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Abstract. In a paper published in FSE 2007, a way of obtaining near-
collisions and in theory also collisions for the FORK-256 hash function
was presented [8]. The paper contained examples of near-collisions for the
compression function, but in practice the attack could not be extended
to the full function due to large memory requirements and computation
time. In this paper we improve the attack and show that it is possible to
find near-collisions in practice for any given value of IV. In particular, this
means that the full hash function with the prespecified IV is vulnerable
in practice, not just in theory. We exhibit an example near-collision for
the complete hash function.

1 Introduction

Recent spectacular attacks on many established hash functions endangered most
commonly used dedicated hash functions and cast some doubts on the remain-
ing ones. This rekindled the interest in designing more secure yet still efficient
alternatives. While most of the dedicated hash functions used source-heavy un-
balanced Feistel networks [11], some alternatives were proposed that utilise the
other option, target-heavy UFNs. One of the examples is the hash function
Tiger [1] and a recent design FORK-256, proposed by Hong et al. [5,6].

Soon after FORK-256 was presented, works [9,7] showed that the step trans-
formation has a particular weakness that may threaten the function. Indeed, soon
after those ideas were refined and the attack on the full compression function
was presented [8], including example near-collisions [3]. Section 8 of the paper [8]
briefly mentions how to extend the result to the full compression function, but
there is a mistake in the description (see Section 3 of this paper). Additionally, a
cost based analysis [2] was never considered and from this viewpoint the attack
suffers due to the large memory requirements. In fact, the combination of large
memory and long running time preclude the idea from being implemented to
find near-collisions in practice.

This paper. In this paper we correct our mistake from [8] and give an improved
method for finding near-collisions (and full collisions) for any given IV. Our
method modifies the algorithm from [8] in order to keep the memory usage low
and improve the efficiency of one phase of the attack. Consequently, we are
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able to actually implement the algorithm to produce near-collisions for the full
FORK-256 with the real IV. We give an example near-collision.

In Section 2 we define some notations and give a brief description of FORK-
256. In Section 3, we briefly recall the original attack from [8]. Section 4 contains
our main contribution in which we explain the new version of the algorithm
including a detailed analysis. Finally, we present an example of a near-collision
with the IV specified by the designers and then we conclude our work.

2 Brief Description of FORK-256

FORK-256 is a dedicated hash function based on the classical Merkle-Damg̊ard
iterative construction with the compression function that maps 256 bits of state
and 512 bits of message to 256 bits of a new state. Here we give a concise
description – more details can be found in [5].

The compression function consists of four parallel branches branchj , j =
1, 2, 3, 4, each one of them using a different permutation σj of 16 message words
Mi, i = 0, . . . , 15.

The same set of eight chaining variables

CV� = (A0, B0, C0, D0, E0, F0, G0, H0)

is input to the four branches. After computing outputs of parallel branches

hj = branchj(CV�, M), j = 1, . . . , 4,

the compression function updates the set of chaining variables according to the
formula

CV�+1 := CV� + [(h1 + h2) ⊕ (h3 + h4)] ,

where modular and XOR additions are performed word-wise. Before the first ap-
plication of the compression function registers CV0 = (A0,. . . ,H0) are initialised
by appropriate constants presented in Table 3.

Each branch function branchj , j = 1, 2, 3, 4 consists of eight steps. In each
step k = 1, . . . , 8 the branch function updates its own copy of eight chaining
variables using the step transformation depicted in Fig. 1.

We will denote the value of register R in j-th branch after step i as R
(j)
i .

Before the computation of j-th branch, all A
(j)
0 , . . . , H

(j)
0 are initialised with

corresponding values of eight chaining variables.
Note that the crucial role in the step transformation play two so-called Q-

structures, marked in the picture with grey.
Functions f and g mapping 32-bit words to 32-bit words are defined as

f(x) = x +
(
ROL7(x) ⊕ ROL22(x)

)
,

g(x) = x ⊕
(
ROL13(x) + ROL27(x)

)
.

Constants δ0, . . . , δ15 used in each step are defined as the first 32 bits of fractional
parts of binary expansions of cube roots of the first 16 primes and are presented
in Table 4. Finally, permutations σj of message words and permutations πj of
constants are shown in Table 1.
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Fig. 1. Step transformation of a single branch of FORK-256. Q-structures are greyed
out.

Table 1. Message and constant permutations used in four branches j = 1, . . . , 4 of
FORK-256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

3 Attack on the Compression Function of FORK-256

In this section we recall the main points of the attack on the compression function
of FORK-256 presented in [8] that our attack builds on.

The first essential fact is that it is possible to relatively easily find situa-
tions when non-zero differences in registers A and E do not spread to other
registers during the step transformation. In other words, it is possible to ob-
tain characteristics of the form (ΔA, 0, 0, 0, 0, 0, 0, 0) → (0, ΔB, 0, 0, 0, 0, 0, 0) and
(0, 0, 0, 0, ΔE, 0, 0, 0) → (0, 0, 0, 0, 0, ΔF, 0, 0) without resorting to cancelling the
difference by appropriate message word difference (cf. Fig. 1). Such character-
istics are called micro-collisions and they are possible if the right difference is
fed to the register A (or E) and appropriate corresponding “constants” B, C
and D (F , G, H correspondingly) are set. Details on how those differences and
constants can be found are presented in [8].

The second important ingredient is the possibility of using micro-collisions to
find differential paths spanning the whole function that can be used to obtain
collisions for the complete compression function. One such path, used in the
original FORK-256 attack utilises difference in message word M12 only and is
presented in Fig. 2.
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Fig. 2. High-level path used to find near-collisions in FORK-256. Thick lines show the
propagation of differences. Indices of the message words that are fed into each step
transformation are given in the left and right columns of each branch. Q-structures for
which micro-collisions have to be found are greyed out.

The original attack from [8] first shows how to find chosen-IV near-collisions
(or full collisions) and then briefly suggests a way of extending it to an attack
on the full FORK-256. For now, we only focus on the low-memory version of the
attack: The reason for this will be evident later.

The idea is to first choose an appropriate difference for M12, then make
branches 3 and 4 work (see Fig. 2) and then use free message words to get
branch 1 and 2 to work. Initially all message words can be anything. To get
branch 4 to work, one manipulates the values of registers F0, G0, H0 and mes-
sage words M5, M1, M8, M15, M0, M13, M11 in order to get the micro-collisions
in the two Q-structures. Then to get branch 3 to work, message words M6, M10,
M14, and M2 are manipulated along with register B0. The change in B0 upsets
the branch 4, but by manipulating M11 again, the characteristic through both
branches holds.

For the remaining part of the characteristic (branches 1 and 2), the main
observation is that message words M9 and M4 can be freely changed without
upsetting branches 3 and 4. This gives 264 possibilities for satisfying the full
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characteristic. In fact, there are no requirements for branch 2, and only a single
microcollision needs to happen for branch 1 at D

(1)
6 → E

(1)
7 (step 7). Satisfying

this microcollision can be left to chance. With a precomputation trick and a
good choice of difference in M12, [8] finds pairs of outputs that differ in at most
108-bits (differences in registers C, D, F and part of B only) in time equivalent
to 218.6 FORK-256 operations. Such outputs can be called near-collisions. For
2108 · 218.6 = 2126.6 work, full collisions are expected. The result is faster than
birthday attack.

However, it must be emphasised that these are chosen-IV near-collisions and
collisions. It requires choosing values for B0, F0, G0, and H0. In Section 7.2 of
the paper, a way to eliminate the need to choose B0 is suggested, though it uses
large precomputation tables – on the order of 273 words of memory. Assuming
the choice of B0 can be eliminated, [8] argues in Section 8 that real collisions
can be found by prepending a message block that yields the right values of F0,
G0, and H0 when that message block is sent through the compression function
with the real IV defined in FORK-256. But it claims that finding this message
block can be done after the execution of the algorithm that finds the chosen-
IV collision. This is not correct. The characteristic depends upon all chaining
variable regsisters. In other words, it is not only F0, G0, and H0 that have to
match the inputs to the chosen-IV collision, but also A0 through E0. This is
easy to see: if one has a near-collision such as any one given from [8], you cannot
change an input register value and still have the same near-collision because the
difference propagates rapidly.

There is a simple fix for the error in Section 8. The requirements for F0, G0 and
H0 are dictated by the predetermined difference in M12. Thus, one can process
the prepended message block first: simply try random first messages blocks until
allowable values for F0, G0, and H0 are found. Then, one can execute the search
algorithm to determine a second message block that yields a partial collision/full
collision for the chaining variables determined from the prepended block. More
details are in Section 4.2.

It would be nice to implement the attack to show that it works and can at least
produce near-collisions, thus showing that there are real problems with FORK-
256 (as opposed to attacks that are of theoretical interest only). Note that the
low-memory version cannot be implemented because of the requirement on B0,
which would amplify the running time significantly (beyond what can be done in
on a typical PC using a reasonable amount of CPU time). Neither can the large
memory version since computers with 273 of memory do not yet exist. Moreover
it is claimed in [8] that finding the right values of F0, G0, and H0 takes 296 steps.

Our new contribution is to present a simplified and improved near-collision
(and collision) search algorithm which does not use large memory and can be ran
on a typical PC to produce near-collisions on the full FORK-256 with specified
IV within a few days of run time. The simplified algorithm is a modification of
the low-memory attack from [8]. We ran our new algorithm and found several
near-collisions on the full FORK-256 with the real IV.
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4 Improving the Attack

The obstacle for extending the low-memory attack from [8] to the full hash
function is the requirement for particular values of four chaining values, B0
required by branch 3 and F0, G0, H0 required by branch 4. Nothing can be done
about constants necessary to achieve micro-collision in the first step of branch 4.
However, by careful modification of some steps of the procedure we can eliminate
the need for choosing the value of the constant B0.

4.1 The Algorithm

Instead of solving for branch 4, then branch 3, and later making a small adjust-
ment to branch 4 again, the idea is to go through the first step of branch 4 only,
then switch to branch 3, and finally return to solve for the rest of branch 4.

Let d denote the modular difference used in M12. Recall that an allowable
value x is a value fed to register A (or E) such that there exist constants B, C,
D (or F , G, H) that cause simultaneous micro-collisions to happen in all three
lines when x, x + d are the values of register A (or E). The modified algorithm
first precomputes for difference d all allowable values for step 5 of the left Q-
structure of branch 4. Then, the steps are as follows:

Branch 4, step 1. We find x1 such that x1, x1 + d give simultaneous g - δ15 - f
micro-collisions for step 1 of branch 4, compute corresponding constants τ1, τ2, τ3
and assign F0 := τ1, G0 := τ2, H0 := τ3. Set M12 to x1 − E0 and M ′

12 to
x1 − E0 + d.

Branch 3. We choose values of M7, M6, M10, M14, M13 and M2 appearing in
the first three steps of branch 3 randomly and compute the function up to the
beginning of step 4. We check if the value E

(3)
4 +M12 is an allowable value for the

g - δ6 - f micro-collision in step 4, i.e. we test if there exist constants μ0, μ1, μ2

such that the pair E
(3)
4 +M12, E

(3)
4 +M12 + d yields micro-collisions when those

constants are set in registers F
(3)
3 , G

(3)
3 , H

(3)
3 . If it is not, we pick fresh values

of the message words and repeat the process. Once we get the right values (this
needs around 223 trials using the difference from [8]) we modify values of M6,
M10, M14, M13 and M2 to adjust the values of F

(3)
3 , G

(3)
3 , H

(3)
3 to appropriate

constants μ0, μ1, μ2. This modification is similar to the original except here we
are required to modify M13, whereas the original algorithm avoided it because
it was set in branch 4 (instead the original algorithm modified B0). Now branch
3 is ready.

Branch 4, steps 2–4. We start with choosing random values for M5, M1, and
M15. Then values of M8, M0, and M11 are chosen to preserve the subtraction
difference d through the first 4 steps of the characteristic. This is easy to do, for
example, by setting the message blocks so that the input to the f function is zero
(the output of the f function is the only thing that can change the subtraction
difference). Then we compute up to the beginning of step 5. Next, we use our
precomputed table to loop through all choices of M3 that lead to allowable values
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and we test each one to see if any of them does not cause a difference propagation
to C

(4)
5 for the current value of B

(4)
4 that is there. In other words, we are looking

for a value of M3 that actually induces a single micro-collision in line B and
has the potential to cause simultaneous micro-collisions in the other two lines.
This is illustrated in Fig. 3. If no solution is found, then we go back to solve for
branch 3 again with new random values.1

pick
allowable M3

M3

M3 M3

try again

adjust constants
C

(4)
4 , D

(4)
4

difference in C
(4)
5 – bad

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

Fig. 3. Illustration of the procedure used in step 5 of branch 3. We want to get micro-
collisions in all three lines without the need for modifying the value of B

(4)
4 .

Once such a solution is found, we have to set the values of C
(4)
4 and D

(4)
4

to appropriate constants so that we obtain simultaneous micro-collisions for all
three lines. We do this by adjusting the values of M1, and M15 and appropriately
compensating for these changes by adjusting M0 and M11. After this is done,
branches 3 and 4 are ready.

Branches 1 and 2. The part of the algorithm that deals with branches 1 and
2 is identical to the one presented in [8] and it does not require any further
explanations.

In the original attack [8], the search complexity for a near-collision is domi-
nated by branches 1 and 2. The search through branches 1 and 2 involved 264

potential characteristics for the cost of 258 FORK-256 operations. Provided that
the cost of our modified algorithm for branches 3 and 4 is less than this, the
overall complexity is unchanged.

With the difference of d =0x22f80000 the probability of passing step 4 of
branch 3 is about 2−24 and the probability of passing step 5 in branch 4 is
about 2−19. The cost of a single check is about eight steps of FORK-256, so
2−3 full FORK-256 evaluations. Thus, passing branches 3 and 4 in our modified
algorithm requires about 240 FORK-256 evaluations. Hence, it does not influence
the final complexity of the attack.
1 We cannot repeat Branch 4 again since we will always end up with the same value

for B
(4)
4 .
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4.2 Fixing Appropriate Chaining Values

So far we have removed the need for the fourth initial chaining value to be fixed.
This leaves us with three 32-bit words, each one to be set to one of the possible con-
stants required by simultaneous micro-collisions in step 1 of branch 4. This means
that by prepending a random message block and computing the digest that in turn
becomes the chaining value for the main part of the attack we have the probability
of getting the right values of those registers at least 2−96, less than 2126.6 required
for the second phase. However, we can do much better when we use the fact that
any of the possible constants will suffice in each of the three initial registers.

Let A be the set of allowable values for g - δ15 - f micro-collision in step 1 of
branch 4 for a given difference d. For each allowable value a ∈ A we can compute
sets Fa, Ga, Ha of constants that yield a micro-collision in the corresponding line.
Then, the probability that a randomly selected triple constitute good constants
for some allowable value a is

P = 1 −
∏

a∈A

(
1 − |Fa| · |Ga| · |Ha|

296

)

This probability depends on the choice of the difference d. For both differences d =
0xdd080000 and d = 0x22f80000 used in [8] it is equal to P = 2−64.8, but there
are other differences with much higher values of P . Of course those differences may
give worse performance in the main part of the attack because they are not tuned
to yield optimal chance of passing requirements of branch 1. What really matters
though is that original differences are suitable for the improved attack.

4.3 Experimental Results

We implemented this modified strategy and tested it. As an example, we present
in Table 2 a pair of messages that give a near-collision of weight 42 of the full
hash function FORK-256. Here we used difference d =0x3f6bf009 since it has
P = 2−21.7 for the first phase of the attack.

Table 2. Example of a near-collision of weight 42 for the complete hash function
FORK-256. The first block is used to obtain the desired values of chaining registers
that enable the attack on the compression function.

2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M
2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 4e84d457 5a6c49b6 ad1d9711 0f69afa2
2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M ′ 2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 8df0c460 5a6c49b6 ad1d9711 0f69afa2

diff 00000000 83480012 32b4070c 681a1279 648600ad 00000000 00000000 00000000
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5 Conclusions

In this paper we presented an attack that can find near-collisions and even
collisions for the full hash function of FORK-256. We improved on previous
results that used large memory and were too inefficient to implement in practice.
This in a sense completes the attack and adds another result relevant to the
analysis of FORK-256 and possibly also similar designs.

We remark that the authors of FORK-256 recently proposed a patched version
of their function [4], largely due to [8]. Because of a change in functions f and
g and a modified structure of the step transformation, the new FORK does not
allow for finding micro-collisions. Despite this, Saarinen found an attack on the
new FORK [10] faster than birthday paradox but requiring large memory. It
would be interesting to see if either the time or memory requirements can be
improved.

Acknowledgements. The authors were supported by Australian Research
Council grant DP0663452.
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A Constants

Table 3. Constants used to initialise chaining variables of FORK-256

A0 B0 C0 D0 E0 F0 G0 H0

6a09e667 bb67ae85 3c6ef372x a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

Table 4. Step constants δ0, . . . , δ15 used in FORK-256

δ 0 1 2 3 4 5 6 7
0 428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
8 d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
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