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Abstract. Java’s annotation mechanism allows us to extend its type system with
non-null types. However, checking such types cannot be done using the exist-
ing bytecode verification algorithm. We extend this algorithm to verify non-null
types using a novel technique that identifies aliasing relationships between local
variables and stack locations in the JVM. We formalise this for a subset of Java
Bytecode and report on experiences using our implementation.

1 Introduction

NullPointerExceptions are a common error arising in Java programs when ref-
erences holdingnul1l are dereferenced. Java 1.5 allows us to annotate types and, hence,
to extend the type system with @NonNull types. An important step in the enforcement
of such types is the bytecode verifier which must efficiently determine whether or not
non-null types are used soundly. The standard bytecode verifier uses a dataflow analy-
sis which is insufficient for this task. To address this, we present a novel, lightweight
dataflow analysis ideally suited to the problem of verifying non-null types.

Java Bytecodes have access to a fixed size local variable array and stack [19]. These
act much like machine registers in that they have no fixed type associated with them;
rather, they can have different types at different program points. To address this, the
standard bytecode verifier automatically infers the types of local variables and stack
locations at each point within the program. The following illustrates a simple program,
and the inferred types that hold immediately before each instruction:

static int f (Integer); locals stack
0: aload_0 [Integer] []
1: ifnull 8 [Integer] [Integer]
4: aload_0 [Integer] []
5: invokevirtual ... [Integer] [Integer]
8: return [Integer] []

Here, there is one local variable at index 0. On method entry, this is initialised with
the Integer parameter. The aload 0 instruction loads the local variable at index 0O
onto the stack, and the Integer type is inferred for that stack location as a result.

A bytecode verifier for non-null types must infer that the value loaded onto the stack
immediately before the invokevirtual method call cannot be null, as this is the
call’s receiver. The challenge here is that 1 fnull compares the top of the stack against
null, but then discards this value. Thus, the bytecode verifier must be aware that, at
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that exact moment, the top of the stack and local O are aliases. The algorithm used by the
standard bytecode verifier is unable to do this. Therefore, we extend this algorithm to
maintain information about such aliases, and we refer to this technique as type aliasing.
More specifically, this paper makes the following contributions:

— We formalise our non-null bytecode verifier for a subset of Java Bytecode.
— We detail an implementation of our system for Java Bytecode.
— We report on our experiences with using our system on real-world programs.

While there has already been considerable work on non-null types (e.g. [23TOIT6I318]),
none has directly addressed the problem of bytecode verification. While these exist-
ing techniques could be used for this purpose, they operate on higher-level program
representations and must first translate bytecode into their representation. This intro-
duces unnecessary overhead that is undesirable for the (performance critical) bytecode
verifier. Our technique operates on bytecode directly, thus eliminating this inefficiency.

2 Preliminaries

We extend Java types to allow references to be declared as non-null and for arrays to
hold non-null elements (in §3] we extend this to Java Generics). For example:

Vector vl;
@NonNull Vector v2;
@NonNull Integer @NonNull [] al;

Here, v1 is a nullable reference (one which may be null), while v2 is a non-
null reference (one which may not be null); similarly, al is a non-null reference to
an array holding non-null elements. When annotating arrays, the leftmost annotation
associates with the element type, whilst that just before the braces associates with the
array reference type. We formalise a cut-down version of the non-null types supported
by our system using the following grammar:

o
T

@QNonNull | e
TalllaC|null|L

Here, the special null type is given to the null value, e denotes the absence of a
@NonNull annotation, C' denotes a class name (e.g. Integer) and L is given to
locations which hold no value (e.g. they are uninitialised, in deadcode, etc).

An important question is how our system deals with subtyping. For example, we re-
quire all array element types be identical between subtyped]. A formal definition of the
subtype relation for our simplified non-null type language is given in Figure[Il An im-
portant property of our subtype relation is that it forms a complete lattice (i.e. that every
pair of types 77, T> has a unique least upper bound, 73 LI'T5, and a unique greatest lower
bound, 77 M T%). This helps ensure termination of our non-null verification algorithm.

! While this contrasts slightly with Java’s treatment of arrays, we cannot do better without
adding runtime non-null type information to arrays.
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a1 < as C extends B

@NonNull < ¢ a1 C <as B
a1 < az
T ar [] <Tias [] Th a [] <ajava.lang.Object
1 <Tal]l] L<aC L<nul null <Ty[1 null < C

Fig. 1. Subtyping rules for non-null Java types. We assume reflexivity and transitivity, that
java.lang.Object is the root of the class hierarchy and, hence, is also T.

A well-known problem, however, is that Java’s subtype relation does not form a com-
plete lattice [17]. This arises because two classes can share the same super-class and
implement the same interfaces; thus, they may not have a unique least upper bound. To
resolve this, we adopt the standard solution of ignoring interfaces entirely and, instead,
treating interfaces as type java.lang.Object. This works because Java supports
only single inheritance between classes. This is the approach taken in Sun’s Java Byte-
code verifier and, hence, our system is no less general than it.

3 Non-null Type Verification

Our non-null type verification algorithm infers the nullness of local variables at each
point within a method. We assume method parameters, return types and fields are al-
ready annotated with @NonNul1l. Our algorithm is intraprocedural; that is, it concen-
trates on verifying each method in isolation, rather than the whole program together.
The algorithm constructs an abstract representation of each method’s execution; if this
is possible, the method is type safe and cannot throw a NullPointerException.
The abstract representation of a method mirrors the control-flow graph (CFG); its nodes
contain an abstract representation of the program store, called an abstract store, giving
the types of local variables and stack locations at that point.

We now formalise this construction process for methods. Constructors are ignored
for simplicity and discussed informally in §3 Also, while the full Java Bytecode in-
struction set is supported, only a subset is considered here for brevity.

3.1 Abstract Store

In the Java Virtual Machine (JVM), each method has a fixed-size local variable array
(for storing local variables) and a stack of known maximum depth (for storing tempo-
rary values). Our system models this using an abstract store, which we formalise as
(X, I',k), where X' is the abstract meta-heap, I is the abstract location array and k
is the stack pointer which identifies the first free location on the stack. Here, I" maps
abstract locations to type references. These abstract locations are labelled 0, ..., n—1,
with the first m locations representing the local variable array, and the remainder repre-
senting the stack (hence, n—m is the maximum stack size and x <n ). A type reference
is a reference to a type object which, in turn, can be thought of as a non-null type with
identity. Thus, we can have two distinct type objects representing the same non-null
type. Crucially, this types-as-references approach allows two abstract locations to be
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type aliases; that is, refer to the same type object. For example, in the following ab-
stract store, locations 0 and 2 are type aliases:

Y ={r;— @QNonNull Integer, ro+—String}, ' ={0— r1,1— 19,2+ 11}, k=3

Here, the abstract meta-heap, 3, maps type references to non-null types. It’s called
a meta-heap as Y’ does not abstract the program heap; rather it is an internal structure
used only to enable type aliasing.

Definition 1. An abstract store (X, I', k) is well-formed iff dom(I") = {0,...,n—1}
Sor some n, ran(I') C dom(X) and 0 < k < n.

3.2 Abstract Semantics

The effect of a bytecode instruction is given by its abstract semantics, which we de-
scribe using transition rules. These summarise the abstract store immediately after the
instruction in terms of the abstract store immediately before it; any necessary constraints
on the abstract store immediately before the instruction are also identified.

The abstract semantics for the bytecode instructions considered in our formalism are
given in Figure 2l Here, I'[r1 /72| generates an abstract store from I” where all abstract
locations holding 1 now hold ro. Several helper functions are used: fieldT (0, N), re-
turns the type of field N in class O; methodT (0, M) returns the type of method M in
class O; thisMethT() gives the current method’s type; finally, validNewT (7} ) holds if
Ty # @NonNull 75 « [] for any T5. The latter prevents creation of arrays holding
@NonNull elements, as Java always initialises array elements with nul1l (see §3)).

A useful illustration of our abstract semantics is the arrayload bytecode. This
requires the array index on top of the stack, followed by the array reference itself;
these are popped off the stack and the indexed element is loaded back on. Looking at
the arrayload rule, we see « decreases by one, indicating the net effect is one less
element on the stack. The notation I'[x — 2 r| indicates the abstract store is updated
so that abstract location x—2 now holds type reference r; thus, r has been pushed onto
the stack and represents the loaded array element. The reference on top of the stack is
ignored since this represents the actual index value, and is of no concern. The constraint
r ¢ X ensures r references a fresh type object; such constraints are used to ensure an
abstract location is not type aliased with any other. Another constraint ensures the array
reference is non-null, thus protecting against a NullPointerException.

Considering the remaining rules from Figure 2] the main interest lies with i fceq.
There is one rule for each of the true/false branches. The true branch uses the greatest
lower bound operator, 77 1 T (recall §2). This creates a single type object which is
substituted for both operands to create a type aliasing relationship. For the false branch,
a special difference operator, 177 — T, is employed which is similar to set difference.
For example, the set of possible values for a variable o of type Object includes all in-
stances of Object (and its subtypes), as well as nul1l; after a comparison o ! =null,
null is removed from this set. Thus, it is defined as follows:
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storei: X, 'k — X, I'[i—I'(k—1)],k—1 load i: X, I,k — X, ['[k—I'(1)],k+1

validNewT (7))
rg¢ ¥ X' =XU{r+— QNonNull T}
new T : X Ik — X' Ik —r],k+1

rg X X =XU{rw— null}
loadnull : X, Ik — X' I'[krr1],k+1

XY(I'(k — 2)) = T @QNonNull [] X(I'(k-1)=Ty Th' <T
rgy X =XU{r—T} X(I'(k—3)) = T» @QNonNull []
arrayload : ¥, [,k — X' I'[k—2+ r],s—1 arraystore: X, [k — X, I k—3
Y (I'(k—1)) = QNonNull C Y(I(k—1) =T
T = fieldT(0, N) XY(I'(k—2)) = @NonNull C'
rgyx X =XU{r—T} To = fieldT(0,N) Ti <T>

getfield O.N: X, Ik — X' I'[k—1+ 7],k putfield ON: X, Ik — X, I, k—2

(P1,...,Pn) — T = methodT(0,M)
X(I(k—n)),...,. 2 (L(k=1)=T1,...,T,
X(I'(k—(n+1))) = QNonNull C

TV<P,....Tw< Py (Pi,...,Py) — T, = thisMethT()
rg¢X Y =Xu{r—=T} K=rk-—n YX(I'(k-1)=T T<T,
invoke O.M: X, Ik — X' I'[r' =1 7], K’ return: X, [,k — 0,0,0
r1=I(k=2) ro=1I(k—1) ri=I(k=2) ro=1(k—1)
2(7‘1):T1 E(TQ):TQ T3¢2 E(Tl):Tl E(TQ):TZ T3,T4¢E
E/ZEU{T3'—>T1|_|T2} K =Kk—2 E/:EU{T3!—>T1—T2,T4'—>T2—T1}

ifceq: X, Ik 2% X' Llri/rs,r2/r3], k" ifceq: E,F,Iijise? X' Llri/rs,ra/ra], k—2

Fig. 2. Abstract semantics for Java Bytecodes considered. Note, 1 fceq stands for 1 £ cmpegq.

Definition 2. T} — T5 is QNonNull T, if T = a T A Ty = null, and T} otherwise.

The semantics for the return bytecode indicate that: firstly, we always expect a return
value (for simplicity); and, secondly, no bytecode can follow it in the CFG.

Finally, the Java Bytecodes not considered in Figure ] include all arithmetic oper-
ations (e.g. iadd, imul, etc), stack manipulators (e.g. pop, dup, etc), other branch-
ing primitives (e.g. ifnonull, tableswitch, etc), synchronisation primitives (e.g.
monitorenter, etc) and other miscellaneous ones (e.g. instanceof, check
cast, athrow and arraylength). It is easy enough to see how our abstract se-
mantics extends to these and our implementation (see §3) supports them all.

3.3 An Example

Figure[3lillustrates the bytecode instructions for a simple method and its corresponding
abstract representation. When a method is called, the local variable array is initialised
with the values of the incoming parameters, starting from 0 and using as many as neces-
sary; for instance methods, the first parameter is always the this reference. Thus, the
first abstract location of the first store in Figure Bl has type Test; the remainder have
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class Test {
String f(Integer i, Integer j) {
if(i==j && i!=null) {
return j.toString();

} else { return null; } eNo 11 Test 02
L —» Integer 1
T : Integer 2
load 1 .
@NonNull Test 0 :
.......................... oy Integer 1 ;
Integer 2
load 2 )
@NonNull Test 0 :
\44> Integer
Integer
false
@NonNull Test
Integer
@NonNull
Integer 3
@NonNull Test
Integer 3
e
@NonNull Test 0
@NonNull Integer 5 ;
@NonNull Test [} ;
@NonNull Integer 5 :
@NonNull
4 Integer
I
T Integer 7
@NonNull Test 0 ;
Integer 8
Integer 9
return String 10

Fig. 3. Bytecode representation of a simple Java Method (source given above) and the state of the
abstract store, (X, I', k), going into each instruction. The value of « is indicated by the underlined
abstract location; when the stack is full, this points past the last location. The type objects in X' are
given a unique identifier to help distinguish new objects from old ones; we assume unreferenced
type objects are immediately garbage collected, which is reflected in the identifiers becoming
non-contiguous. Type aliases are indicated by references which are “joined”. For example, the
second abstract store reflects the state immediately after the Load 1 instruction, where locations
1 and 3 are type aliases.
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nullable type Integer, with each referring to a unique type object (since we must
conservatively assume parameters are not aliased on entry).

In Figure 3 the effect of each instruction is reflected in the changes between the
abstract stores before and after it. Of note are the two i fceq instructions: the first es-
tablishes a type aliasing relationship between locations 1 and 2 (on the true branch); the
second causes a retyping of location 1 to @NonNull Integer (on the false branch)
which also retypes location 2 through type aliasing. Thus, at the invoke instruc-
tion, the top of the stack (which represents the receiver reference) holds @NonNull
Integer, indicating it will not throw a NullPointerException.

We now consider what happens at join points in the CFG. The return instruction
in Figure Blis a good illustration, since two distinct paths reach it and each has its
own abstract store. These must be combined to summarise all possible program stores
at that point. In Figure [ the store coming out of the invoke instruction has a type
aliasing relationship, whereas that coming out of the 1oadnull instruction does not;
also, in the former, location 2 has type @NonNull Integer, whilst the latter gives
it nullable type Integer. This information must be combined conservatively. Since
location 2 can hold nul1l on at least one incoming path, it can clearly hold null at the
join point. Hence, the least conservative type for location 2 is Integer. Likewise, if a
type alias relationship does not hold on all incoming paths, we cannot assume it holds
at the join. We formalise this notion of conservatism as a subtype relation:

Definition 3. Ler S1 = (X1, [1,k), S = (X9, I's, k) be well-formed abstract stores.
Then S1 < So iff Va,y € {0...k}[Z1(I1(2)) < Da(ln(2) A (In(z) =I2(y) =
Ni(z)=T11(y))].

Note, Definition[3]requires x be identical on each incoming store; this reflects a standard
requirement of Java Bytecode. Now, to construct the abstract store at a join point, our
verification system finds the least upper bound, L, of incoming abstract stores — this is
the least conservative information obtainable. We formalise this as follows:

Definition 4. Let G = (V, E) be the control-flow graph for a method M. Then, the
dataflow equations for M are given by Sy (y) = |_|I_L>y€E fI(z), Sm(z), ).

Here, the transfer function, f, is defined by the abstract semantics of Figure 2l I(z)
gives the bytecode at node x, and the edge label, [, distinguishes the true/false branches
for ifceq. Thus, Sy (y) gives the abstract store going into y. Finally, the dataflow
equations can be solved as usual by iterating to a fixed point using a worklist algorithm.

4 Soundness

We now demonstrate that our algorithm ferminates and is correct; that is, if a method
passes our verification process, then it cannot throw a NullPointerException.
Several previous works have formalised Java Bytecode and shown the standard veri-
fication algorithm is correct (e.g. [14/17]]). Our system essentially operates in an identi-
cal fashion to the standard verifier, except that it additionally maintains type aliases and
propagates @NonNul1 annotations. Indeed, our abstract semantics of Figure 2] would
be identical to previous work (e.g. [17]) if we removed the requirement for @NonNul 1



236 C. Male et al.

types at dereference sites and prohibited type aliasing relationships. Thus, we leverage
upon these existing works to simplify our proof by restricting attention to those details
particular to our system.

An important issue regarding our formalism is that it applies only to methods, not
constructors. The reason for this is detailed in §3] Therefore, in the following, we as-
sume all fields annotated with @NonNul1 are correctly initialised.

4.1 Termination

Demonstrating termination amounts to showing the dataflow equations always have
a least fixed-point. This requires the transfer function, f, is monotonic and that our
subtyping relation is a join-semilattice (i.e. any two abstract stores always have a unique
least upper bound). These are addressed by Lemmas[Iland

Strictly speaking, Definition[3]does not define a join-semilattice over abstract stores,
since two stores may not have a unique least upper bound. For example, consider:

S1 = ({r1 — Integer,ro — Float}, {0— ri,1+—ry,2+— g}, 3)
Sz = ({r1 — Integer,ry — Float}, {0+ ro, 1+ 19,2 +— 11}, 3)

Then, the following are minimal upper bounds of S; and Ss:

S3 = ({r1 — Number, r3 — Number}, {0+ ri, 1+ ry,2+— 12}, 3)
Sy = ({r1 — Number, 7y — Number}, {0 — ro, 1 +— 19,2 +— 11}, 3)

Here, 53 S 54, S4 S Sg, {Sl, SQ} S {53754} and —'35.[{51752} S S S {Sg, 54}]
Hence, there is no unique least upper bound of \S; and S;. Such situations arise in our
implementation as type objects are Java Objects and, hence, 1 # 7o simply means
different object addresses. Now, while S5 and S are distinct, they are also equivalent:

Definition 5. Let S1 = (X1, 1, k), So = (X9, 2, k), then Sy and Sy are equivalent,
written S1 = So, iff S1 < So and S1 > So.

Lemma 1. Let S; = (El,Fl, KZ), Sy = (22, FQ, I*i) with dom(Fl) = dom(Fg). IfU is
the set of minimal upper bounds of S1 and Sa, then U #() and Vzx,y €U.[x = y].
Proof. See companion Technical Report [20].

Lemma 2. The dataflow equations from Definitiond are monotonic.

Proof. By case analysis on the instructions of Figure 2l See companion Technical Re-

port [20].

4.2 Correctness

We now show the type aliasing information maintained is correct (Lemmal[3)), and that
any location with @NonNu11 type cannot hold nul1 (Lemma])). This yields an overall
correctness result for the subset of Java Bytecode we have formalised (Theorem [T).

Definition 6. A Java method is considered to be valid if it passes the standard JVM
verification process [19].
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The consequences of Definition[@include: all conventional types (i.e. ignoring non-null
types) are used safely; stack sizes are always the same at the meet points; method and
field lookups always resolve; etc.

Lemma 3. Let Sy = (X, I, k) be the abstract store for an instruction in a valid method
M. If {li — r,la— 1} C I, then the local array/stack locations represented by 1y, lo
refer to the same object or array immediately before that instruction in any execution
trace of M.

Proof. By case analysis on the different instruction types of Figure 2] and the notion of
conservatism from Definition 3l See companion Technical Report [20]. O

Lemma 4. Let Sy = (X, I, k) be the abstract store for an instruction in a valid method
M. Assume the parameters of M, the fields accessed by M and the return value of all
methods invoked by M respect their declared non-null type. Then, if {l—r} C T A{r—
@QNonNull T} C X, the local array/stack location represented by | does not hold null
immediately before that instruction in any execution trace of M.

Proof. Again, by case analysis on the different instruction types of Figure 2] the notion
of conservatism from Definition[3land Lemma[3l See companion Technical Report [20].
O
Theorem 1. If our abstract representation can be correctly constructed for all methods
in a Java Bytecode program, then no method will throw aNullPointerException,
assuming all fields are correctly initialised.
Proof. By induction on the call sequence, starting from main (String[]). Using
Lemma [4] we formulate an inductive hypothesis stating, for a method M, that if the
arguments to M respect their non-null types, so do the return value of M, the arguments
to any calls made by M, and any assignments to fields / array elements made by M.
See companion Technical Report [20]]. a

5 Implementation

We have implemented our system on top of Java Bytecode and we now discuss many
aspects not covered by our discussion so far.

Constructors. In Java, a field is assigned null before it is initialised in a construc-
tor [10]]. Thus, a field with non-null type will temporarily hold nul1l inside a construc-
tor. Figure[@highlights the problem. We must ensure such fields are properly initialised,
and must restrict access prior to this occurring. Two mechanisms are used to do this:

1. A simple dataflow analysis is used to ensure that all non-null (instance) fields in a
class declaration are initialised by that class’s constructor.

2. Following [10], we use a secondary type annotation, @Raw, for references to indi-
cate the object referred to may not be initialised. Reads from fields through these
return nullable types. The this reference in a constructor is implicitly typed @Raw
and @Raw is strictly a supertype of a normal reference.

Inheritance. When a method overrides another via inheritance our tool checks that
@NonNull types are properly preserved. As usual, types in the parameter position are
contravariant with inheritance, whilst those in the return position are covariant.
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class Parent {

Parent () { doBadStuff(); } // error #1, fl not initialised yet!
int doBadStuff() { return 0; }

}

class Child extends Parent {

@NonNull String fl1; @NonNull String f£2;

Child() {
doBadStuff () ; // error #2, fl not initialised before call!
fl1 = "Hello World";
} // error #3, f2 not initialised vyet!
int doBadStuff () { return fl.length(); }
1}

Fig. 4. Illustrating three distinct problems with constructors and default values. Error #3 arises as
all @NonNull fields must be initialised! Error #2 arises as a method is called on this before
all @NonNull fields are initialised. Error #1 arises as, when the Chi1d’s constructor is called,
it calls the Parent’s constructor. This, in turn, calls doBadStuff () which dynamically dis-
patches to the Chi1d’s implementation. However, field £1 has not yet been initialised!

Field Retyping. Consider this method and its bytecode (recall local 0 holds this):

class Test { 0. 1load 0
Integer field; 2. getfield Test.field
void f() { 5. ifnull 16
if(field != null) { 8. load 0
field.toString() 10. getfield Test.field
133 13. invoke Integer.toString

16. return

The above is not type safe in our system as the non-nullness of the field is lost when it is
reloaded. This is strictly correct, since the field’s value may have been changed between
loads (e.g. by another thread). We require this is resolved manually by adjusting the
source to first store the field in a local variable (which is strictly thread local).

Generics. Our implementation supports Java Generics. For example, we denote a
Vector containing non-null Strings with Vector<@NonNull String>. Ex-
tending the subtype relation of Figure[lis straightforward and follows the conventions
of Java Generics (i.e. prohibiting variance on generic parameters). Verifying meth-
ods which accept generic parameters is more challenging. To deal with this, we in-
troduce a special type, T;, for each (distinct) generic type used in the method; here,
T; <java.lang.Object and T; £ T, for i # j. When checking a method £ (T x),
the abstract location representing x is initialised to the type T; used exclusively for
representing the generic type T. The subtyping constraints ensure T ; can only flow into
variables/return types declared with the same generic type T. However, an interesting
problem arises with some existing library classes. For example:

class Hashtable<K,V> ... { ...
V get(K key) { ...; return null; } }

Clearly, this class assumes null is a subtype of every type; unfortunately, this is not
true in our case, since e.g. null £ @NonNull String. To resolve this, we prohibit
instances of Hashtable/HashMap from having a non-null type in V’s position.
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Casting + Arrays. We explicitly prevent the creation of arrays with non-null ele-
ments (e.g. new @NonNull Integer[10]), as Java always initialises array ele-
ments of reference type with null. Instead, we require an explicit cast to @NonNull
Integer[] when the programmer knows the array has been fully initialised. Casts
from nullable to non-null types are implemented as runtime checks which fail by throw-
ing ClassCastExceptions. Their use weakens Theorem[l] since we are essentially
trading NullPointerExceptions for ClassCastExceptions. While this is
undesirable, it is analogous to the issue of downcasts in Object-Oriented Languages.

Instanceof. Our implementation extends the type aliasing technique to support retyp-
ing via instanceof. For example:

if (x instanceof String) { String y = (String) x; .. }

Here, our system retypes x to type @NonNull String on the true branch, rending
the cast redundant (note, an instanceof test never passes on null).

Type Annotations. The Java Classfile format doesn’t allow annotations on generic pa-
rameters or in the array type reference position. Therefore, we use a simple mechanism
for encoding this information into a classfile. We expect future versions of Java will
support such types directly and, indeed, work is already underway in this regard [9].

6 Case Studies

We have manually annotated and checked several real-world programs using our non-
null type verifier. The largest practical hurdle was annotating Java’s standard libraries.
This task is enormous and we are far from completion. Indeed, finishing it by hand does
not seem feasible; instead, we plan to develop (semi-)automatic procedures to help.
We now consider four real-world code bases which we have successfully annotated:
the java/lang and java/io packages, the jakarta-oro text processing library
and javacc, a well-known parser generator. Table [I] details these. Table [ gives a
breakdown of the annotations added, and the modifications needed for the program
to type check. The most frequent modification, “Field Load Fix”, was for the field
retyping issue identified in §3 To resolve this, we manually added a local variable into
which the field was loaded before the null check. Many of these fixes may represent real
concurrency bugs, although a deeper analysis of each situation is needed to ascertain
this. The next most common modification, “Context Fixes”, were for situations where
the programmer knew a reference could not hold nul1, but our system was unable to
determine this. These were resolved by adding dummy null checks. Examples include:

Table 1. Details of our four benchmarks. Note, java/lang does not include subpackages.

benchmark version LOC source

java/lang package 1.5.0 14K java.sun.com

java/io package 1.5.0 10.6K  java.sun.com
jakarta-oro 2.0.8 8K jakarta.apache.org/oro

javacc 3.2 28K javacc.dev.java.net



240 C. Male et al.

Table 2. Breakdown of annotations added and related metrics. “Annotated Types” gives the total
number of annotated parameter, return and field types against the total number of reference / array
types in those positions. A breakdown according to position (i.e. parameter, return type or field)
is also given. “Field Load Fixes” counts occurrences of the field retyping problem outlined in §3l
“Context Fixes” counts the number of dummy null checks which had to be added. “Required Null
Checks” counts the number of required null checks, versus the total number of dereference sites.
Finally, “Required Casts” counts the number of required casts, versus the total number of casts.

Annotated Parameter Return Field
Types  Annotations Annotations Annotations
java/lang  931/1599 363/748 327/513 241/338

java/io 51571056 322/672  96/200 97/ 184
jakarta-oro 413/539 273/320 85/108 557111
javacc 420/576 199 /278 53765 168 /233
Field Context Other Required Required
Load Fixes Fixes Fixes  Null Checks Casts
java/lang 65 61 36 281 /2550 51/96
java/io 59 82 21 207 /2254 547110
jakarta-oro 53 327 29 7372014 29/33
javacc 109 137 (28) 74 287 /5700 141 /431

— Thread.getThreadGroup () returns null when the thread in question has
stopped. But, Thread. currentThread () .getThreadGroup () will return
a non-null value, since the current thread cannot complete get ThreadGroup ()
if it has stopped! This assumption was encountered in several places.

— Another difficult situation for our tool is when the nullness of a method’s return
value depends either on its parameters, or on the object’s state. A typical example
is illustrated in Figure[3l More complex scenarios were also encountered where, for
example, an array was known to hold non-null values up to a given index.

— As outlined in §5] Hashtable.get (K) returns null if no item exists for the
key. A programmer may know that, for specific keys, get () cannot return null
and so can avoid unnecessary null check(s). The javacc benchmark used many
hashtables and many context fixes were needed as a result. In Table 2] the
number of “Context Fixes” for this particular problem are shown in brackets.

The “Other Fixes” category in Table [2| covers other miscellaneous modifications
needed for the code to check. Figure [6] illustrates one such example. Most relate to
the initialisation of fields. In particular, helper methods called from constructors which
initialise fields are a problem. This is because our system checks each constructor ini-
tialises its fields, but does not account for those initialised in helper methods. To resolve
this, we either inlined helper methods or initialised fields with dummy values before
they were called.

The “Required Null Checks” counts the number of explicit null checks (as present
in the original program’s source), against the total number of dereference sites. Since,
in the normal case, the JVM must check every dereference site, this ratio indicates the
potential for speedup resulting from non-null types. Likewise, “Required Casts” counts
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public void actionPerformed (@NonNull ActionEvent ae) {
JFileChooser jfc = new JFileChooser();
int rval = jfc.showOpenDialog(null) ;
if (rval == JFileChooser.APPROVE_OPTION) {
File £ = jfc.getSelectedFile();
filePath.setText (f.getCanonicalPath()) ;

Fig. 5. A common scenario where the nullness of a method’s return type depends upon its context;
in this case, if rval==APPROVE OPTION, then getSelectedFile () won’t return null.
To resolve this, we must add a “dummy” check that £ ! =nul1l before the method call.

public ThreadGroup (String name) {
this (Thread.currentThread () .getThreadGroup (), name) ;

Fig. 6. An interesting example from java . lang.ThreadGroup. The constructor invoked via
the this call requires a non-null argument (and this is part of its Javadoc specification). Al-
though getThreadGroup () can return null, it cannot here (as discussed previously). Our
tool reports an error for this which cannot be resolved by inserting a dummy null check, since
the this call must be the first statement of the constructor. Therefore, we either inline the con-
structor being called, or construct a helper method which can accept a null parameter.

the number of casts actually required, versus the total number present (recall from 3l
that our tool automatically retypes local variables after instanceof tests, making
numerous casts redundant.)

We were also interested in whether or not our system could help documentation.
In fact, it turns out that of the 1101 public methods in java/lang, 83 were mis-
documented. That is, the Javadoc failed to specify that a parameter must not be null
when, according to our system, it needed to be. We believe this is actually pretty good,
all things considered, and reflects the quality of documentation for java/lang. Inter-
estingly, many of the problem cases were found in java/lang/String.

Finally, a comment regarding performance seems prudent, since we have elided per-
formance results for brevity. In fact, the performance of our system is very competitive
with the standard bytecode verifier. This is not surprising, since our system uses a very
similar algorithm to the standard bytecode verifier, albeit extended with type aliasing.

7 Related Work

Several works have considered the problem of checking non-null types. Fahndrich and
Leino investigated the constructor problem (see §3)) and outlined a solution using raw
types [[10]]. However, no mechanism for actually checking non-null types was presented.
The FindBugs tool checks @NonNull annotations using a dataflow analysis that ac-
counts for comparisons against null [16l15]. Their approach does not employ type
aliasing and provides no guarantee that all potential errors will be reported. While this
is reasonable for a lightweight software quality tool, it is not suitable for bytecode
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verification. ESC/Java also checks non-null types and accounts for the effect of con-
ditionals [[11]]. The tool supports type aliasing (to some extent), can check very subtle
pieces of code and is strictly more precise than our system. However, it relies upon a
theorem prover which employs numerous transformations and optimisations on the in-
termediate representation, as well as a complex back-tracking search procedure. This
makes it rather unsuitable for bytecode verification, where efficiency is paramount.

Ekman et al. implemented a non-null checker within the JustAdd compiler [8]. This
accounts for the effect of conditionals, but does not consider type aliasing as there is
little need in their setting where a full AST is available. To apply their technique to Java
Bytecode would require first reconstructing the AST to eliminate type aliasing between
stack and local variable locations. This would add additional overhead to the bytecode
verification process, compared to our more streamlined approach. Pominville et al. also
discuss a non-null analysis that accounts for conditionals, but again does not consider
type aliasing [23]. They present empirical data suggesting many internal null checks
can be eliminated, and that this leads to a useful improvement in program performance.

Chalin et al. empirically studied the ratio of parameter, return and field declarations
which are intended to be non-null, concluding that 2/3 are [3]. To do this, they manually
annotated existing code bases, and checked for correctness by testing and with ESC/-
Java. JavaCOP provides an expressive language for writing type system extensions,
such as non-null types [2]. This system cannot account for the effects of conditionals;
however, as a work around, the tool allows assignment from a nullable variable x to a
non-null variable if this is the first statement after a x ! =null conditional.

CQual is a flow-sensitive qualifier inference algorithm which supports numerous
type qualifiers, but does not account for conditionals at all [12I13]]. Building on this is
the work of Chin et al. which also supports numerous qualifiers, including nonzero,
unique and nonnull [5l6]. Again, conditionals cannot be accounted for, which
severely restricts the use of nonnull. The Java Modelling Language (JML) adds for-
mal specifications to Java and supports non-null types [7]. However, JML is strictly a
specification language, and requires separate tools (such as ESC/Java) for checking.

Related work also exists on type inference for Object-Oriented languages
(e.g. [21124128])). These, almost exclusively, assume the original program is completely
untyped and employ set constraints (see [[1]) for inferring types. This proceeds across
method calls, necessitating knowledge of the program’s call graph (which must be ap-
proximated in languages with dynamic dispatch). Typically, a constraint graph rep-
resenting the entire program is held in memory at once, making these approaches
somewhat unsuited to separate compilation [21]]. Such systems share a strong rela-
tionship with other constraint-based program analyses, such as points-fo analysis (e.g.
[18126122123]).

Several works also use techniques similar to type aliasing, albeit in different settings.
Smith et al. capture aliasing constraints between locations in the program store to pro-
vide safe object deallocation and imperative updates [27]; for example, when an object
is deallocated the supplied reference and any aliases are retyped to junk. Chang et al.
maintain a graph, called the e-graph, of aliasing relationships between elements from
different abstract domains [4]); their least upper bound operator maintains a very similar
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invariant to ours. Zhang et al. consider aliasing of constraint variables in the context of
set-constraint solvers [29].

8 Conclusion

We have presented a novel approach to the bytecode verification of non-null types.
A key feature is that our system infers two kinds of information from conditionals:
nullness information and type aliases. We have formalised this system for a subset of
Java Bytecode, and proved soundness. Finally, we have detailed an implementation of
our system and reported our experiences gained from using it. The tool itself is freely
available fromhttp://www.mcs.vuw.ac.nz/~djp/JACK/.
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