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Abstract. Trivium is a stream cipher designed in 2005 by C. De
Cannière and B. Preneel for the European project eSTREAM. It has
an internal state of 288 bits and the key of length 80 bits. Although
the design has a simple and elegant structure, no attack on it has been
found yet.

In this paper a family of Trivium-like designs is studied. We propose
a set of techniques for methodological cryptanalysis of these structures in
general, including state recovering and linear distinguishing attacks. In
particular, we study the original Trivium and present a state recovering
attack with time complexity around c283.5, which is 230 faster than the
best previous result. Our attack clearly shows that Trivium has a very
thin safety margin and that in its current form it can not be used with
longer 128-bit keys.

Finally, we identify interesting open problems and propose a new de-
sign Trivium/128, which resists all of our attacks proposed in this paper.
It also accepts a 128 bit secret key due to the improved security level.

1 Introduction

Additive stream ciphers are an important class of data encryption primitives,
in which the process of encryption simulates the one-time-pad. The core of any
stream cipher is its pseudo-random keystream generator (PRKG). It is initial-
ized with a secret key K, and an initial value (IV). Afterwards, it produces a
long pseudo-random sequence called keystream u. In the encryption procedure,
the ciphertext c is then obtained by a bitwise xor of the message m and the
keystream u, i.e., c = m ⊕ u.

Many stream ciphers are currently used in various aspects of our life. To men-
tion some of them, they are: RC4 [Sma03] (is used on the Internet), E0 [Blu03]
(in Bluetooth), A5/1 [BGW99] (in GSM communication), and others. However,
it has been shown that these primitives are susceptible to various kinds of weak-
nesses and attacks [FM00, MS01, LV04, LMV05, BSW00, MJB04]. In 1999 the
European project NESSIE was launched [NES99] and among other encryption
and signature primitives it attempted to select stream ciphers for its final port-
folio. However after a few rounds of evaluation and cryptanalysis, most of the
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proposals were broken1. As a result the board of the project NESSIE could not
select any of the stream cipher proposals for its final portfolio.

The recent European project ECRYPT [ECR05] has started in 2004 within the
Sixth Framework Programme (FP6). It announced a new call for stream cipher
proposals, for its subproject eSTREAM. In the first phase 34 proposals were
received, but only a few of them got the status of “focused” algorithms in the
second phase. In the hardware portfolio only four new designs are in focus, they
are: Trivium [CP05], Grain [HJM05], Mickey [BD05], and Phelix [WSLM05].

In this paper we analyze one of these designs – Trivium. The stream cipher
Trivium was proposed in 2005 for the project eSTREAM by C. De Canniére
and B. Preneel [CP05]. It has an internal state of 288 bits and the key of 80
bits. Though the cipher was designed for hardware implementation it is also
very fast in software, which makes it one of the most attractive candidates of
the competition. The structure of the cipher is elegant and simple, and it fol-
lows clearly described design principles. After the design was announced many
cryptographers tried to analyze it. However, only two results on Trivium are
known so far.

The first known result is actually given on the eSTREAM discussion fo-
rum [eDF05] where the complexity to recover the internal state from given
keystream is argued to be 2135. The second result is a paper from H. Rad-
dum [Rad06], where a new algorithm for solving nonlinear systems of equations
is proposed and applied on Trivium. The attack complexity found was 2164.
Two reduced versions of this design, Bivium -A and -B, were proposed in that
paper as well. The first reduced version was broken “in about one day”, whereas
the second version required time of around 256 seconds.

In this paper we consider the design of Trivium in general, and as examples
we consider two instances: the original design of Trivium and a reduced version
Bivium, the one given in [Rad06] under the name Bivium-B. We propose a set of
techniques to analyse this class of stream ciphers, and show how its internal state
can be recovered given the keystream. The complexity of this attack determines
the upper bound for the security level of the cipher. Its complexities for Trivium
and Bivium are found to be c · 283.5 and c · 236.1, respectively, where c is the
complexity of solving a sparse system of linear equations (192 for Trivium and
118 for Bivium). It means that, for example, the secret key cannot be increased
to 128 bits in a straightforward way unless the design in general is changed. This
time complexity is much better than in [eDF05] and [Rad06], and is the best
known result on Trivium so far.

In the second attack linear statistical methods are applied. We show how a
distinguisher can be built, and propose a linear distinguishing attack on Bivium
with less than 232 operations in total. This attack was implemented and in
practice works even slightly better than expected.

We also show how cryptanalysis of Trivium can be related to another general
problem. For example, if one would know how to solve a highly structured system

1 There was a discussion at NESSIE on whether a distinguishing attack of very high
complexity qualifies as a break of a cipher.
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of 576 quadratic equations on 576 unknowns efficiently, he would be able find
the full secret state of the cipher. On the other hand, putting a designer hat
on, we propose several simple ideas which could help strengthen a Trivium-like
design. Following those we propose a tweaked design Trivium/128, which is a
slight modification of Trivium, but is believed to have a larger security margin,
and thus can be used with a larger 128 bit secret key.

This paper is organized as follows. In Section 2 we define the structures of
Trivium and Bivium. Afterwards, in Section 3, we give methods for a state
recovering attack, and propose a set of attack scenarios for both Trivium and
Bivium. In Section 4 we propose a general attack scenario on the whole family
of Trivium-like stream ciphers. A linear distinguishing attack is given in Sec-
tion 5. We identify a few interesting open problems, and propose an improved
design Trivium/128 in Section 6 (and in Appendix A). The paper ends with
the summary of our results and conclusions.

1.1 Notation

In this paper we accept the following notation. A single bit will commonly be
denoted by x

(t)
i , where i is an index of a variable, and t is the time instance.

Bold symbols u represent a stream or a vector of bit-oriented data u1, u2, . . ..
Let us also define triple-clock of a cipher as just three consecutive clocks of it.

2 Bivium and Trivium

In Figure 1 two classes of stream ciphers are shown, namely, Bivium and
Trivium.

The number of basic components is two or three, respectively. Each basic
component (a register) consist of three blocks, each of size divisible by 3. An
instance of this class is a specification vector with the blocks’ sizes specified, i.e.,

Bivium ⇒ Bi(A1, A2, A3; B1, B2, B3),
Trivium ⇒ Tri(A1, A2, A3; B1, B2, B3; C1, C2, C3).

(1)

Notation on the registers is summarized in Table 1.
The exact algorithm of Trivium is given in Table 2.
At any time t, the keystream bits of Bivium and Trivium are derived as

ut = xt + yt, and vt = xt + yt + zt, respectively. In this paper two examples from

Table 1. The structure of the internal state’s registers

Reg total length cells denoted the AND gate In:Out Res

RA A = A1 + A2 + A3 a
(t)
0 , . . . , a

(t)
A−1 a

(t)
A−3 · a

(t)
A−2 pt : qt xt

RB B = B1 + B2 + B3 b
(t)
0 , . . . , b

(t)
B−1 b

(t)
B−3 · b(t)

B−2 qt : pt/rt yt

RC C = C1 + C2 + C3 c
(t)
0 , . . . , c

(t)
C−1 c

(t)
C−3 · c(t)

C−2 rt : pt zt
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Fig. 1. Bivium and Trivium classes of stream ciphers

Table 2. Trivium stream cipher

Initialisation Procedure(Key, IV)
Repeat until enough of keystream is produced

a
(t+1)
0 = a

(t)
A1+A2−1 ⊕ c

(t)
C−1 ⊕ c

(t)
C1−1 ⊕ c

(t)
C−3 · c(t)

C−2

b
(t+1)
0 = b

(t)
B1+B2−1 ⊕ a

(t)
A−1 ⊕ a

(t)
A1−1 ⊕ a

(t)
A−3 · a

(t)
A−2

c
(t+1)
0 = c

(t)
C1+C2−1 ⊕ b

(t)
B−1 ⊕ b

(t)
B1−1 ⊕ b

(t)
B−3 · b(t)

B−2

a
(t+1)
i = a

(t)
i−1, ∀i ∈ [1 : A − 1]

b
(t+1)
j = b

(t)
j−1, ∀j ∈ [1 : B − 1]

c
(t+1)
k = c

(t)
k−1, ∀k ∈ [1 : C − 1]

ut = a
(t)
A−1 ⊕ a

(t)
A1−1 ⊕ b

(t)
B−1 ⊕ b

(t)
B1−1 ⊕ c

(t)
C−1 ⊕ c

(t)
C1−1

Table 3. Two instances’ specifications, Trivium and Bivium

Description Specification A : B : C Size, θ

Trivium [CP05] Tri(66, 3, 24; 69, 9, 6; 66, 21, 24) 93 : 84 : 111 288
Bivium [Rad06] Bi(66, 3, 24; 69, 9, 6) 93 : 84 : − 177

this class of stream ciphers are considered in detail, the specification of which
is given in Table 3. These correspond to Trivium and Bivium as described
in [CP05, Rad06].
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For simplicity in further derivations let us introduce three subsets:

T (t)
0 = {a(t)

3i+0} ∪ {b(t)
3j+0} ∪ {c(t)

3k+0}

T (t)
1 = {a(t)

3i+1} ∪ {b(t)
3j+1} ∪ {c(t)

3k+1}

T (t)
2 = {a(t)

3i+2} ∪ {b(t)
3j+2} ∪ {c(t)

3k+2}

where
i = 0, 1, . . . , A/3 − 1,

j = 0, 1, . . . , B/3 − 1,

k = 0, 1, . . . , C/3 − 1.

(2)

3 First Analysis: State Recovering

In this attack, given a keystream u of some length n an attacker wants to recover
the internal state of the cipher. Since the cipher has invertible state-update
function this also leads to a key recovery attack. A classical time-memory trade-
off technique based on the birthday paradox gives the upper bound for such
an attack of O(2θ/2) known keystream, and memory, where θ is the size of the
internal state. The importance of the state recovering analysis is that it gives the
upper bound for the length of the secret key K. When the design of Trivium
appeared, several researchers raised the question: Whether the secret key can be
increased from 80 bits till, for example, 128 bits, thus, improving the security
level? In this section we will give the precise answer.

3.1 Guessing T (t)
0 at Some Time t

One of the main observations is that all blocks of the cipher are divisible by 3.
Moreover, the transition of the internal state at time t to time t + 1 is a linear
transformation of the subset T (t)

t mod 3, plus a minor one bit disturbance from the
adjacent two subsets. Therefore, the attack scenario can consist of the following
phases.

Phase I: Guess the state T (t)
0 at some time t,

Phase II: Having the state T (t)
0 guessed correctly, recover the rest of the bits.

Since the second phase depends on the first phase, the total complexity of the
attack Ctot is

Ctot = CPhase I · CPhase II. (3)

Phase I could be done by an exhaustive search of the true state T (t)
0 at some

time t. The time complexity of this search is O(2θ/3), and the keystream length
required is O(1). However, this complexity can be reduced if we note that the
first d = min{A1, B1, C1}/3 forward triple-clocks we receive d linear equations
on the bits of T (t)

0 . By this way the total time complexity is reduced down to

O(2(θ−min{A1,B1,C1})/3).

For Trivium and Bivium these complexities are 274 and 237, respectively. In
the following subsections we discuss other ideas on what can be done to make
the total complexity of an attack smaller.
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3.2 Guessing Outcomes for Specific AND Gates

To receive more linear equations for the two phases, one can consider a set of
specific AND gates:

a
(t+3i)
A−3 · a(t+3i)

A−2 , i = 0, 1, . . . , ga − 1,

b
(t+3j)
B−3 · b(t+3j)

B−2 , j = 0, 1, . . . , gb − 1,

c
(t+3k)
C−3 · c(t+3k)

C−2 , k = 0, 1, . . . , gc − 1,

(4)

where ga, gb, gc are some chosen parameters. Whenever the outcomes of these
gates are guessed, the number of linear equations that one can derive for the
first phase is

d′ = min{ga +
B1

3
, gb +

C1

3
, gc +

A1

3
}.

The most probable guess would be that all these gates produce zeros, since
Pr{x&y = 0} = 0.75, and we simply search in the keystream for the place where
this is satisfied. The expected length of the keystream in this case is around
(0.75)−(ga+gb+gc). However, if we allow some of the gates to produce ones, the
length of the keystream can be reduced significantly.

Let G gates out of ga + gb + gc AND gates produce zeros, and the remaining H
gates produce ones. The total probability of this event is

pg = 0.75G0.25H .

Note that we can allocate H ones among G+H positions in
(
G+H

H

)
ways. There-

fore, the keystream is needed to be of length approximately O
(
1/

[
pg ·

(
G+H

H

)])
.

3.3 Guessing Sums of Specific AND Gates

The right guess of the specific AND gates from the previous subsection allowed
us to increase the number of linear equations for the first phase till d′. How-
ever, the remaining bits of T (t)

0 should be guessed with probability 1/2. The
total probability of the remaining guess could, however, be reduced if the avail-
able keystream can be increased. Below we show another trade-off between the
keystream and the complexity of the remaining guessing part.

After d′ triple-clocks, we start receiving nonlinear equations, where the linear
part consists of the bits from T (t)

0 , and the nonlinear part is the sum of w AND
gates, for some small w. Since the outcome of each of them is biased, then their
sum is biased as well. Let pw be the probability that the sum of w gates is zero,
which is derived as

pw =
�w/2�∑

i=0

(
w

2i

)
0.75w−2i0.252i (> 0.5), (5)

or, via its recursive formula as pw+1 = 0.75pw + 0.25(1 − pw), with p0 = 1. Let
lw be the number of nonlinear equations with the sum of w AND gates. The time
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complexity to recover lw bits is plw
w , instead of 0.5lw , but, however, it requires to

increase the length of the keystream by the ratio p−lw
w . The total probability of

such an event is

q =
∞∑

w=1

plw
w .

This approach is reasonable to use for small ws, say for w ∈ {1, 2, 3, 4}, since
for large ws the probability pw is close to 0.5 and, therefore, it does not give
a big gain versus a truly random guess, but rather increases the length of the
keystream rapidly.

3.4 Collecting System of Equations for Remaining Unknowns

Assume that the state of T (t)
0 and the outcomes of specific G + H AND gates are

guessed and derived correctly. To recover the remaining 2/3 of the state we need
to collect a number of equations on T (t)

1 and T (t)
2 , enough to derive the exact

solution.
At any time t, if the values a

(t)
A−3, b

(t)
B−3, c

(t)
C−3 are known, then two consecutive

clocks of the cipher are linear. Because of our specific guess, we know that d′

triple-clocks the system is linear. In one triple-clock two linear equations on the
remaining unknowns of the internal state are received. The first nonlinearity will
not affect on the degree of receiving equations immediately, but rather with some
delay. The first nonlinear equations will be of degree 2, and then of degree 3,
and so on. Also note that each of H guesses also give us two equations of degree
1 of the form xi = 1 and xi+1 = 1, and each of the G guesses give us another
equation of degree 2 of the form xixj = 0. The structure of this cipher is such
that backward clocks increase the degree of equations rapidly2. Therefore, only
a few equations of low degree can be collected by backward clocking.

Let the number of equations of degrees 1 and 2 that can be collected be n1

and n2, respectively. Whenever all the parameters are fixed, a particular scenario
can be described.

3.5 Attack Scenarios for Trivium and Bivium

In this subsection we accumulate techniques given in the previous subsections,
and propose a set of attack scenarios for Trivium and Bivium in Table 43.
Moreover, a brief algorithm of the scenario T1 is presented in Table 5.

In all scenarios above the constant c is the time required for the second phase,
where the remaining bits are recovered, and it is different for different scenarios.

T0 and B0 are trivial scenarios for Trivium and Bivium, where no out-
comes of any AND gates are guessed. However, the number of linear equations

2 Trivium is designed to maximize parallelism in forward direction. This allows hard-
ware designers to choose trade-off between speed and chip-size.

3 The keystream length given in the table is an average number of positions at the
keystream from where we need to study a window of around A + B + C consecutive
bits.
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Table 4. Attack scenarios

Scenario T0 Descr. = Tri l1:l2:l3:l4 = 0:0:0:0 Ph.II unknowns=192

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

0:0:0 0:0 1 22 1 1 100 61 c · 274.0 O(1)

Scenario T1 Descr. = Tri l1:l2:l3:l4 = 5:5:4:1 Ph.II unknowns=192

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

46:37:42 125:0 1 59 2−9.7 2−51.9 192 178 c · 283.5 261.5

Scenario T2

42:33:38 113:4 222.6 55 2−9.7 2−53.2 192 162 c · 288.9 240.3

Scenario T3 Descr. = Tri l1:l2:l3:l4 = 0:0:5:4 Ph.II unknowns=192

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

29:30:30 89:0 1 52 2−7.8 2−36.9 158 152 c · 279.7 244.7

Scenario B0 Descr. = Bi l1:l2:l3:l4 = 0:0:0:0 Ph.II unknowns=118

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

0:0:— 0:0 1 22 1 1 100 61 c · 237.0 O(1)

Scenario B1

9:5:— 14:0 1 27 1 2−5.8 118 67 c · 237.8 25.8

is not enough to recover the remaining bits using simple Gaussian elimination.
Therefore, equations of a higher degree need to be collected and used. These
scenarios have the least possible time and keystream complexities, and are the
lower bounds.

In T1 and B1 we show optimal, on our view, choice of parameters such that
the second phase has enough linear equations and the time complexity is mini-
mal. However, along with linear equations we also have many equations of degree
2, which we are not using at all. Note that the attack complexities presented here
are much lower than those given in [Rad06].

In T2 we show how the trade-off between the length of the keystream and
time works. For a small increase of time we can reduce keystream significantly.

In T3 we receive a system of equations of degree ≤ 2 on 192 variables. This
system is quite over-defined (more than 50%), and it might be possible to have
an efficient algorithm for solving such a system.

However, the results given in these scenarios can be improved significantly if
a pre- or/and a post- statistical tests can be applied efficiently. The goal of such
a test is to reduce the constant c. For these approaches see Appendices A and B.

Another possibility to reduce the constant c can be achieved via efficient
solving a system of sparse linear equations (in cases of T1, T2, B1), or through
the use of high degree equations (in cases of T3, B0). Finding such an algorithm
is a hard problem, and we leave it as an open problem, identified in a more general
form in Section 6.

3.6 Our Results vs. Exhaustive Search

We have shown that Bivium can be broken in time around c · 237, which de-
termines a really low bound for the security level. This example was taken into
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Table 5. Attack scenario T1 for Trivium in brief

Given: u = u1, u2 – the keystream of Trivium of length 261.5

Attack Scenario T1:

1. For every t = 0, 1, 2, . . . , �261.5� assume that a
(t+3i)
90 a

(t+3i)
91 =

0, b
(t+3j)
81 b

(t+3j)
82 = 0, c

(t+3k)
108 c

(t+3k)
109 = 0, for i = [0 : 45], j = [0 : 36], k =

[0 : 41].
2. Collect 59 linear equations on T0 with probability 1, and 15 more linear

equations with the total probability 2−9.7, see Subsection 3.3.
3. For every guess of the remaining 22 bits from T0, derive the state of T0

using the linear equations collected in step 2.
4. Collect 192 linear equations on T1 and T2, clocking the cipher forward,

under the assumption that the guess above was correct.
5. Recover the state of T1 and T2 by any linear technique (e.g., Gaussian

elimination) in fixed time, and verify the solution in time O(1).
6. Repeat the loops in steps 1 and 3 until the right internal state is found.

account in order to make a comparison of the techniques versus the ones used
in the paper [Rad06], where the best attack on this design has been found to be
of the complexity around c · 256 seconds.

Although the security level of Trivium is 280, we believe that an exhaustive
search will require much more time, γ280, where γ is the initialization time
of the cipher that includes 1152 clocks to be done before the first keystream
bits are produced. Because of different implementation issues can be applied,
including parallelism, an average time required for one clock of the cipher can
vary. However, we believe that a conservative value for the coefficient γ is around
210, and an exhaustive search would require around 210+80 operations. This
means that such scenarios, such as T1, T3, are competitive in terms of the time
complexity, and at least are very close to the exhaustive search, if not faster.

Obviously, in this particular design the security level cannot be improved by
simply increasing the size of the key – our attack will definitely be faster than
an exhaustive search in that case. Therefore, in order to increase the security
level the design of Trivium should be changed, for example, the size of the state
could be increased. This would result in a longer initialization time and a larger
hardware footprint.

4 General Attack Scenario

Let us investigate a general structure of Trivium-like stream ciphers with the
following properties4.

– It has k nonlinear shift registers S = (S1, S2, . . . , Sk), with the corresponding
lengths L = (L1, L2, . . . , Lk). The bits of each register Si are Si[1], . . . , Si[Li];

4 In this section a slightly changed manner of the indexation for the vectors is used,
starting to count the indices from 1, instead of 0.
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– Each register is divided into blocks, all divisible by d;
– There are k AND gates, and they are placed as AND(Si[Li − 2], Si[Li − 1]) like

in Trivium.

Let us denote this structure as TrivGen(k, d, L). For simplicity, Let the vec-
tor of the lengths L be sorted such that Li ≤ Li+1, ∀i. In this section we study a
scenario of a general state recovering attack on the whole class of the Trivium-
like family of stream ciphers. The total size of the internal state S is

l =
k∑

i=1

Li. (6)

The d subsets of the total state S are defined as

Ti =

{{
∀j = 1, . . . , k

∀t = 0, . . . ,
Lj

d − 1
: Sj [td + i]

}

, ∀i = 1, . . . , d. (7)

4.1 Phase I: Deriving T1 and T2

Let us first explain how |T1| bits of the first subset T1 can be derived. We simply
assume (or guess) that during consecutive d · |T1| clocks of TrivGen enough
linear equations on T1 are collected. One observes every d’s output bit at the
keystream and writes up equations one by one, where every new AND term is
approximated by zero.

Assume Δ is the number of linear equations that can be received from the
keystream without any approximations. Let for the remaining |T1|−Δ equations
the number of G AND terms have to be approximated. The values of Δ and G
are easy to calculate once an exact instance of the design is given. The number
of such guesses G is upper bounded as

G ≤ k

(
l

d
− Δ

)
. (8)

The same procedure can be done for T2. Note that these two parts share the
same values of Δ and G.

Instead of approximating 2G AND gates with probability 0.75 each, when de-
riving linear equations on T1 and T2, one can use the fact that these gates are
not independent. At some time i two gates, one for the equation on T1 and one
on T2, share one variable, i.e., if the first gate is AND(a, b), then the second is
AND(b, c). The probability that both gates produce zeros is 5/8. Therefore, the
total probability of the required guess is

pI = (5/8)G. (9)

4.2 Phase II: Calculating T3 . . . Td

In the first phase two subsets T1 and T2 are received. Additionally, by guessing
every AND term we also guaranteed that during the first l clocks only linear
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transformations over the two subsets are applied. It means that an outcome of
every AND gate that is connected to T3 is known. Thus, required number of linear
equations on T3 can be collected, and then Gaussian elimination is applied.

After T3 is determined, we can start with a similar procedure to derive T4,
and so on. When the final subset Td is derived, one can use the guesses from the
first phase to check if they are in a conflict with the recovered state or not.

The total complexity of this part is

cII ≈ O(d · (l/d)2.808), (10)

if the Strassen’s algorithm for computing solution of a linear system is used. In
this complexity we also included time for similar computation of the first phase.
This attack scenario requires around p−1

I of the keystream, and cII/pI of time.

4.3 Example: Trivium-6

Let us consider the following construction

Trivium-6 ⇒ Tri(66, 6, 24; 72, 12, 6; 66, 24, 24). (11)

This is a slightly modified Trivium stream cipher with the internal state of size
300 bits, and all building blocks are divisible by 6 (still divisible by 3, but also by
2). The design of Trivium-6 belongs to the class TrivGen(3, 6, (90, 96, 114)).

I.e., we have k = 3, d = 6, l = 300, and T1, . . . , T6 are defined as in (7), each
of size |Ti| = 50 (= l/d). One can easily check that

Δ = min{66, 72, 66}/6 + 1 = 12,

G =
[
(|T1| − Δ) − (

66
6

− 11)
]

+
[
(|T1| − Δ) − (

72
6

− 11)
]

+
[
(|T1| − Δ) − (

66
6

− 11)
]

= 38 + 37 + 38 = 113,

(12)

where 11 equations of Δ are received from 11 · 6 forward clocking, and one from
backward clockings. Thus,

pI ≈ 2−76.6, cII ≈ 218.4. (13)

It means that the total time complexity is 295 for this example, which is smaller
than for Trivium, although the internal state is larger. Note also that the
keystream complexity can significantly be reduces in a similar manner as in
Section 3.2 for a small penalty in time.

5 Second Analysis: Statistical Tests

Linear cryptanalysis is one of the most powerful tools for analysis of stream
ciphers. In this section we find a way of sampling from the keystream such that
their distribution is biased. By this mean we build a linear distinguisher for the
cipher.
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5.1 Standard Approximation Technique

Let the variables of T0 be denoted as {w0, w1, . . . , w95}. Then, assuming that all
AND terms are zeros, we receive a system of linear equations of rank 93 (instead
of 96). It means that we can sample from the stream as follows

∑

i∈Ik

wi = Nk, ∀k ∈ {93, 94, 95, 96}, (14)

where

I93 = {0, 1, 4, 6, 8, 9, 12, 13, 14, 17, 19, 20, 23, 25, 27, 30, 31, 34, 35, 38, 39, 41, 43, 44,

67, 68, 70, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93};
I94 = {0, 2, 4, 5, 6, 7, 8, 10, 12, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36,

38, 40, 41, 42, 43, 45, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94};
I95 = {0, 3, 4, 5, 7, 11, 12, 14, 16, 17, 18, 22, 23, 24, 26, 28, 29, 30, 33, 34, 37, 38, 42,

46, 67, 71, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95};
I96 = {0, 5, 9, 14, 15, 18, 20, 24, 29, 41, 44, 47, 67, 70, 73, 96}.

(15)

The noise variable Nk is a sum of a set of random AND gates. Therefore, the
bias and the complexity of a distinguisher can be summarized in Table 6.

Table 6. Linear distinguishers for Trivium and its attack complexities

k # of AND gates in Nk bias ε attack complexity

93 108 2−108 2216

94 126 2−126 2252

95 112 2−112 2224

96 72 2−72 2144

Table 7. Linear distinguishers for Bivium and their attack complexities

k # ANDs time Ik

57 49 298 {0, 2, 4, 5, 6, 7, 8, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57}

58 49 298 {1, 3, 5, 6, 7, 8, 9, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 34, 35,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}

59 16 232 {0, 5, 9, 10, 14, 33, 36, 59}

Obviously, we could also mix these four equations to receive other 8 linear
combinations that are different in principal from the found four. However, we
could not achieve complexity lower than 2144.

For Bivium, the rank appeared to be 57 (instead of 59), and similar resulting
Table 7 is as follows.
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Table 8. A linear distinguishing attack on Bivium in detail

Given: v = v1, v2 – the keystream of Bivium of length 232

Init: P [2] = 0 – a binary distribution, not normalized
A linear distinguishing attack on Bivium:

1. For every t = 1, 2, . . . , 232 calculate

s = vt + vt+15 + vt+27 + vt+30 + vt+42 + vt+99 + vt+108 + vt+177,

and attune the distribution as P [s] + +.
2. After the loop is finished, calculate the distance

ξ = P [0]/232 − 0.5.

3. Make the final decision

δ(ξ) =

{
v is from Bivium, if ξ > 2−16/2,

v is Random, if ξ ≤ 2−16/2.

I.e., Bivium can be distinguished from random in time complexity 232, which
is much faster than all previously known attacks on it. Since the complexity of
the attack is feasible, we could run the simulation of the attack on Bivium, which
confirmed the found theoretical bias. This attack is shown in brief in Table 8.

5.2 Another Way of Approximation

In the previous section all AND terms were approximated as zero. However, an-
other sort of approximation is possible, such as

AND(x, y) = τxx + τyy + n,

where τx, τy are chosen coefficients, and n is the noise variable with the bias
ε = 2−1. Whenever approximations for every AND gate are appropriately chosen,
there must exist a biased linear equation on a shorter window of the keystream
than that in the previous subsection. Our goal is to reduce the number of noise
variables in the final expression for sampling. Unfortunately, the search for ap-
propriate coefficients, which give us a strongly biased expression for sampling,
is a hard task. Moreover, the probability that we can find an expression with
the number of gates less than 72 is low. In our simulations we could find several
biased equations on a shorter window, but the number of approximations were
larger than 72. This issue is an interesting open problem.

5.3 Multidimensional Approximation

In Subsection 5.1 we gave a set of linear relations for a biased sampling from
the keystream. The best equations for Trivium and Bivium require 72 and
16 approximations of AND gates, respectively. However, these samples are not
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independent, and some of the noises appear in several samples at different time
instances. Therefore, the attack complexity can be improved by considering sev-
eral samples jointly. I.e., we suggest to test a multidimensional approximation
where one sample comes from a joint distribution.

Unfortunately, this did not give us a significant improvement. We considered
three samples jointly, and the bias of that noise was 2−15.4, which is larger than
2−16, but does not differ significantly.

6 Open Problems

Below we would like to identify several interesting open problems that we found
while working on Trivium.

OP-1 Let the complete internal state of Trivium be 288 unknowns. When clock-
ing forward, we receive several equations on these unknowns. Every time
when a new AND gate appears, we will make a substitution, introducing
a new variable into the system. After exactly k = 288 clocking, we will
receive k linear equations on 3k unknowns, and also 2k equations of degree
2 (substitutions). All terms of degree 2 will look like a0a1, a1a2, a2a3, . . .,
and the same for b’s and c’s. After partial Gaussian elimination we can
remain with 2k nonlinear equations on 2k unknowns5.

Let X be a variable, an integer number of length 2k bits (=576),
representing the solution. Then, the problem of breaking Trivium can,
after a slight modification, be interpreted as solving the following equation
in Z22k .

X&(X 	 1) ⊕ M · X = V, (16)

where M is a known and fixed Boolean matrix, and V is a known vector,
constructed from the keystream. Our task is to find at lest one solution
of the equation (guaranteed to exist).

OP-2 The set T0 is a set of 96 unknowns. We know that each guess of T0 allows
us to construct a system of linear equations on the remaining sets T1 and
T2. However, we believe that after a partial Gaussian elimination that
matrix will look similar to

(
T1

T2

)
·
(

I W1

W2 I

)
= V, (17)

where W1 and W2 are sub-matrices dependent on the guess of T0, and V is
a known vector. Since we made a set of guesses that particular AND(T1, T2)
gates are zeros, we would like then to “extract” somehow only one pair
of bits from this system. Afterwards, we can make a test whether their

5 The idea of writing up equations with specific substitutions was first proposed by
Steve Babbage at SASC-06.
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product is zero or not, and then in a case of a wrong result, skip the
calculations of the remaining bits.

If it would be possible, then this technique would allow to reduce the
constant c in the time complexity of the attack significantly.

OP-3 Finally an interesting open problem is how to strengthen Trivium, while
keeping its elegance, simplicity and degree of parallelism. We propose one
possible solution to this problem in Appendix A.

7 Results and Conclusions

In this paper we have studied various methods for analysis of Trivium-like
stream ciphers. Below we give a comparison Table 9 of the known attacks on
two instances, original Trivium and a reduced version called Bivium.

Table 9. Resulting comparison of various attacks

C
a
se

S
ta

te Comp- Exhaustive State Recovering Attack Distinguishing Attack

lexity search previous new attack previous new attack

time γ280 δ · 2135 [eDF05] c · 283.5 2144 [CP05] —
γ ≈ 210 2164 [Rad06] c ≈ 216

T
r
iv

iu
m

2
8
8

b
it
s

keystream O(1) O(1) 261.5 2144 —

time γ280 256 sec. [Rad06] c · 236.1 — 232

c ≈ 214 verified

B
iv

iu
m

1
7
7

b
it
s

keystream O(1) O(1) 211.7 — 232

time — — c · 276.6 — —
c ≈ 218.4

T
r
iv

-6
3
0
0

b
it
s

keystream — — 276.6 — —

A brief summary for the algorithm of the state recovering attack on Trivium
is given in Table 5, and a distinguishing attack on Bivium is presented in Table 8.

With the key of 80 bits Trivium seems to be secure. However, contrary to
what one could expect from its almost 300 bit state, there is no security margin.
This also means that one cannot use 128 bit keys and IVs with the current design.
For this purpose, either the internal state has to be increased or some other re-
design should take place. Moreover, we have clearly shown on the example of
Trivium-6 that one has to be very carefully when introducing the property of
d-divisibility of the construction blocks’ lengths.

In this paper we have proposed a modified design Trivium/128, which we
believe is more secure than the original Trivium. In hardware, its speed of
encryption is the same as in Trivium, but the footprint is slightly larger due to
the 3 additional AND terms. For the same reason, in software it is also slightly
slower. However, its security level seems to be much better.
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Appendix A: Modification of Trivium: Trivium/128

In this section we present several modifications of the original Trivium design
which improve its security against our attacks and which allow to use Trivium
with 128-bit keys.
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c0 64 86t c cr p

t110c

92a

Fig. 2. A 128-bit improved design Trivium/128

Suggestions for possible improvements of Trivium are as follows.

I-1 Although clocking forward allows us to receive many linear or low degree
equations, the backward clocking does not. The backward evaluation of
Trivium seem to be “well-protected”, since the outcome of the AND gates are
connected forward, thus, supporting a huge avalanche effect of noise propa-
gation when clocking backward. We suggest to introduce 3 additional gates,
but connected backward, in order to support a similar effect when clocking
forward. To keep the parallelism property (64 clocks at once), the distance
between the taps and the outcome pins of the new gates should be not less
than 64;

I-2 In all our attacks we used the property that the building blocks of Trivium
are divisible by 3. We think that if one can remove this property, the attack
could be more complex. However, this could create a risk of an existence of
a good distinguisher.

According to the suggestions above we propose a modification Trivium/128,
which is similar to Trivium, but possibly more secure. Trivium/128 is pre-
sented in Figure 2. We keep the size of the internal state to be 288 bits, as well

http://www.ecrypt.eu.org/stream
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as the sizes of the nonlinear registers, 94, 84, and 111 bits, respectively. In each
register the size of the first block is decreased by 1 bit, and the second block is
increased by 1 bit. This would destroy the “3-divisibility” property. Moreover,
in each register we introduce an additional AND gate, the inputs of which are the
first and the third taps of the second block. For example, in the register A the tap
positions are a65 and a67. The new gate will make the complexity of equations
to grow faster than in the original Trivium, keeping the parallelism property of
the cipher (ideally we should jump just a few bits back, but this would destroy
parallelism). If only 32-bit parallelism suffices, then the new AND gates could
jump in the middle of the first blocks in the registers. The propagation of the
noise would be twice faster then. Yet another option which would have very fast
growth of non-linearity would be to move the AND gates to the beginning of the
long register (ex. tap positions a1, a2). We keep the same initialization procedure
as in Trivium, but with a 128 bit secret key to be loaded instead.

We believe that this tweak of the original design would resist our attacks and,
possibly stay resistant against distinguishing attacks as well. We are currently
checking Trivium-like designs in order to find one with best security/performance
tradeoff.

Appendix B: Statistical Pre-Test for the Phase I

In the scenarios above the constant c within time complexity denotes the time
needed for solving a system of equations in the second phase. Although the equa-
tions are sparse, this constant can still be large. When the number of variables
is 192, we assume that this constant is approximately lower bounded as c ≈ 216.

One idea to reduce the total time complexity is to consider only those “win-
dows” in the stream where the probability for the guess of the AND gates is larger
than in a random case.

g1

g3

g5

g2

g4

g6

...

...

...
vt
vt+1

ut
ut+1

Fig. 3. Statistical pre-test
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Table 10. Keystream influence for the pre-test technique

(ut, ut+1) Pr{the sum of AND gates is zero}
(vt, vt+1) in Trivium in Bivium

(0, 0) 0.53125 0.625
(0, 1) 0.5 0.5
(1, 0) 0.5 0.5
(1, 1) 0.5 0.5

Let us observe an output pair (ut, ut+1) (or (vt, vt+1)) at some time t and
t + 1, each component of which is the sum of 6 (respectively, 4) bits of the state
from T (t)

1 and T (t)
2 , as shown in Figure 3. The question here is: What is the

probability that the sum of six (four) AND gates is zero, given the observed pair?
We can use this criteria to cut undesired cases, since the sum of the gates must
be zero when all of them are zeros as well. Below, in Table 10, we give these
probabilities in accordance.

I.e., when the keystream in a specified “window” is a zero sequence, then
the probability of our guess, a set of specific AND gates is zero, is larger than
otherwise. However, this approach would require a much longer keystream, and
the gain in time complexity is not significant. More complicated tests can also
be developed.

Appendix C: Statistical Post-test of the Phase I

Another approach is to make a test after the first 1/3rd of the state is guessed
and derived. Let us introduce a decision rule for the test

δ(T (t)
0 ) =

{
Accept, T (t)

0 passes the test,
Reject, otherwise.

(18)

Associated with the decision rule δ there are two error probabilities.

α = Pr{δ(T (t)
0 ) = Reject|the guess T (t)

0 is correct},

β = Pr{δ(T (t)
0 ) = Accept|the guess T (t)

0 is wrong}.
(19)

Thus, the time complexity can be reduced from c ·Q down to β ·c ·Q. However,
the success of the attack will be Psucc = 1 − α. If the test is statistically strong,
then α and β are small, lowering the time complexity significantly.

One such a test could be as follows. At a time t the sequence of d′ triple-
clocks allows us to receive d′ linear equations on the bits of T (t)

0 . However, if we
continue clocking, we will then receive a sequence of biased samples. The bias
decreases rapidly as long as the number of random AND terms in the equation
for the noise variable grows.

Unfortunately, for Trivium there is no valuable gain, but for Bivium the
gain is more visible. Consider the scenario B1. After the first phase the following
triple-clocks give us the following samples.



Two Trivial Attacks on Trivium 55

AND gates in the noise, i = 1 2 3 4 ...
Number of samples, li = 5 4 1 13 ∞

Let us denote the first 23 samples (24=5+4+1+13) as s23 = s0, s1, . . . , s22,
and the decision rule for our test be

δ(s23) =

{
Accept, if Hw(s23) ≥ σ0,

Reject, otherwise,

where 0 ≤ σ0 ≤ 23 is some appropriately chosen decision threshold. The error
probabilities are then as follows.

α =
∑

{ ∀tw : 0 ≤ tw ≤ lw, w = 1 . . . 4
t1 + t2 + t3 + t4 < σ0

4∏

w=1

(
lw
t1

)
ptw

w (1 − pw)lw−tw ,

β = 2−23
23∑

t=σ0

(
23
t

)
,

(20)

where the probabilities pw are calculated via (5). Additional information is ex-
tracted from the fact that the distribution of α is “shifted” with regard to the
distribution of β, and, therefore, the gain can be achieved. In Table 11 these
probabilities are given for several values of the threshold σ0.

Table 11. Error probabilities for the post-test technique

σ0 0 7 11 12 14 18 23

α ∼ 0 0.0038 0.1585 0.2964 0.6275 0.9839 ∼ 1

β ∼ 1 0.9826 0.6612 0.5000 0.2024 0.0053 ∼ 0

I.e., if we choose σ0 = 18 in B1, then the time complexity will be c · 230.2,
instead of 237.8. The length of the keystream remains the same. However, the
success probability of this attack is Psucc = 0.0161, which is low.

The situation with the success rate can be improved if the attack will be
repeated 1/Psucc times. Thus, we have the overall time complexity around 25.9 ·
230.2 = 236.1, but the keystream is also increased till 211.7. We could trade-off a
better time complexity with the length of the keystream, and the overall success
probability is around 1.

Searching for a proper statistical test is a challenge and is not an easy task.
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