
D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 841–852, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Low-Complexity TTCM Based Distributed Video
Coding Architecture

J.L. Martínez1, W.A.C. Fernando2, W.A.R.J. Weerakkody2, J. Oliver3, O. López4,
M. Martinez4, M. Pérez4, P. Cuenca1, and F. Quiles1

1 Albacete Research Institute of Informatics
Universidad de Castilla-La Mancha

02071 Albacete, Spain
{joseluismm,pcuenca,paco}@dsi.uclm.es

2 Center for Communications Research
University of Surrey

Guildford GU2 7XH, United Kingdom
W.Fernando@surrey.ac.uk, rajithawee@yahoo.com

3 Dep. of Computer Engineering.
Technical University of Valencia. Spain

joliver@disca.upv.es
4 Dept. of Physics and Computer Engineering.

Miguel Hernández University. Spain
{mmrach,otoniel,mels}@umh.es

Abstract. Distributed Video Coding (DVC) is a promising coding solution for
some emerging applications, where the encoder complexity, power
consumption or memory requirements are constraint the system resources.
Current approaches to DVC focus on improving the performance of the Wyner-
Ziv coding by improving the quality of the reconstructed side information or by
improving the quality of channel codes. Up to date, no attention has been paid
to the problem of key frames coding where a low-encoding complexity scenario
is also needed. This work focuses on key frames coding in its effect to the
Wyner-Ziv frames decoding aiming to implement a very low-complexity Turbo
Trellis Coded Modulation (TTCM) based DVC architecture. In this paper, we
propose a new key frame coding scheme which has very low complexity and
memory requirements for the TTCM based distributed video codec. Results
show that the proposed intra frame codec for key frame coding outperforms the
JPEG2000 and the Intra H.264 AVC codecs in terms of encoding-time and
memory requirements, with better RD performance.

Keywords: Distributed Video Coding, Low Complexity, TTCM codes.

1 Introduction

Nowadays, with emerging applications such as multimedia wireless sensor networks,
wireless video surveillance, disposable video cameras, medical applications and
mobile camera phones, the traditional video coding architecture is being challenged.
For all the applications mentioned above there is need to have a low complexity

842 J.L. Martínez et al.

encoder probably at the expense of a high complexity decoder. For these emerging
applications, Distributed Video Coding (DVC) seems to be able to offer efficient and
low-complexity encoding video compression.

DVC is a new video coding paradigm which allows among other things shifting
complexity from the encoder to the decoder. The theoretical framework and the
guidelines for DVC were established by Slepian-Wolf [1] and the current work in this
field is based on the work by Wyner-Ziv [2]. Based on this theoretical framework,
several turbo coded DVC codecs have been proposed recently [3,4,5]. In [3,4] the
authors have proposed a turbo coded based Wyner-Ziv codec for motion video using a
simple frame interpolation. In [5] the authors proposed a more sophisticated motion
interpolation and extrapolation techniques [5] to predict the side information. The
majority of these well-know research works on DVC have been carried out using a
Turbo Wyner-Ziv codec. However, recent experimental results [6] show that the
Turbo Trellis Coded Modulation (TTCM) based DVC codecs can improve the PSNR
up to 6dB at the same bit rate with less memory compared to the Turbo Coded DVC
codecs.

Current practical schemes developed for DVC are based in general on the
following principles: the video frames are organized into two types; Key frames and
Wyner-Ziv frames, while the key frames are encoded with a conventional intraframe
codec, the frames between them are Wyner-Ziv encoded. At the decoder, the side
information is obtained using previously decoded key frames and Wyner-Ziv frames.

In this context, most of the contributions given in the literature focus on improving
the performance of the Wyner-Ziv coding by improving the quality of the
reconstructed side information [5] or by improving the quality of channel codes [7].
Up to date, no attention has been paid to the problem of key frames coding where a
low-encoding complexity scenario is also needed. The most current approaches to
DVC rely on key frames available at the decoder perfectly reconstructed (lossless-
compression) or encoded with conventional intra-frame codecs (lossy-compression).
Recently, in the DISCOVER European project, JPEG2000 and Intra AVC have been
proposed as technologies for the key frames coding [8]. However, these conventional
intraframe encoders are too complex to be implemented in a DVC low-complexity
scenario.

For this reason, this paper present a DVC architecture based on TTCM codes for
the Wyner-Ziv frames as proposed in [6] and on LTW for the key frames as proposed
in [9]. This paper is an integration and evaluation of these two architectures. In
particular, the main objective of the paper is to propose a DVC codec with very low
complexity and memory requirements for the non-DVC portion of an integrated
TTCM based DVC architecture with very low complexity.

The rest of the paper is organized as follows. Section 2 introduces the TTCM
based distributed video coding architecture with very low complexity key-frame
coding. In Section 3, we carry out a performance evaluation of the proposed
architecture in terms of memory requirements, computational complexity and rate-
distortion. We compare the performance of our proposal to the JPEG2000 and Intra
AVC proposals. Finally, in section 4 conclusions are drawn.

 Low-Complexity TTCM Based Distributed Video Coding Architecture 843

Fig. 1. DVC Architecture using Turbo Trellis Coded Modulation (TTCM)

2 Low-Complexity TTCM Based DVC Architecture

2.1 Wyner-Ziv Frames Coding

The considered Distributed Video Coding architecture is showed in Figure 1. The odd
frames {X1, X3 ...} are the Wyner-Ziv frames which go through the interframe
encoder to generate the parity sequence to be transferred to the decoder. The Wyner-
Ziv frames are first passed through the 2M level quantizer where the level M is an
independently varied parameter based on the expected quality of output and the
available channel bandwidth. Next, the Slepian-Wolf based encoder incorporates the
bit plane extractor and then the turbo trellis encoder. Each rate ½ component encoder
of our implementation has a constraint length K=M+1 = 4 and a generator polynomial
of (11 02) in octal form. A Pseudo-random interleaver is used in front of the 2nd
constituent encoder. Only the parity bit sequence thus generated is retained in the
parity buffers and the systematic bits are discarded.

The decoder generates the side information using the Key-frames employing a
pixel interpolation algorithm as below:

 ()1
1 12(,) (,) (,)m m mY i j X i j X i j− += + (1)

This side information together with the parity bits passed from the encoder, upon
request, form the PSK symbols to be processed in the TTCM (Turbo Trellis Coded
Modulation) decoder. A multi level set partitioning is done with the constellation
mapping of the TCM symbols in order to maintain the maximum Euclidian distance
between the information bits. Where ever parity bits are not available due to
puncturing being effective, the symbol automatically reduces to a lower modulation
level. In the implementation under discussion, a combination of 4 PSK and Binary-
PSK is used based on the availability of the parity bits for the constellation mapping.

As commonly understood, Trellis Coded Modulation is conceptually a channel
coding technique used to optimize the bandwidth requirements of a channel while
protecting the information bits by increasing the size of the symbol constellation. Our
effort is to exploit the high coding gain and the noise immunity inherent in this
technique.

A block diagram of the Turbo-TCM decoder implementation is shown in Figure 2.
A symbol based MAP algorithm is used in the turbo trellis decoder which is run for 6
iterations as a complexity performance trade-off. A modification was done to the

844 J.L. Martínez et al.

branch metric calculation to take care of the independent distributions of side
information and parity bits. The parity bits are supplied to the decoder through an
“on-demand” approach using a reverse channel for passing the request to the parity
buffer maintained in the encoder. The de-puncturer function in the decoder basically
watches the parity availability and manipulates the symbols fed to the SISO based
MAP decoder accordingly. A reconstruction function is used to smoothing some
adverse effects in the output sequence including some contribution by the
quantization noise.

On the other hand, the side information generated by the temporal interpolation of
two key frames is assumed to be a form of the original Wyner-Ziv frame subjected to
noise. The probability distribution of this noise was a part of the detailed study. It was
noticed that both the Gaussian noise distribution and the Laplacian noise distribution
resembled the interpolation noise with distinct variance parameters. However, most
interestingly, it was noted that our implementation of the codec was not susceptible to
error by sub-optimal approximations of the distribution for the purpose of taking the
results; an Additive White Gaussian Noise (AWGN) with variance 0.125 was
assumed. To obtain more details about this, see [6].

Fig. 2. Block Diagram of TTCM Decoder

2.2 Key Frames Coding

Little attention has been paid in the literature to the problem of key frames coding and
most of the current approaches to DVC rely on key frames available at the decoder
perfectly reconstructed (lossless-compression) or key frame coding using
conventional intra frame codecs, such as JPEG2000 or AVC intra. In this work, we
propose the use of the LTW (Lower-Tree Wavelet) compression algorithm [9], for
Key-Frames encoding in order to be integrated in TTCM based DVC architecture
with very low complexity key-frame coding. LTW is based on the efficient
construction of wavelet coefficient lower trees. The main contribution of the LTW
encoder is the utilization of coefficient trees, not only as an efficient method of
grouping coefficients, but also as a fast way of coding them. Thus, it presents state-of-
the-art compression performance, whereas its complexity is lower than the

 Low-Complexity TTCM Based Distributed Video Coding Architecture 845

conventional intraframe codecs. Fast execution is achieved by means of a simple two-
pass coding and one-pass decoding algorithm. Moreover, its computation does not
require additional lists or complex data structures, so there is no memory overhead.

With LTW, the quantization process is performed by two strategies: one coarser
and another finer. The finer one consists in applying a scalar uniform quantization, Q,
to wavelet coefficients. The coarser one is based on removing the least significant bit
planes, rplanes, from wavelet coefficients. The use of coefficient trees structure called
lower tree reduces the total number of symbols needed to encode the image,
decreasing the overall execution time. This structure is a coefficient tree in which all
its coefficients are lower than 2rplanes.

The LTW algorithm consists of two stages. In the first one, the significance map is
built after quantizing the wavelet coefficients (by means of both Q and rplanes
parameters). In Figure 3(b) we show the significance map built from wavelet
decomposition shown at Figure 3(a). The symbol set employed in our proposal is the
following one: a LOWER (L) symbol represents a coefficient that is the roots of a
lower-tree, the rest of coefficients in the lower-tree are labeled as
LOWER_COMPONENT (*) but they are never encoded because they are already
represented by the root coefficient. If a coefficient is insignificant but it does not
belong to a lower-tree because it has at least one significant descendant, it is labeled
as an ISOLATED_LOWER (I) symbol. For a significant coefficient, we simply use a
symbol indicating the number of bits needed to represent it.

With respect to the coding algorithm, in the first stage (symbol computation), all
wavelet subbands are scanned in 2×2 blocks of coefficients, from the first
decomposition level to the Nth (to be able to build the lower-trees from leaves to
root). In the first level subband, if the four coefficients in each 2×2 block are
insignificant (i.e., lower than 2rplanes), they are considered to be part of the same lower-
tree, labeled as LOWER_COMPONENT. Then, when scanning upper level subbands,
if a 2×2 block has four insignificant coefficients, and all their direct descendants are
LOWER_COMPONENT, the coefficients in that block are labeled as LOWER_
COMPONENT, increasing the lower-tree size.

However, when at least one coefficient in the block is significant, the lower-tree
cannot continue growing. In that case, a symbol for each coefficient is computed one
by one. Each insignificant coefficient in the block is assigned a LOWER symbol if all
its descendants are LOWER_COMPONENT, otherwise it is assigned an
ISOLATED_LOWER symbol. On the other hand, for each significant coefficient, a
symbol indicating the number of bits needed to represent that coefficient is employed.

Finally, in the second stage, subbands are encoded from the LLN subband to the
first-level wavelet subbands, as shown at Figure 4. Observe that this is the order in
which the decoder needs to know the symbols, so that lower-tree roots are decoded
before its leaves. In addition, this order provides resolution scalability, because LLN is
a low-resolution scaled version of the original image, and as more subbands are being
received, the low-resolution image can be doubled in size. In each subband, for each
2×2 block, the symbols computed in the first stage are entropy coded by means of an
arithmetic encoder. Recall that no LOWER_COMPONENT is encoded. In addition,
significant bits and sign are needed for each significant coefficient and therefore
binary encoded.

846 J.L. Martínez et al.

Fig. 3. (a) 2-level wavelet transform of an 8x8 example image. (b) Map Symbols.

Fig. 4. Coefficient-trees in LTW

3 Results

In this section, we carry out a performance evaluation of the Low-Complexity TTCM
Based Distributed Video Coding Architecture proposed in section 2, in terms of
memory requirements, computational complexity and rate-distortion. For the purpose
of this performance comparative evaluation, even frames were intra coded with LTW,
JPEG2000 or H.264 (Baseline Profile, the fastest version of AVC Intra), and decoded
while odd frames are coded as Wyner-Ziv frames, as shown in Figure 1.

The bit rate and PSNR are calculated for the luminance of the Wyner-Ziv frames
(odd frames), or the Key-Frames (even frames) of the Foreman sequence (300
frames), for a frame size of 176x144 (QCIF) with a Wyner-Ziv frame rate of 15fps.

For a better comparative performance of rate-distortion function, we also show the
average PSNR difference (∆PSNR) and the average bit-rate difference (∆Bitrate). The
PSNR and bit-rate differences are calculated according to the numerical averages
between the RD-curves derived from LTW encoder, JPEG2000 and H.264 encoders,
respectively. The detail procedures in calculating these differences can be found from
a JVT document authored by Bjontegaard [10]. Note that PSNR and bit-rate
differences should be regarded as equivalent, i.e., there is either the decrease in PSNR
or the increase in bit-rate, but not both at the same time.

For the purpose of our performance evaluation, we first evaluate the key frames
coding part of our low-complexity DVC architecture, and then we evaluate the
Wyner-Ziv frames coding part of our low-complexity DVC architecture. Finally,
global results (taking into account all frames) will be provided.

 Low-Complexity TTCM Based Distributed Video Coding Architecture 847

For the key frames coding part, all the evaluated encoders have been tested on an
Intel Pentium M Dual Core 3.0 GHz with 1Gbyte RAM Memory. We have selected
H.264 [11] (Baseline, JM10.2), JPEG2000 [12] (Jasper 1.701.0) and LTW, since their
source code is available for testing. The correspondent binaries were obtained by
means of Visual C++ (version 2005) compiler with the same project options and
under the above mentioned machine. A further evaluation can be found in [13]

Figure 5 shows the average memory requirements1 per key frame for all key frame
codecs under study and for QCIF and CIF size formats. In both cases LTW needs
practically half the memory than JPEG2000 and H.264 needs six times the memory of
LTW for QCIF size and eight times for CIF size.

0

2000

4000

6000

8000

10000

12000

14000

QCIF CIF

M
em

o
ry

 R
eq

u
er

im
en

ts
 p

er
 F

ra
m

e
(K

b
yt

es
)

H264

JPEG 2000

LTW

Fig. 5. Memory Requirements (Key Frames)

Figure 6 shows the average encoding time per key frame for all key frame codecs
under study for QCIF Foreman video sequence. As shown in Figure 6, LTW codec
has the lowest complexity of all evaluated codecs and is about 10 times faster than
JPEG2000 and 100 times faster than H.264 (Baseline profile, the fastest version of
AVC Intra). LTW codec reduces the complexity substantially with respect the other
conventional codecs under study showing the effectiveness of the LTW codec in the
proposed Low-Complexity TTCM Based Distributed Video Coding Architecture.

Figure 7 shows the RD results for key frames for all key frame codecs under study.
For a fair comparison, first, the H.264 simulations were carried out by varying the QP
factor from 20 to 50. For every simulation the real bit-rate was obtained and then it
was introduced to JPEG 2000 and LTW codecs as target bit-rates. As shown, the
Rate-Distortion obtained with LTW outperforms the other codecs by 1.2 dB and 1.13
dB on average, with respect to JPEG2000 and H.264 respectively, using less bit-rate,
up to 17% and up to 10% with respect to JPEG2000 and H.264 respectively (see
Table 1).

For the Wyner-Ziv frames coding part, Figure 8 shows the effect on the Wyner-Ziv
(WZ) frames decoding when key frames are coded with all key frame codecs under
study with QP=20. The best results for Wyner-Ziv frames are obtained when key
frames are coded with LTW codec. As seen in Table 2, the Rate-Distortion results

1 Results obtained from Windows XP task manager, peak memory usage column.

848 J.L. Martínez et al.

Foreman (176x144 QCIF, 15 Hz, Key frames)

0.001

0.01

0.1

1

0 10 20 30 40 50

Bit Rate (kbits/frame)

E
n

o
d

in
g

 T
im

e
p

er
 F

ra
m

e
(S

ec
o

n
d

s)

H.264
JPEG 2000
LTW

Fig. 6. Encoding Time per Key Frames

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60

PS
N

R
 (

dB
)

Bitrate (kbits/frame)

Foreman (176x144,QCIF,15 Hz,Key frames)

H.264
LTW

JPEG 2000

Fig. 7. Rate-Distortion Results for Key Frames

Table 1. Comparison for Key Frames Coding

JPEG 2000 vs. LTW H.264 vs. LTW
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%)

-1.271 17.11 -1.133 10.70

obtained on average for Wyner-Ziv frames when key frames are coded with LTW
codec outperforms the other codecs by 0.5 dB and 0.6 dB on average, with respect to
JPEG2000 and H.264 respectively, using significant less bit-rate, up to 47% and up to
46% with respect to JPEG2000 and H.264 respectively.

Figure 9 shows the effect on the Wyner-Ziv frames decoding when key frames are
coded with all key frame codecs under study with QP=50. Again, the best results for
Wyner-Ziv frames are obtained when key frames are coded with LTW codec. As
shown in Table 3, the Rate-Distortion results obtained for Wyner-Ziv frames when
key frames are coded with LTW codec outperforms the other codecs by 4.5 dB and

 Low-Complexity TTCM Based Distributed Video Coding Architecture 849

0.4 dB on average, with respect to JPEG2000 and H.264 respectively, using
significant less bit-rate, up to 2768% and up to 9.6% with respect to JPEG2000 and
H.264 respectively. These results may seem erroneous but there is an explication: the
side information is generated from the key frames and this side information has an
important impact over the general performance of DVC. A lack of PSNR, which is
shown by Figure 7, for the key frames denotes a lack of RD performance for the DVC
scheme, shown in figure 9.

 30

 32

 34

 36

 38

 40

 0 5 10 15 20 25 30

PS
N

R
 (

dB
)

Bitrate (kbits/frame)

Foreman (176x144,QCIF,15 Hz,WZ frames)

H.264
LTW

JPEG 2000

Fig. 8. Rate-Distortion Results for Wyner-Ziv Frames (When Key Frames are coded with QP=20)

Table 2. Comparison for WZ Frames Coding when Key Frames are coded with QP=20

JPEG 2000 vs. LTW H.264 vs. LTW
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%)

-0.51 42.07 -0.662 46.52

 20

 22

 24

 26

 28

 30

 32

 34

 0 10 20 30 40 50 60 70

PS
N

R
 (

dB
)

Bitrate (kbits/frame)

Foreman (176x144,QCIF,15 Hz,WZ frames)

H.264
LTW

JPEG 2000

Fig. 9. Rate-Distortion Results for Wyner-Ziv Frames (When Key Frames are coded with QP=50)

850 J.L. Martínez et al.

Finally we present global results taking into account all frames (key frames +
Wyner-Ziv frames). Figure 10 shows the effect on all frames decoding for our Low-
Complexity TTCM Based Distributed Video Coding Architecture when key frames
are coded with all key frame codecs under study with QP=20. The best results are
obtained when key frames are coded with LTW codec. As seen in Table 4, the Rate-
Distortion results obtained using LTW codec outperforms the other codecs by 1 dB on
average, with respect to JPEG2000 and H.264 approximately, using significant less
bit-rate, around 20%.

Table 3. Comparison for WZ Frames Coding when Key Frames are coded with QP=50

JPEG 2000 vs. LTW H.264 vs. LTW
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%)

-4.545 2768.17 -0.435 9.6

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90

PS
N

R
 (

dB
)

Bitrate (kbits/frame)

Foreman (176x144, QCIF, Total frames)

H.264
LTW

JPEG 2000

Fig. 10. Rate-Distortion Results for all Frames. (When Key Frames are coded with QP=20).

Figure 11 shows the effect on all frames decoding for our Low-Complexity TTCM
Based Distributed Video Coding Architecture when key frames are coded with all key
frame codecs under study with QP=50. Again, the best results are obtained when key
frames are coded with LTW codec. As seen in Table 5, our proposal outperforms the
other codecs by 3.9 dB and 0.7 dB on average, with respect to JPEG2000 and H.264
respectively, using significant less bit-rate, up to 105% and up to 10% with respect to
JPEG2000 and H.264 respectively.

Table 4. Comparison for ALL Frames when Key Frames are coded with QP=20

JPEG 2000 vs. LTW H.264 vs. LTW
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%)

-1.011 24.76 -1.188 20.41

 Low-Complexity TTCM Based Distributed Video Coding Architecture 851

Although the results presented in this paper are only shown for QCIF format and
for Foreman sequence, similar behavior was obtained for CIF format and for other
video sequences.

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

PS
N

R
 (

dB
)

Bitrate (kbits/frame)

Foreman (176x144, QCIF, Total frames)

H.264
LTW

JPEG 2000

Fig. 11. Rate-Distortion Results for all Frames. (When Key Frames are coded with QP=50).

Table 5. Comparison for ALL Frames when Key Frames are coded with QP=50

JPEG 2000 vs. LTW H.264 vs. LTW
ΔPSNR (dB) ΔBitrate(%) ΔPSNR (dB) ΔBitrate(%)

-3.913 105.67 -0.744 10.65

4 Conclusions

In this paper, we have proposed a very low-complexity Turbo Trellis Coded
Modulation based DVC architecture. In particular, we have proposed the use of a fast
intra frame codec, with very low complexity and memory requirements, in order to be
implemented for the non-DVC portion of a TTCM based DVC codec. Results clearly
indicate that the use of LTW intra frame codec on a TTCM based DVC architecture
outperforms the same architecture when JPEG2000 or the Intra AVC codecs are used
in terms of encoding-time and memory requirements, showing very similar RD
performance.

Acknowledgments. This work has been jointly supported by the Spanish MEC and
European Commission FEDER funds under grants “Consolider Ingenio-2010
CSD2006-00046” and “TIN2006-15516-C04-02”, TIC2003-00339 and by JCCM
funds under grant “PAI06-0106”.

852 J.L. Martínez et al.

References

1. Slepian, D., Wolf, J.K.: Noiseless Coding of Correlated Information Sources. IEEE
Transaction on Information Theory 19, 471–480 (1973)

2. Wyner, D., Ziv, J.: The Rate-Distortion Function for Source Coding with Side Information
at the Decoder. IEEE Transaction on Information Theory 22, 1–10 (1976)

3. Aaron, A., Zhang, R., Girod, B.: Wyner-Ziv Coding of Motion Video. In: Proceeding of
Asilomar Conference on Signals and Systems, Pacific Grove, USA (2002)

4. Girod, B., Aaron, A., Rane, S., Monedero, D.R.: Distributed Video Coding. Advances in
Video Coding and Delivery, IEEE Special Issue on 93, 1–12 (2005)

5. Ascenso, J., Brites, C., Pereira, F.: Improving Frame Interpolation with Spatial Motion
Smoothing for Pixel Domain Distributed Video Coding. In: 5th EURASIP Conference on
Speech and Image Processing, Multimedia Communications and Services (2005)

6. Weerakkody, W.A.R.J., Fernando, W.A.C., Adikari, A.B.B., Rajatheva, R.M.A.P.:
Distributed video coding of Wyner-Ziv frames using Turbo Trellis Coded Modulation. In:
Proceedings of International Conference on Image Processing, ICIP 2006, Atlanta, USA
(2006)

7. Wang, H., Zhao, Y., Wang, A.: Performance Comparisons of Different Channel Codes in
Distributed Video Coding. In: First International Conference on Innovative Computing,
Information and Control, ICICIC 2006, Beijing, China, vol. 2, pp. 225–228 (2006)

8. Pereira, F., Guillemot, C., Leonardi, R., Ostermann, J., Ebrahimi, T., Torres, L.:
Distributed Coding for Video Services. DISCOVER Project Deliverable 7 (2006)

9. Oliver, J., Malumbres, M.P.: Low-Complexity Multiresolution Image Compression Using
Wavelet Lower Trees. IEEE Transactions on Circuits and Systems for Video Technology,
1051–8215, 1437-1444 (2006)

10. Bjontegaard, G.: Calculation of Average PSNR Differences between RD-Curves. 13th
VCEG-M33 Meeting, Austin, USA (2001)

11. ISO/IEC International Standard, 14496-10:2003: Information Technology - Coding of
Audio - Visual Objects - Part 10: Advanced Video Coding

12. JPEG2000 Image Coding System. ISO/IEC 15444-1 (2000)
13. López, O., Martínez-Rach, M., Piñol, P., Oliver, J., Malumbres, M.P.: M-LTW: A Fast and

Efficient Non-Embedded Intra Video Codec. In: Pacific-Rim Conference on Multimedia,
PCM 2007 (2007) (Accepted - publication pending)

	Low-Complexity TTCM Based Distributed Video Coding Architecture
	Introduction
	Low-Complexity TTCM Based DVC Architecture
	Wyner-Ziv Frames Coding
	Key Frames Coding

	Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

