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Abstract. Distributed Video Coding (DVC) is a promising coding solution for 
some emerging applications, where the encoder complexity, power 
consumption or memory requirements are constraint the system resources. 
Current approaches to DVC focus on improving the performance of the Wyner-
Ziv coding by improving the quality of the reconstructed side information or by 
improving the quality of channel codes. Up to date, no attention has been paid 
to the problem of key frames coding where a low-encoding complexity scenario 
is also needed. This work focuses on key frames coding in its effect to the 
Wyner-Ziv frames decoding aiming to implement a very low-complexity Turbo 
Trellis Coded Modulation (TTCM) based DVC architecture. In this paper, we 
propose a new key frame coding scheme which has very low complexity and 
memory requirements for the TTCM based distributed video codec. Results 
show that the proposed intra frame codec for key frame coding outperforms the 
JPEG2000 and the Intra H.264 AVC codecs in terms of encoding-time and 
memory requirements, with better RD performance. 

Keywords: Distributed Video Coding, Low Complexity, TTCM codes. 

1   Introduction 

Nowadays, with emerging applications such as multimedia wireless sensor networks, 
wireless video surveillance, disposable video cameras, medical applications and 
mobile camera phones, the traditional video coding architecture is being challenged. 
For all the applications mentioned above there is need to have a low complexity 
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encoder probably at the expense of a high complexity decoder. For these emerging 
applications, Distributed Video Coding (DVC) seems to be able to offer efficient and 
low-complexity encoding video compression. 

DVC is a new video coding paradigm which allows among other things shifting 
complexity from the encoder to the decoder. The theoretical framework and the 
guidelines for DVC were established by Slepian-Wolf [1] and the current work in this 
field is based on the work by Wyner-Ziv [2]. Based on this theoretical framework, 
several turbo coded DVC codecs have been proposed recently [3,4,5]. In [3,4] the 
authors have proposed a turbo coded based Wyner-Ziv codec for motion video using a 
simple frame interpolation. In [5] the authors proposed a more sophisticated motion 
interpolation and extrapolation techniques [5] to predict the side information. The 
majority of these well-know research works on DVC have been carried out using a 
Turbo Wyner-Ziv codec. However, recent experimental results [6] show that the 
Turbo Trellis Coded Modulation (TTCM) based DVC codecs can improve the PSNR 
up to 6dB at the same bit rate with less memory compared to the Turbo Coded DVC 
codecs.  

Current practical schemes developed for DVC are based in general on the 
following principles: the video frames are organized into two types; Key frames and 
Wyner-Ziv frames, while the key frames are encoded with a conventional intraframe 
codec, the frames between them are Wyner-Ziv encoded. At the decoder, the side 
information is obtained using previously decoded key frames and Wyner-Ziv frames. 

In this context, most of the contributions given in the literature focus on improving 
the performance of the Wyner-Ziv coding by improving the quality of the 
reconstructed side information [5] or by improving the quality of channel codes [7]. 
Up to date, no attention has been paid to the problem of key frames coding where a 
low-encoding complexity scenario is also needed. The most current approaches to 
DVC rely on key frames available at the decoder perfectly reconstructed (lossless-
compression) or encoded with conventional intra-frame codecs (lossy-compression). 
Recently, in the DISCOVER European project, JPEG2000 and Intra AVC have been 
proposed as technologies for the key frames coding [8]. However, these conventional 
intraframe encoders are too complex to be implemented in a DVC low-complexity 
scenario.    

For this reason, this paper present a DVC architecture based on TTCM codes for 
the Wyner-Ziv frames as proposed in [6] and on LTW for the key frames as proposed 
in [9]. This paper is an integration and evaluation of these two architectures. In 
particular, the main objective of the paper is to propose a DVC codec with very low 
complexity and memory requirements for the non-DVC portion of an integrated 
TTCM based DVC architecture with very low complexity. 

The rest of the paper is organized as follows. Section 2 introduces the TTCM 
based distributed video coding architecture with very low complexity key-frame 
coding. In Section 3, we carry out a performance evaluation of the proposed 
architecture in terms of memory requirements, computational complexity and rate-
distortion. We compare the performance of our proposal to the JPEG2000 and Intra 
AVC proposals. Finally, in section 4 conclusions are drawn. 
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Fig. 1. DVC Architecture using Turbo Trellis Coded Modulation (TTCM) 

2   Low-Complexity TTCM Based DVC Architecture 

2.1   Wyner-Ziv Frames Coding  

The considered Distributed Video Coding architecture is showed in Figure 1. The odd 
frames {X1, X3 ...} are the Wyner-Ziv frames which go through the interframe 
encoder to generate the parity sequence to be transferred to the decoder. The Wyner-
Ziv frames are first passed through the 2M level quantizer where the level M is an 
independently varied parameter based on the expected quality of output and the 
available channel bandwidth. Next, the Slepian-Wolf based encoder incorporates the 
bit plane extractor and then the turbo trellis encoder. Each rate ½ component encoder 
of our implementation has a constraint length K=M+1 = 4 and a generator polynomial 
of (11 02) in octal form. A Pseudo-random interleaver is used in front of the 2nd 
constituent encoder. Only the parity bit sequence thus generated is retained in the 
parity buffers and the systematic bits are discarded. 

The decoder generates the side information using the Key-frames employing a 
pixel interpolation algorithm as below: 

 ( )1
1 12( , ) ( , ) ( , )m m mY i j X i j X i j− += +                                    (1) 

This side information together with the parity bits passed from the encoder, upon 
request, form the PSK symbols to be processed in the TTCM (Turbo Trellis Coded 
Modulation) decoder. A multi level set partitioning is done with the constellation 
mapping of the TCM symbols in order to maintain the maximum Euclidian distance 
between the information bits. Where ever parity bits are not available due to 
puncturing being effective, the symbol automatically reduces to a lower modulation 
level. In the implementation under discussion, a combination of 4 PSK and Binary-
PSK is used based on the availability of the parity bits for the constellation mapping.  

As commonly understood, Trellis Coded Modulation is conceptually a channel 
coding technique used to optimize the bandwidth requirements of a channel while 
protecting the information bits by increasing the size of the symbol constellation. Our 
effort is to exploit the high coding gain and the noise immunity inherent in this 
technique. 

A block diagram of the Turbo-TCM decoder implementation is shown in Figure 2. 
A symbol based MAP algorithm is used in the turbo trellis decoder which is run for 6 
iterations as a complexity performance trade-off. A modification was done to the 
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branch metric calculation to take care of the independent distributions of side 
information and parity bits. The parity bits are supplied to the decoder through an 
“on-demand” approach using a reverse channel for passing the request to the parity 
buffer maintained in the encoder. The de-puncturer function in the decoder basically 
watches the parity availability and manipulates the symbols fed to the SISO based 
MAP decoder accordingly. A reconstruction function is used to smoothing some 
adverse effects in the output sequence including some contribution by the 
quantization noise.  

On the other hand, the side information generated by the temporal interpolation of 
two key frames is assumed to be a form of the original Wyner-Ziv frame subjected to 
noise. The probability distribution of this noise was a part of the detailed study. It was 
noticed that both the Gaussian noise distribution and the Laplacian noise distribution 
resembled the interpolation noise with distinct variance parameters. However, most 
interestingly, it was noted that our implementation of the codec was not susceptible to 
error by sub-optimal approximations of the distribution for the purpose of taking the 
results; an Additive White Gaussian Noise (AWGN) with variance 0.125 was 
assumed. To obtain more details about this, see [6]. 

 

Fig. 2. Block Diagram of TTCM Decoder 

2.2   Key Frames Coding 

Little attention has been paid in the literature to the problem of key frames coding and 
most of the current approaches to DVC rely on key frames available at the decoder 
perfectly reconstructed (lossless-compression) or key frame coding using 
conventional intra frame codecs, such as JPEG2000 or AVC intra. In this work, we 
propose the use of the LTW (Lower-Tree Wavelet) compression algorithm [9], for 
Key-Frames encoding in order to be integrated in TTCM based DVC architecture 
with very low complexity key-frame coding. LTW is based on the efficient 
construction of wavelet coefficient lower trees. The main contribution of the LTW 
encoder is the utilization of coefficient trees, not only as an efficient method of 
grouping coefficients, but also as a fast way of coding them. Thus, it presents state-of-
the-art compression performance, whereas its complexity is lower than the 
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conventional intraframe codecs. Fast execution is achieved by means of a simple two-
pass coding and one-pass decoding algorithm. Moreover, its computation does not 
require additional lists or complex data structures, so there is no memory overhead.  

With LTW, the quantization process is performed by two strategies: one coarser 
and another finer. The finer one consists in applying a scalar uniform quantization, Q, 
to wavelet coefficients. The coarser one is based on removing the least significant bit 
planes, rplanes, from wavelet coefficients. The use of coefficient trees structure called 
lower tree reduces the total number of symbols needed to encode the image, 
decreasing the overall execution time. This structure is a coefficient tree in which all 
its coefficients are lower than 2rplanes. 

The LTW algorithm consists of two stages. In the first one, the significance map is 
built after quantizing the wavelet coefficients (by means of both Q and rplanes 
parameters). In Figure 3(b) we show the significance map built from wavelet 
decomposition shown at Figure 3(a). The symbol set employed in our proposal is the 
following one: a LOWER (L) symbol represents a coefficient that is the roots of a 
lower-tree, the rest of coefficients in the lower-tree are labeled as 
LOWER_COMPONENT (*) but they are never encoded because they are already 
represented by the root coefficient. If a coefficient is insignificant but it does not 
belong to a lower-tree because it has at least one significant descendant, it is labeled 
as an ISOLATED_LOWER (I) symbol. For a significant coefficient, we simply use a 
symbol indicating the number of bits needed to represent it. 

With respect to the coding algorithm, in the first stage (symbol computation), all 
wavelet subbands are scanned in 2×2 blocks of coefficients, from the first 
decomposition level to the Nth (to be able to build the lower-trees from leaves to 
root). In the first level subband, if the four coefficients in each 2×2 block are 
insignificant (i.e., lower than 2rplanes), they are considered to be part of the same lower-
tree, labeled as LOWER_COMPONENT. Then, when scanning upper level subbands, 
if a 2×2 block has four insignificant coefficients, and all their direct descendants are 
LOWER_COMPONENT, the coefficients in that block are labeled as LOWER_ 
COMPONENT, increasing the lower-tree size. 

However, when at least one coefficient in the block is significant, the lower-tree 
cannot continue growing. In that case, a symbol for each coefficient is computed one 
by one. Each insignificant coefficient in the block is assigned a LOWER symbol if all 
its descendants are LOWER_COMPONENT, otherwise it is assigned an 
ISOLATED_LOWER symbol. On the other hand, for each significant coefficient, a 
symbol indicating the number of bits needed to represent that coefficient is employed.  

Finally, in the second stage, subbands are encoded from the LLN subband to the 
first-level wavelet subbands, as shown at Figure 4. Observe that this is the order in 
which the decoder needs to know the symbols, so that lower-tree roots are decoded 
before its leaves. In addition, this order provides resolution scalability, because LLN is 
a low-resolution scaled version of the original image, and as more subbands are being 
received, the low-resolution image can be doubled in size. In each subband, for each 
2×2 block, the symbols computed in the first stage are entropy coded by means of an 
arithmetic encoder. Recall that no LOWER_COMPONENT is encoded. In addition, 
significant bits and sign are needed for each significant coefficient and therefore 
binary encoded. 
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Fig. 3. (a) 2-level wavelet transform of an 8x8 example image. (b) Map Symbols. 

 

Fig. 4. Coefficient-trees in LTW 

3   Results 

In this section, we carry out a performance evaluation of the Low-Complexity TTCM 
Based Distributed Video Coding Architecture proposed in section 2, in terms of 
memory requirements, computational complexity and rate-distortion. For the purpose 
of this performance comparative evaluation, even frames were intra coded with LTW, 
JPEG2000 or H.264 (Baseline Profile, the fastest version of AVC Intra), and decoded 
while odd frames are coded as Wyner-Ziv frames, as shown in Figure 1.  

The bit rate and PSNR are calculated for the luminance of the Wyner-Ziv frames 
(odd frames), or the Key-Frames (even frames) of the Foreman sequence (300 
frames), for a frame size of 176x144 (QCIF) with a Wyner-Ziv frame rate of 15fps.  

For a better comparative performance of rate-distortion function, we also show the 
average PSNR difference (∆PSNR) and the average bit-rate difference (∆Bitrate). The 
PSNR and bit-rate differences are calculated according to the numerical averages 
between the RD-curves derived from LTW encoder, JPEG2000 and H.264 encoders, 
respectively. The detail procedures in calculating these differences can be found from 
a JVT document authored by Bjontegaard [10]. Note that PSNR and bit-rate 
differences should be regarded as equivalent, i.e., there is either the decrease in PSNR 
or the increase in bit-rate, but not both at the same time. 

For the purpose of our performance evaluation, we first evaluate the key frames 
coding part of our low-complexity DVC architecture, and then we evaluate the 
Wyner-Ziv frames coding part of our low-complexity DVC architecture. Finally, 
global results (taking into account all frames) will be provided.    
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For the key frames coding part, all the evaluated encoders have been tested on an 
Intel Pentium M Dual Core 3.0 GHz with 1Gbyte RAM Memory. We have selected 
H.264 [11] (Baseline, JM10.2), JPEG2000 [12] (Jasper 1.701.0) and LTW, since their 
source code is available for testing. The correspondent binaries were obtained by 
means of Visual C++ (version 2005) compiler with the same project options and 
under the above mentioned machine. A further evaluation can be found in [13]  

Figure 5 shows the average memory requirements1 per key frame for all key frame 
codecs under study and for QCIF and CIF size formats. In both cases LTW needs 
practically half the memory than JPEG2000 and H.264 needs six times the memory of 
LTW for QCIF size and eight times for CIF size. 
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Fig. 5. Memory Requirements (Key Frames) 

Figure 6 shows the average encoding time per key frame for all key frame codecs 
under study for QCIF Foreman video sequence. As shown in Figure 6, LTW codec 
has the lowest complexity of all evaluated codecs and is about 10 times faster than 
JPEG2000 and 100 times faster than H.264 (Baseline profile, the fastest version of 
AVC Intra). LTW codec reduces the complexity substantially with respect the other 
conventional codecs under study showing the effectiveness of the LTW codec in the 
proposed Low-Complexity TTCM Based Distributed Video Coding Architecture. 

Figure 7 shows the RD results for key frames for all key frame codecs under study. 
For a fair comparison, first, the H.264 simulations were carried out by varying the QP 
factor from 20 to 50. For every simulation the real bit-rate was obtained and then it 
was introduced to JPEG 2000 and LTW codecs as target bit-rates. As shown, the 
Rate-Distortion obtained with LTW outperforms the other codecs by 1.2 dB and 1.13 
dB on average, with respect to JPEG2000 and H.264 respectively, using less bit-rate, 
up to 17% and up to 10% with respect to JPEG2000 and H.264 respectively (see 
Table 1).  

For the Wyner-Ziv frames coding part, Figure 8 shows the effect on the Wyner-Ziv 
(WZ) frames decoding when key frames are coded with all key frame codecs under 
study with QP=20. The best results for Wyner-Ziv frames are obtained when key 
frames are coded with LTW codec. As seen in Table 2, the Rate-Distortion results  
 

                                                           
1 Results obtained from Windows XP task manager, peak memory usage column. 
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Fig. 6. Encoding Time per Key Frames 
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Fig. 7. Rate-Distortion Results for Key Frames 

Table 1. Comparison for Key Frames Coding 

JPEG 2000 vs. LTW  H.264 vs. LTW 
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%) 

-1.271 17.11 -1.133 10.70 

obtained on average for Wyner-Ziv frames when key frames are coded with LTW 
codec outperforms the other codecs by 0.5 dB and 0.6 dB on average, with respect to 
JPEG2000 and H.264 respectively, using significant less bit-rate, up to 47% and up to 
46% with respect to JPEG2000 and H.264 respectively. 

Figure 9 shows the effect on the Wyner-Ziv frames decoding when key frames are 
coded with all key frame codecs under study with QP=50. Again, the best results for 
Wyner-Ziv frames are obtained when key frames are coded with LTW codec. As 
shown in Table 3, the Rate-Distortion results obtained for Wyner-Ziv frames when 
key frames are coded with LTW codec outperforms the other codecs by 4.5 dB and 
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0.4 dB on average, with respect to JPEG2000 and H.264 respectively, using 
significant less bit-rate, up to 2768% and up to 9.6% with respect to JPEG2000 and 
H.264 respectively. These results may seem erroneous but there is an explication: the 
side information is generated from the key frames and this side information has an 
important impact over the general performance of DVC. A lack of  PSNR, which is 
shown by Figure 7, for the key frames denotes a lack of RD performance for the DVC 
scheme, shown in figure 9. 
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Fig. 8. Rate-Distortion Results for Wyner-Ziv Frames (When Key Frames are coded with QP=20) 

Table 2. Comparison for WZ Frames Coding when Key Frames are coded with QP=20 

JPEG 2000 vs. LTW  H.264 vs. LTW 
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%) 

-0.51 42.07 -0.662 46.52 
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Fig. 9. Rate-Distortion Results for Wyner-Ziv Frames (When Key Frames are coded with QP=50) 
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Finally we present global results taking into account all frames (key frames +  
Wyner-Ziv frames).  Figure 10 shows the effect on all frames decoding for our Low-
Complexity TTCM Based Distributed Video Coding Architecture when key frames 
are coded with all key frame codecs under study with QP=20. The best results are 
obtained when key frames are coded with LTW codec. As seen in Table 4, the Rate-
Distortion results obtained using LTW codec outperforms the other codecs by 1 dB on 
average, with respect to JPEG2000 and H.264 approximately, using significant less 
bit-rate, around 20%. 

Table 3. Comparison for WZ Frames Coding when Key Frames are coded with QP=50 

JPEG 2000 vs. LTW  H.264 vs. LTW 
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%) 

-4.545 2768.17 -0.435 9.6 
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Fig. 10. Rate-Distortion Results for all Frames. (When Key Frames are coded with QP=20). 

Figure 11 shows the effect on all frames decoding for our Low-Complexity TTCM 
Based Distributed Video Coding Architecture when key frames are coded with all key 
frame codecs under study with QP=50. Again, the best results are obtained when key 
frames are coded with LTW codec. As seen in Table 5, our proposal outperforms the 
other codecs by 3.9 dB and 0.7 dB on average, with respect to JPEG2000 and H.264 
respectively, using significant less bit-rate, up to 105% and up to 10% with respect to 
JPEG2000 and H.264 respectively. 

Table 4. Comparison for ALL Frames when Key Frames are coded with QP=20 

JPEG 2000 vs. LTW  H.264 vs. LTW 
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%) 

-1.011 24.76 -1.188 20.41 
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Although the results presented in this paper are only shown for QCIF format and 
for Foreman sequence, similar behavior was obtained for CIF format and for other 
video sequences. 
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Fig. 11. Rate-Distortion Results for all Frames. (When Key Frames are coded with QP=50). 

Table 5. Comparison for ALL Frames when Key Frames are coded with QP=50 

JPEG 2000 vs. LTW  H.264 vs. LTW 
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%) 

-3.913 105.67 -0.744 10.65 

4   Conclusions 

In this paper, we have proposed a very low-complexity Turbo Trellis Coded 
Modulation based DVC architecture. In particular, we have proposed the use of a fast 
intra frame codec, with very low complexity and memory requirements, in order to be 
implemented for the non-DVC portion of a TTCM based DVC codec. Results clearly 
indicate that the use of LTW intra frame codec on a TTCM based DVC architecture 
outperforms the same architecture when JPEG2000 or the Intra AVC codecs are used 
in terms of encoding-time and memory requirements, showing very similar RD 
performance. 
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