment which represents the state

58 A. Rountev, M. Sharp, and G. Xu

immediately before the execution of the method, only one application of the
fixed-point graph to this input is enough to produce all necessary state updates.

Interprocedural aspects. Consider non-polymorphic calls (e.g., calls to static
methods or constructors). Parameter passing and return values can be modeled
as assignments, with the corresponding transformers. These transformers can be
combined with the ones from the method bodies (with closure under composi-
tion and meet) to obtain one single transformer t∗ for the entire program. The
value of t∗(Ω) is the type analysis solution; here Ω is the environment that as-
signs to each d ∈ D an empty set of types. Since 0-CFA is flow- and context-
insensitive, there is only one solution for the entire program. A polymorphic call
x.m() can be represented as a switch statement, with one branch per possible
target method. The set of possible targets can be determined by examining the
class hierarchy. Since we are interested in on-the-fly call graph construction, each
target is considered infeasible until evidence to the contrary is seen. To achieve
this, special transformers are introduced for the outgoing edges of the multi-way
branch, in order to prune the receiver types. These transformers are of the form
λenv .env [x �→ env(x)∩ReceiverTypes] for a call through x. Here ReceiverTypes is
the set of receiver types for which virtual dispatch would invoke the target method
for this branch. If the pruned type set is empty, the call is ignored.

3 Summary Generation for Object-Oriented Libraries

Consider a large library Lib which is to be used by many (unknown) clients. Fur-
thermore, suppose we already have some existing whole-program IDE dataflow
analysis. Clearly, it is desirable to perform some of the analysis work for Lib in
advance, independently of any library clients. The library summary information
generated by this summary generation analysis can be stored on disk, and later
used by a summary-based analysis of any client component Main . Our focus is
on precision-preserving summary generation: for any ICFG node in Main , the
solution computed by the summary-based analysis should be the same as the
solution that would have been computed by the original whole-program analysis.

The proposed summary-generation approach performs as many transformer
meets and compositions as possible in the library, and uses the result as summary
information. Two key problems arise when applying this idea. First, the targets
of call sites in the library may depend on the unknown code in client components.
Some of these targets may be library methods that are feasible only for some (but
not all) clients. Some call sites may even invoke callback methods defined in client
code. Second, the library summary may contain redundant information that is
internal to the library and does not affect the analysis of clients. For example,
while locals in the library play an important role during the computation of
summary functions, they may be irrelevant after the functions are computed.

3.1 Stage 1: Intraprocedural Summary Generation

For a library method that does not make any calls, the summary information
can be computed as follows. The transformers for nodes in the method are

IDE Dataflow Analysis in the Presence of Large O-O Libraries 59

Fig. 2. Summary information for dependence analysis (only non-trivial edges)

combined using composition and meet: for each node n, the summary func-
tion is φn =

∧
fq, where the meet is over all paths q from the start node to n,

and fq is the composition of the transformers of q’s edges. The summary func-
tion for the exit node (represented as a graph) serves as the summary function
for the method.4 If type analysis is performed as a pre-processing step (as op-
posed to being embedded in the main IDE analysis), the summary information
also contains the graph representation of the fixed-point transformer for type
analysis.

Suppose the analyzed method contains a set of call-site nodes cs1, cs2, . . . , csk

with the corresponding return-site nodes rsi. In this case, the summary gener-
ation produces a set of summary functions ψn

m, where n is the entry node or
some rsi, and m is the exit node or some csi. Transformer ψn

m is the meet of
fq for all intra-method paths q from n to m such that q contains no calls other
than n and m. This set of summary functions captures all intraprocedural ef-
fects of the method, and leaves unresolved the effects of all calls. In addition to
the set of ψn

m (represented as graphs), the summary information for the method
also contains descriptions of all call sites (e.g., compile-time target methods,
actual parameters, etc.). If the type analysis is a separate pre-processing step,
the summary also contains a single transformer which is the fixed-point meet
and composition of all type-analysis transformers for non-call statements in the
method.

� Examples. Figure 2 shows an example based on class DateFormat and its
subclass SimpleDateFormat from java.text in the Java 1.4.2 libraries. Consider
the dependence analysis from Section 2.1. Part (a) illustrates transformer ψentry

cs1
,

which corresponds to a single path along which r0, r1, and r2 are assigned (for
brevity, the constructor call for StringBuffer is not discussed). Part (b) shows
ψrs2

exit , using an artificial variable ret to represent the method’s return value.

4 Strictly speaking, since summary generation is independent of any client code, the
whole-program D and L are not fully known, and the summary function is not a
single transformer but rather an infinite set of transformers, one per possible client.

60 A. Rountev, M. Sharp, and G. Xu

Fig. 3. Summary information for type analysis (only non-trivial edges)

Figure 3 shows another example, based on java.util.Properties, to illus-
trate the type analysis. The transformers for all non-call statements are combined
through composition and meet. The resulting fixed-point transformer is shown
in part (a) of the figure. Unlike the multiple ψn

m needed for the flow-sensitive
dependence analysis, only one ψ is needed for the flow-insensitive type analysis.
All edges are labeled with λl.l. Dashed edges represent transitive relationships
due to transformer composition. �

Abstracted summary functions. The functions from Figure 2(a)/(b) and Fig-
ure 3(a) contain redundant information. Consider ψentry

cs1
which represents the

flow from the formals of the method to the actual parameters of the call at cs1
(including local r0 which refers to the receiver object). Here the only relevant
elements of D are this, f1, r0, r1, and r2. Thus, the summary information can
store an abstracted summary function ψ̂entry

cs1
instead of the original summary

function ψentry
cs1

. Figure 2(c) shows the graph representation of ψ̂entry
cs1

. Similar
considerations apply to the type analysis. The only elements of D that are rel-
evant outside of the method are formals this, f1, and f2, the return variable
ret, the actuals r0 and r1 at the call site, and the local r3 to which the return
value of the call is assigned. Both r2 and r4 can be eliminated from transformer
ψ; the resulting abstracted transformer ψ̂ is shown in Figure 3(b).

In general, for any IDE analysis, only a subset of D is relevant with respect to
a particular ψn

m. Depending on the specific analysis and on n and m, this sub-
set would typically be related to formal parameters, return statements, actuals
at calls, and return values at calls. Thus, it should be possible to define a cor-
responding abstracted transformer ψ̂n

m that can be used instead of ψn
m without

any loss of precision. Obtaining the graph representation of ψ̂n
m should be trivial,

given the already-computed representation of ψn
m. For the dependence analysis

discussed earlier, ψ̂n
m can be defined as follows: (1) if n is an entry node, the for-

mals should be preserved; (2) if m is an exit node, the return variable ret should
be preserved; (3) if n is a return-site node, the local variable to which the return
value is assigned should be preserved; and (4) if m is a call-site node, the actual
parameters should be preserved, including the reference to the receiver object.
The abstracted transformer ψ̂ for the type analysis can be defined similarly.

IDE Dataflow Analysis in the Presence of Large O-O Libraries 61

3.2 Stage 2: Interprocedural Summary Generation

In the standard IDE formulation, each call has a single target which is known at
analysis time. For a library method that makes calls, its summary information
can be computed by “inlining” the summary functions for callee methods, and
then performing the intraprocedural propagation outlined above. As a result, a
single summary function ψ̂entry

exit would be computed for the entire method.
This approach is possible only in the absence of callbacks from Lib to client

code. If a library method m contains a callback site, the complete behavior of
m is not known at summary-generation time, and it is not possible to create
a complete summary function. This is a realistic problem, because callbacks
occur often in object-oriented libraries (e.g., due to polymorphic calls in C++,
Java, and C#). Consider the abstract method format in class DateFormat from
Figure 2. If a client component creates a subclass with a corresponding non-
abstract method format, call site cs1 in Figure 2 could be a callback site. This
situation is common for extensible object-oriented libraries. Note that cs1 is
not necessarily a callback site: if the client code simply uses library subclass
SimpleDateFormat, the target of cs1 would be the corresponding library method.

Even in the absence of callbacks, it may still be impossible to create precise
summary functions. Consider the following Java example: library method m has
a virtual call a.n() and the compile-time type of a is A. Suppose library classes
B and C extend A, and method A.n is overridden by B.n and C.n. A conservative
analysis has to assume that a.n() could invoke any of these three methods,
and thus the summary function for m will depend on all three callees. But, for
example, if a client instantiates only C, the summary would be too conservative.

Exit calls. A call site is an exit call if it can invoke some method that “exits” the
scope of the analysis and therefore the effects of the call cannot be modeled. An
exit call is a virtual call x.m() for which (1) the declared type of x has possible
unknown subtypes, and (2) the compile-time target method of the call can be
overridden by unknown methods. A library type T (class or interface type) is
considered to have potential unknown subtypes in clients when T or some library
subtype of T is public and not final.5 The compile-time target method m of the
call site can have unknown overriding methods if (1) m is not private and is not
final, and (2) at least one of m’s overriding methods in the library (or m itself)
is non-final and is visible to clients (i.e., public or protected).

Fixed calls. A fixed call site in the library has exactly one possible run-time
target method, regardless of what the client code may be. This target is a li-
brary method and can be determined at summary generation time. Obviously,
an exit call is not a fixed call. A non-exit call is fixed if any of the following cases
holds. In case 1, the call invokes a static method or a constructor, and thus the
run-time target is the same as the compile-time target. In case 2, the call is a
virtual invocation, and conservative analysis of the type hierarchy for the entire
library determines that the call has exactly one possible run-time target method
5 This definition assumes that library packages are sealed, and clients cannot add new

classes to them (thus, non-public types cannot be accessed directly by client code).

62 A. Rountev, M. Sharp, and G. Xu

regardless of client code. For example, for cs2 in Figure 2, r3 is of compile-time
type StringBuffer which is a final class; thus, the only possible target is the
corresponding method in this class. In case 3, the call is a virtual invocation, and
conservative intraprocedural 0-CFA type analysis determines that the call has
exactly one possible run-time target method regardless of client code. Consider
a call site x.m(). In the graph representation of the transformer ψ̂ computed
by the intraprocedural type analysis, the only edges reaching x should be of
the form Λ → x; in other words, the only values of x should come from inside
the method. The label on the Λ → x edge is exactly the set of possible types
for x.

Fixed methods. Consider a fixed call site cs and suppose that its unique target
method m contains only fixed calls (or no calls at all), and this property transi-
tively holds for all methods reachable from m. We will refer to such m as fixed
methods. Here the effects of m are fully known at summary-generation time, and
can be represented by a summary function ψ̂entry

exit for m, computed through a
bottom-up traversal of the SCC-DAG of the “fixed” library call graph (i.e., the
call graph in which nodes are fixed methods and edges are fixed calls).

In the method m′ containing cs , m’s summary function can be instantiated
as follows. Consider any pair of summary functions ψ̂n1

cs and ψ̂rs
n2

computed in
m′; here rs is the return site corresponding to cs . The composition of these func-
tions with the summary function for m, followed by the appropriate abstraction
operations, produces a summary function ψ̂n1

n2
. If the pair (n1, n2) already has a

corresponding function (i.e., because there is some call-free-path from n1 to n2),
the new function is merged with the old one through transformer meet.

� Example. Figure 2(b) shows ψ̂rs2
exit . Consider call site cs2, which is fixed.

Suppose that its target method StringBuffer.toString is also fixed, and its
summary function, instantiated at the call site, results in a transformer fcs2

which shows a dependence from r3 to r4. The right part of Figure 2(d) shows
the graph representation of fcs2 . The composition of fcs2 and ψ̂rs2

exit can be used
to compute ψ̂rs1

exit . In addition to transformer composition, this computation can
also abstract away r4 because this variable is neither assigned the return value at
rs1, nor used at method exit. In general, after a summary function is instantiated
as fcs at a fixed call site cs , any pair of ψ̂n1

cs and ψ̂rs
n2

can be used to create ψ̂n1
n2

as an abstracted version of ψ̂rs
n2

◦ fcs ◦ ψ̂n1
cs , based on the elements of D that

need to be preserved for n1 and n2. The left part of Figure 2(d) shows the graph
representation of ψ̂rs1

exit after this abstraction. This summary function together
with ψ̂entry

cs1
, shown in Figure 2(c), defines the final summary information. �

If the summary function for a fixed method m is instantiated at all fixed
call sites that invoke it, and if we can conservatively prove that no other
call sites can directly invoke m (from the library or from client code), the sum-
mary ψ̂entry

exit for m does not need to be stored in the library summary at all.
Due to space constraints, additional details on this optimization are presented
elsewhere [13].

IDE Dataflow Analysis in the Presence of Large O-O Libraries 63

Table 1. Library summary information

(a) Library (b) Dependence Analysis (c) Type Analysis
Pkg Cls Mthd Stmt 1 2 3 4 1 2 3
java 1802 15676 245605 389024 584174 243005 151424 77940 111801 53215
javax 2265 17618 254542 390351 582970 278622 209549 88822 117102 65272
org 1289 8688 136945 180258 260013 134934 90893 55426 78490 32153
com 2373 18235 349957 517577 685128 323522 227939 125492 184347 84665
sun 2509 16973 508954 676324 820889 383865 246579 151060 207184 78291
Total 10238 77190 1496003 2153534 2933174 1363948 926384 498740 698924 313596

4 Experimental Evaluation

Study 1: Summary generation. Our experiments used the entire standard
Java libraries from Java 2 SDK SE 1.4.2. Some characteristics of the packages
in these libraries are summarized in part (a) of Table 1: number of classes Cls ,
number of methods Mthd , and number of statements Stmt in the intermediate
representation (IR) provided by the Soot analysis framework [12].6 The entire set
of 10238 library classes was used as input to the summary-generation analysis.
The running time of the analysis was 5491.6 seconds (about 90 minutes), on
a single Intel Xeon 2.8GHz CPU in a Dell PowerEdge 1950 server. This time
includes all Soot-related costs, the actual analysis time, and the disk I/O. The
memory consumption was 1230.3 MB. The summary was written to disk in a
straightforward binary format, with all necessary information for dependence
analysis and type analysis. The total size of the summary file was 17.9 MB.

Part (b) of Table 1 provides relevant measurements for the dependence anal-
ysis. Our implementation generalizes the one outlined in Section 2.1 as follows.
First, as an optimization, we compute def-use chains and perform transitive de-
pendence propagation using these chains. Second, our implementation computes
control dependencies (in addition to the data dependencies) and uses them when
computing transitive dependencies. The IDE formulation from Section 2.1 can
be easily extended to capture this generalization. Finally, we use a sparse graph
representation of transformers: trivial edges d → d are not represented.

Column 1 in part (b) of Table 1 shows the total number of edges in the graph
representation of all transformers before any transformer composition or meet is
performed. Column 2 shows the total number of such edges after intraprocedural
propagation, which starts at each node n that is an entry node or a return site,
and computes summary functions ψn

m for all m reachable from n along call-
free paths. Column 3 shows the total number of edges in the representation
of the abstracted transformers ψ̂n

m. The reduction from column 2 to column 3
eliminates all method-local information that does not directly affect callers or
callees of a method. The overall reduction in the number of edges is 53.5%. Part
(c) shows similar measurements for the type analysis; here each method has a
single summary function. The reduction in the number of edges from column 2
6 Row com includes packages com and COM; row sun includes packages sun and sunw.

64 A. Rountev, M. Sharp, and G. Xu

Table 2. Whole-program vs. summary-based analysis: time (sec) and memory (MB)

(a) Program (b) All Analyses (c) Dependence Analysis
Name Stmts Twp ΔT Mwp ΔM Twp ΔT Δub

T Mwp ΔM Δub
M

compress 71729 89.6 52.4% 256.8 30.7% 21.5 86.2% 88.3% 58.1 95.1% 98.2%
db 71940 89.8 51.2% 257.2 30.7% 20.7 78.6% 83.2% 58.2 95.0% 98.3%
jb 72713 87.9 50.0% 259.3 30.6% 20.6 75.8% 80.6% 59.3 93.8% 96.9%
raytrace 74738 92.9 56.6% 262.3 30.3% 21.4 76.6% 79.5% 61.0 91.5% 94.7%
proxy 75962 91.4 56.1% 263.5 31.5% 21.4 74.6% 83.9% 61.4 94.9% 98.1%
jlex 77134 94.4 43.9% 264.2 30.2% 25.3 60.0% 63.2% 62.2 90.7% 93.8%
javacup 78798 97.6 46.0% 269.3 29.6% 24.3 73.7% 75.7% 64.4 88.0% 90.9%
jess 79131 96.4 46.6% 271.8 29.4% 23.3 70.3% 70.6% 64.7 87.2% 90.2%
jack 81139 103.0 45.4% 270.9 29.5% 25.9 70.3% 73.7% 65.3 86.8% 90.1%
mpegaudio 83023 135.8 26.0% 271.3 29.3% 57.9 13.1% 16.6% 65.3 86.4% 90.0%
rabbit 90964 100.8 59.7% 287.3 34.0% 23.6 80.3% 82.0% 73.6 94.2% 97.0%
sablecc 92171 114.6 44.7% 298.7 27.3% 34.6 61.3% 61.5% 75.9 77.2% 80.3%
javac 95498 108.0 43.2% 302.2 27.6% 26.4 63.3% 71.7% 78.8 75.3% 78.3%
fractal 106433 110.8 55.0% 315.0 37.1% 25.3 80.3% 84.7% 86.6 94.5% 97.3%
echo 110458 117.0 64.2% 321.5 37.7% 30.4 85.3% 85.8% 90.0 94.6% 97.2%
jtar 113244 116.4 61.3% 326.8 37.4% 28.8 83.7% 87.6% 92.4 93.0% 95.5%
jflex 116938 144.8 50.9% 334.5 35.3% 50.1 61.3% 61.6% 96.1 86.9% 89.5%
mindterm 126362 144.9 43.2% 345.9 36.1% 49.7 41.5% 41.6% 102.2 86.4% 89.0%
muffin 138140 138.0 51.1% 370.9 38.3% 35.5 56.2% 57.3% 113.4 88.3% 90.6%
violet 153895 148.3 66.5% 398.8 43.0% 39.3 83.5% 87.9% 126.8 95.3% 97.6%

(size of ψ, after fixed-point transformer composition and meet) to column 3 (size
of ψ̂, after abstracting method-local information) is 55.1%.

Out of all library methods, 25490 (33.0%) are fixed. While fixed methods tend
to be smaller and simpler than non-fixed ones, the complete knowledge of their
summary functions still has positive effects on the library summary. The instanti-
ation of fixed-method summary functions at calls can be done for 63229 (20.5%)
of all library call sites. This instantiation, followed by additional intraprocedural
propagation and abstraction, further reduces the number of edges in the repre-
sentation of summary functions: overall, from column 3 to column 4 of Table 1
part (b), there is 32.1% reduction. Since the type analysis is context-insensitive,
instantiation of summary functions at call sites (an inherently context-sensitive
operation) is not meaningful for it and was not performed.

Study 2: Summary-based client analysis. The goal of our second study was
to measure the cost benefits of summary-based analysis compared to traditional
whole-program analysis. Table 2 presents the results of this study on 20 Java
programs. Column Stmts shows the number of IR statements for all methods
reported by whole-program 0-CFA as reachable. Typically, more than 90% of
these methods are library methods [13].

We ran two sets of experiments. The first set, shown in part (b) of Table 2,
considered the entire set of analyses employed by a Soot user: the IR building,
the 0-CFA type analysis interleaved with on-the-fly call graph construction in

IDE Dataflow Analysis in the Presence of Large O-O Libraries 65

the Spark module [14], and the dependence analysis (which uses this call graph).
This is the complete start-to-finish cost that would have to be paid to obtain
dependence information. The second set of experiments, shown in part (c) of
Table 2, considered only the dependence analysis, without any Soot-related costs.
For each experiment we measured the running time Twp and the peak memory
consumption Mwp of the whole-program analysis, as well as the corresponding
cost reduction ΔT and ΔM when using summary-based analyses.

Considering dependence analysis, type analysis, and IR building together, as
shown in part (b), the time savings ΔT are 50.7% and the memory savings ΔM

are 32.8% (average across all 20 programs). A large proportion of these savings is
due to Soot-related costs; such savings will be observed for any interprocedural
dataflow analysis which uses 0-CFA as a preprocessing step to obtain a program
call graph. When considering only the dependence analysis, in part (c), the
savings are, on average, 68.8% for ΔT and 89.8% for ΔM .

Columns Δub
T and Δub

M in part (c) show conservative upper bounds on the
savings of the summary-based dependence analysis. These measurements were
obtained using an artificial summary which contained only summary functions
for type analysis, but not for dependence analysis. Thus, the only dependence
analysis work was done inside the client code (of course, the resulting solution is
unsound). It is impossible to achieve reductions higher than the ones observed
with this artificial summary. Comparing columns Δub

T and ΔT , as well as Δub
M

and ΔM , it is clear that the savings are very close to this upper bound.

5 Related Work

Various techniques have been used to achieve modularity in static analysis; some
of the most relevant approaches are outlined below. A more complete discussion
is available in [15], presented from an abstract-interpretation point of view.

Summary functions for interprocedural analysis date back to the functional
approach [2], with refinements in [3] for IFDS problems and in [1] for IDE prob-
lems. This body of work assumes a procedural language without polymorphic
calls; furthermore, there is no separation between client code and library code.
A recent generalization [16], which subsumes IFDS and IDE problems, uses con-
ditional micro-transformers to represent and manipulate dataflow functions; it
would be interesting to generalize our approach to take advantage of this work.

Our summary-based analyses can be viewed as instances of the theoretical
approach presented in [17]. However, this earlier work does not consider (1) type
analysis and on-the-fly call graph construction, (2) abstracting away of library-
local dataflow facts, or (3) compact graph representation of dataflow functions.

Most analyses that employ summaries perform bottom-up traversal of the call
graph, and compute summary functions using the functions computed for the
visited callees; examples include [18,19,20,21,22,23,24,25,26]. In [27], libraries
are pre-analyzed but the computation of summary functions cannot be per-
formed in the presence of callbacks. Some techniques compute summary infor-
mation for a software component independently of the callers and callees of that
component. One particular technique is a modular approach which computes

66 A. Rountev, M. Sharp, and G. Xu

partial analysis results for each component, combines the results for all com-
ponents in the program, and then performs the rest of the analysis; examples
include [28,29,30,31,32,33]. There have also been proposals for employing sum-
mary information provided by the analysis user, as in [34,35,36]. Finally, certain
approaches analyze a software component when there is no available informa-
tion about the surrounding environment, using conservative assumptions about
unknown external code (e.g., [37,38,27,39,40,41,42,43,44,45]).

6 Conclusions and Future Work

Summary-based analysis shows promising potential for improving the scalabil-
ity of interprocedural analysis in the presence of large object-oriented libraries.
Our results indicate that summary generation can have practical cost and can
produce a small summary file, and most importantly, the analysis of client code
becomes substantially cheaper. Future work will investigate other IDE analyses,
as well as a standardized API for storing and retrieving summary information.

References

1. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Comp. Sci. 167, 131–170 (1996)

2. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)

3. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

4. Reps, T., Sagiv, M., Horwitz, S.: Interprocedural dataflow analysis via graph reach-
ability. Technical Report DIKU-TR94-14, U. Copenhagen (1994)

5. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered se-
quence diagrams. In: ICSE, pp. 254–263 (2005)

6. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
TOPLAS 23(6), 685–746 (2001)

7. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: OOPSLA, pp. 281–293 (2000)

8. Heintze, N.: Set Based Program Analysis. PhD thesis, CMU (1992)
9. Callahan, D.: The program summary graph and flow-sensitive interprocedural data

flow analysis. In: PLDI, pp. 47–56 (1988)
10. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.

TOPLAS 12(1), 26–60 (1990)
11. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the

presence of large libraries. Technical Report CISRC-TR01, Ohio State U (2006)
12. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:

Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, Springer, Heidelberg (2000)

13. Sharp, M.: Static Analyses for Java in the Presence of Distributed Components
and Large Libraries. PhD thesis, Ohio State University (2007)

14. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

IDE Dataflow Analysis in the Presence of Large O-O Libraries 67

15. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–178. Springer, Heidelberg (2002)

16. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: POPL (2008)

17. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the pres-
ence of large libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923,
pp. 2–16. Springer, Heidelberg (2006)

18. Chatterjee, R., Ryder, B.G., Landi, W.: Relevant context inference. In: POPL, pp.
133–146 (1999)

19. Choi, J., Gupta, M., Serrano, M., Sreedhar, V., Midkiff, S.: Escape analysis for
Java. In: OOPSLA, pp. 1–19 (1999)

20. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: OOPSLA, pp. 187–206 (1999)

21. Cheng, B., Hwu, W.: Modular interprocedural pointer analysis using access paths.
In: PLDI, pp. 57–69 (2000)

22. Ruf, E.: Effective synchronization removal for Java. In: PLDI, pp. 208–218 (2000)
23. Foster, J., Fähndrich, M., Aiken, A.: Polymorphic versus monomorphic flow-

insensitive points-to analysis for C. In: Palsberg, J. (ed.) SAS 2000. LNCS,
vol. 1824, pp. 175–198. Springer, Heidelberg (2000)

24. Liang, D., Harrold, M.J.: Efficient computation of parameterized pointer informa-
tion for interprocedural analyses. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 279–298. Springer, Heidelberg (2001)

25. Triantafyllis, S., Bridges, M., Raman, E., Ottoni, G., August, D.: A framework for
unrestricted whole-program optimization. In: PLDI, pp. 61–71 (2006)

26. Cherem, S., Rugina, R.: A practical effect and escape analysis for building
lightweight method summaries. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007.
LNCS, vol. 4420, pp. 172–186. Springer, Heidelberg (2007)

27. Chatterjee, R., Ryder, B.G.: Data-flow-based testing of object-oriented libraries.
Technical Report DCS-TR-433, Rutgers University (2001)

28. Oxhøj, N., Palsberg, J., Schwartzbach, M.: Making Type Inference Practical. In:
Lehrmann Madsen, O. (ed.) ECOOP 1992. LNCS, vol. 615, pp. 329–349. Springer,
Heidelberg (1992)

29. Codish, M., Debray, S., Giacobazzi, R.: Compositional analysis of modular logic
programs. In: POPL, pp. 451–464 (1993)

30. Flanagan, C., Felleisen, M.: Componential set-based analysis. TOPLAS 21(2), 370–
416 (1999)

31. Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI,
pp. 35–46 (2000)

32. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA. In: PLDI, pp.
254–263 (2001)

33. Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built
with precompiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
20–36. Springer, Heidelberg (2001)

34. Dwyer, M.: Modular flow analysis of concurrent software. In: ASE, pp. 264–273
(1997)

35. Guyer, S., Lin, C.: Optimizing the use of high performance software libraries. In:
Midkiff, S.P., Moreira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F.,
Pugh, B., Tseng, C.-W. (eds.) LCPC 2000. LNCS, vol. 2017, pp. 227–243. Springer,
Heidelberg (2001)

36. Rugina, R., Rinard, M.: Design-driven compilation. In: Wilhelm, R. (ed.) CC 2001.
LNCS, vol. 2027, pp. 150–164. Springer, Heidelberg (2001)

68 A. Rountev, M. Sharp, and G. Xu

37. Harrold, M.J., Rothermel, G.: Separate computation of alias information for reuse.
TSE 22(7), 442–460 (1996)

38. Rountev, A., Ryder, B.G., Landi, W.: Data-flow analysis of program fragments.
In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS,
vol. 1687, pp. 235–252. Springer, Heidelberg (1999)

39. Sreedhar, V., Burke, M., Choi, J.: A framework for interprocedural optimization
in the presence of dynamic class loading. In: PLDI, pp. 196–207 (2000)

40. Ghemawat, S., Randall, K., Scales, D.: Field analysis: Getting useful and low-cost
interprocedural information. In: PLDI, pp. 334–344 (2000)

41. Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI, pp.
35–46 (2001)

42. Tip, F., Sweeney, P., Laffra, C., Eisma, A., Streeter, D.: Practical extraction tech-
niques for Java. TOPLAS 24(6), 625–666 (2002)

43. Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of
polymorphism in Java software. TSE 30(6), 372–387 (2004)

44. Rountev, A.: Precise identification of side-effect-free methods in Java. In: ICSM,
pp. 82–91 (2004)

45. Xue, J., Nguyen, P.H.: Completeness analysis for incomplete object-oriented pro-
grams. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 271–286. Springer, Hei-
delberg (2005)

	IDE Dataflow Analysis in the Presence of Large Object-Oriented Libraries
	Introduction
	Whole-Program IDE Dataflow Problems
	Interprocedural Dependence Analysis
	Type Analysis

	Summary Generation for Object-Oriented Libraries
	Stage 1: Intraprocedural Summary Generation
	Stage 2: Interprocedural Summary Generation

	Experimental Evaluation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

