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Abstract. This work proposes a new approach to the alignment of mul-
tiple sequences. We take profit from some results on Grammatical Infer-
ence that allow us to build iteratively an abstract machine that considers
in each inference step an increasing amount of sequences. The obtained
machine compile the common features of the sequences, and can be used
to align these sequences. This method improves the time complexity of
current approaches. The experimentation carried out compare the per-
formance of our method and previous alignment methods.

Keywords: Grammatical inference, processing of biosequences, multiple
alignment of sequences.

1 Introduction

Multiple alignment of biological sequences [I] is one of the commonest task in
bioinformatics. Some applications of this task are: to find diagnostic patterns
in order to characterize protein families; to detect or demonstrate homology
between new sequences and existing families of sequences; to help predict the
secondary and tertiary structures of new sequences; to suggest oligonucleotide
primers for PCR; or as a essential prelude to molecular evolutionary analysis.
In order to perform an exact alignment, it is necessary to consider an n-
dimensional space, where n denotes the number of sequences. There are some
strategies used to avoid the high computational cost of the multiple alignment of
sequences. One of the most successful strategies used is the so named progressive
alignment (i.e. [2]). This approach considers evolutionary relations to build a phy-
logenetic tree. Following its branching order it is possible to align first the those
most related sequences, gradually adding in more distant sequences/alignments.
A pairwise alignment procedure is used in each alignment step. This approach can
deal with alignments of virtually any number of sequences, obtaining good results.
Two main problems arise when this approach is used. The first one is due to the
greedy nature of the method that does not guarantee that the global optimal solu-
tion would be obtained. The second problem consist on the choice of the alignment
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parameters. Usually, a distance matrix between symbols and two gap penalties are
chosen: the opening and the extension of a gap. On the one hand there is no way
to obtain a consensus matrix for every kind of sequences, on the other hand the
gap penalty values are key to obtain good results when divergent sequences are to
be aligned. Furthermore, in protein sequence alignments, gaps do not occur ran-
domly (they occur more often between secondary structures than within).

Other successful approach aims to reduce the greedy effect of the progressive
alignment method by considering a library of local and global alignments instead
of a distance matrix [3]. Due to the fact that a given pair of symbols can be
treated in many ways in the library, the score given to a pair of symbols is
position dependent. This lead to a more flexible approach and a better behaviour,
avoiding errors in early stages of the process.

Inductive Inference is one of the possibilities to tackle the problem of Auto-
matic Learning. This approach uses a set of facts (training data) in order to
obtain the most suitable model, that is, the model that compile better the fea-
tures of the data. Once the inference process is finished, the model obtained is
able to correctly process data that shares some common features with the train-
ing set. When the inductive process obtains a formal language as the model,
then the approximation is known as Grammatical Inference (GI) [ABIGI7ISI9].

The Error Correcting Grammar Inference algorithm (ECGI) [I0] builds iter-
atively a finite automaton (learns a regular language) from the training data.
Each step considers the automaton of the previous step (the first step it con-
siders the empty automaton) and a new sample from the training data. The
algorithm uses an edit distance algorithm to detect the set of operations of min-
imum cost needed to force the automaton to accept the sample. These operations
are used to modify the automaton, adding new states and transitions in such a
way that neither loops nor cycles are added (the resulting automaton accepts a
finite language). This GI method has been successfully applied in some pattern
recognition tasks [I1IT2].

In our work we used this algorithm to learn a language from biological se-
quences. Once the finite automaton is obtained, it is possible to extract an
alignment using the automaton’s accepting path of each sequence. This step is
bounded by a polynomial because the automaton lacks of loops. Our approach
improves the time complexity of current procedures.

This paper is organized as follows: sectionPlintroduces some notation and defi-
nitions as well as the ECGI algorithm. Section [3explains the proposed alignment
method and analyzes its time complexity. Section ] shows the experimentation
carried out and comparative results with current alignment methods. The con-
clusions and some lines of future work end the paper.

2 Definitions and Methods

2.1 Theoretical Concepts

Let a finite deterministic automaton be a system A = (Q, X, 6, qo, F') where: @
is a finite set of states; X' is a finite alphabet; ¢ € @ is the initial state; F' C @ is
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the set of accepting or final states and § : Q x X' — @ is the set of transitions of
the automaton. It is possible to change the definition of the transition function to
allow multiple transitions from a state on the same symbol 6 : Q x X — 2%. Such
an automaton is referred to as non-deterministic finite automaton. Both types
of automata recognize the same class of formal language. Finite automata can
be extended to process strings of symbols, to do so, the transition function has
to be extended to consider strings. Let p, ¢ be states in @), let a be a symbol in X/
and w a string, in the following we show the extension for the non-deterministic
case:

§:Qx Y —29
6(¢;N) = ¢
8(q,wa) = |J 6(p,a)

pES(q,w)

A string w over X is accepted by a finite automaton A if and only if 6(qo, w)N
F # (. The set of strings accepted by the automaton is denoted by L(A). Let
27 be the set of words of any length over Y. Let L C X* be a language over the
alphabet. L is a regular language if and only if there exists a finite automaton
A such that L(A) = L. Please, refer to [I3] for further definitions.

2.2 The Error Correcting Grammar Inference

The Error Correcting Grammar Inference (ECGI) algorithm proposed by Rulot
and Vidal [I0] was originally designed to recognize isolated words. Nevertheless,
due to its features, it has been used in many others pattern recognition tasks.
The ECGI solve two basic drawbacks of grammatical inference when applied to
pattern recognition tasks. First, these algorithms are usually extremely recur-
sive, that is, they ignore the relative position of the different substructures of
the training sample. Second, grammatical inference algorithms, usually, do not
maintain position-dependent features of the strings, which are key in some tasks.
The ECGI algorithm obtains a finite language that preserves the main common
features of the samples together with this relative position.

ECGI algorithm is an iterative process. ECGI considers one new sample and
the current automaton and finds the most similar string to the sample (applying a
criterion of similarity between strings that take into account a distance measure).
The algorithm detect those transitions with minimum edition cost to be added
in order to accept the new sample. The search of the most similar string to
the sample in the automaton is made by a standard Error-Correcting Syntax
Analysis method (Viterbi). An example of run is shown in Figure [l

The language inferred by the automaton with ECGI method contains the
training samples, is finite (therefore regular) and is not deterministic. The au-
tomaton obtained is ambiguous and without cycles. Due to its heuristic nature,
the inference algorithm obtains different result depending on the samples order.
The algorithm has been successfully applied to syntactic pattern recognition
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Fig. 1. Example of run of the original ECGI algorithm when the set S = {ab, b, abb, bbb}
is considered as the training sample. Dashed lines show error transitions. Note that the
processing of the first string of the training set S returns the canonical automaton
(see A). In order to avoid lambda transitions, the ECGI algorithm adds a transition
to the next state (see B). Loops are avoided by the creation of a new state (see C),
substitution are treated in the same way (see D). Note that, in the resulting automaton,
all the incoming transitions to each state are labeled with the same symbol.

tasks [I1IT2], where the best performance of the algorithm is obtained when the
longest samples are supplied first.

3 Incremental Alignment of Biosequences

3.1 Description of the Alignment Procedure

The method we propose for the multiple sequence alignment consist on two
steps: the first one considers the set of sequences and obtains an automaton
with a modified ECGI algorithm; the second step uses the learned automaton
and the same set of sequences to construct the multiple alignment.

The Error-Correcting Syntax Analysis method used by the original ECGI
algorithm considers three weights: to substitute, to insert and to erase a symbol.
The modification we introduce allows the use a parameterizable distance matrix
among the symbols and three gap-related penalties: to open, to extend and to
close a gap. This modification of the analysis step does not add time complexity
to the algorithm, and basically aims to change, in a somewhat biological way,
the set of non-error transitions of the automaton obtained in each analysis. The
use of such gap penalties is justified biologically and widely used by existing
approaches. The alignments obtained this way have lesser and more concentrate
gaps. Figure 2 shows the different behavior of the modified algorithm when the
same sample is considered.

The alignment method we propose uses the set of sequences to align as the
training set. Once inferred the automaton, the sequences are processed to obtain
the accepting path in the automaton. We considered those states used by more
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Fig. 2. Final automaton obtained by the original and modified ECGI algorithms. The
same set of samples S = {GGCCTGTA,GGCTATTA,GGT A} has been used. The
optimal parameters were used to carry out this examples (see Section 4 for details).
Note that the addition of gap penalties modifies the set of non-error transitions, and
therefore, the final result.

PROGRAM: MULTIPLE SEQUENCE ALIGNMENT
INPUT: STRINGSJ[]
OUTPUT: ALIGNMENT

BEGIN

AUT <« result of the ECGI algorithm using as input the strings into STRING];
PATHS[] =+ set of paths obtained by Viterbi’s analysis using the automaton AUT and STRINGS[];
ALIGNMENT —— aligment obtained using the set of paths PATHS[], the automaton AUT and STRINGS|[];

END

Fig. 3. Multiple sequence alignment algorithm based on Grammatical Inference

than one sequence as synchronization points. This is justified because, each step,
the error-correcting inference method looks for the best accepting path for the
samples, adding the minimum cost transitions needed to accept the sample. The
lack of loops allow to efficiently process the sequences in a parallel way, adding
gaps when one synchronizing state is reached by some sequences but not all that
use the state. The description of the algorithm is showed in Figure Bl and an
example of multiple alignment in Figure 4

In order to compare the performance of our approach, two alignment programs
have been selected. The first one, Clustal-W [2], is probably the most widely used
by the biological community. T-Coffee [3] is the second program considered.
Briefly, T-Coffee could be seen as a refinement of the progressive approach to
multiple alignment that avoids the use of a distance matrix. These two programs
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original ECGI  modified ECGI

string 1 GGCCTG.TA GGCCTGTA
string 2 GG.CTATTA GGCTATTA
string 3 .G...G.TA GG....TA

Fig. 4. Alignment example using the automata from Figure[2l Considering the version
that uses the modified ECGI, please note that the state 10 is a synchronizations point
for all the strings. Note that the third string reaches this state with its third symbol. The
other two strings need to analyze several symbols to reach the same state. Therefore,
somewhat the third string “has to wait”, and a gap is opened. The gap is closed
when all the strings reach the synchronization state. Also note that the original ECGI
automaton lead to an alignment that contains more gaps than the alignment obtained
when the modified ECGI algorithm is used.

allow us to compare the GI approach in terms of computational complexity as
well as their experimental behaviour.

3.2 Computational Complexity

In the following let n denote the number of sequences to align and let M denote
the length of the longest sequence. The time complexity of Clustal-W algorithm
is O(n?M?). The time complexity of T-Coffee is higher than the complexity of
Clustal-W algorithm (O(n?M?) + O(n3M) + O(n?) + O(nM?)).

The approach we propose needs O(n) steps to build the automaton and each
one can be carried out in O(M?), therefore, the automaton can be obtained with
complexity O(nM?). The second step implies the alignment of the sequences, and
can be carried out with complexity O(nM). Therefore, the final time complexity
of our alignment method is O(nM?), therefore improving previous results.

4 Experimental Results

In order to carry out the experimentation, a benchmark database of RNA align-
ments was considered [I4]. Structural alignment of RNA remains as an open
problem despite the effort on the development of new alignment procedures to
protein sequences. This dataset is divided into five subsets that take into account
structural features. In their work, Gardner et al., compare the performance of
several methods. Their results were the reason to select Clustal-W and T-Coffee
as the two better methods.

From the five subsets of the database, one of them was thought to be untrust-
worthy, and was not considered. Further testing has shown the alignments of the
set to be perfectly reliable and were considered in our work.

To assess the performance of the results, two different scores have been used
[15]. The sum-of-pairs score (SPS) increases with the number of sequences cor-
rectly aligned. Therefore, it is useful to measure whether the program succeeds
in aligning some of the sequences in an alignment. The column score (CS) is a
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more strict parameter and it is a way to test whether the program aligns or not
all the sequences properly.

Given an alignment of N sequences and M columns, let a;1, a;2, - . ., a;, denote
the symbols on the ith column. p;;j is defined such that p;jr = 1 if symbols a;;
and a;, are aligned with each other in the reference alignment and pjjr = 0
otherwise. Let the score S; be defined as follows:

N N
Si=2_> Pij
j=1k=1
k]
let M, denote the length of the reference alignment and S,; the score of the ith
column for the reference alignment. The SPS for the alignment is then:

M
> 5i
=1
SPS = ML
Sri
i=1
For any given alignment described as above, let C; = 1 if all the symbols in
the ith column are aligned in the reference, otherwise let C; = 0. Then, CS for
the alignment is obtained as follows:

Mk

Ci
1
M

cs="

Clustal-W and T-Coffee software were downloaded from the European Bioin-
formatics Institute (http://www.ebi.ac.uk/). The experiments were run with the
DNA default parameters for each program because they are reported as the most
suitable ones. We tested both the basic ECGI algorithm and the modified one.
The same alignment scheme explained in Section [3 was followed in any case.

All the parameters used in the alignment step of our approach were empirically
set to: an identity distance matrix with substitution value set to 6; a gap open
penalty set to 10; a gap extension penalty set to 6.66; and a closing gap penalty
set to 0.5. The original version of the ECGI algorithm showed poor performance
(results not showed). The main reason of this behaviour was the high amount of
gaps introduced in the alignment, mainly due to the lack of gap penalties.

Experiments were carried out for each alignment group in the dataset. From
the data shown we can consider that, no matter which group is considered,
there is no substantial difference in the behaviour of the methods tested. Three
homology levels were studied: low homology for sequences below the 50% of
identity, medium homology for sequences between 50% and 70% of identity, and
high homology for sequences over 70% of identity. No relevant difference in the
methods’ performance was observed. Finally, Figure [}l shows the global results.
From the data obtained we conclude that all the three methods behave in the
same way. Table [l summarizes all the results.
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Fig. 5. Global experimental results

Table 1. Summary of the experimental results

T-Coffee Clustal-W ECGIalign

SPS CS SPS CS SPS CS

G1 0.698 0.506 0.700 0.508 0.682 0.476

Results by G2 0.895 0.773 0.927 0.836 0.906 0.800
group G3 0.835 0.679 0.856 0.719 0.836 0.679
G4 0.802 0.665 0.849 0.731 0.868 0.755

G5 0.782 0.582 0.779 0.593 0.780 0.583

Results by Low 0.735 0.536 0.749 0.562 0.746 0.549
homology Med 0.868 0.736 0.903 0.801 0.892 0.780
High 0.910 0.831 0.928 0.863 0.929 0.862

Global results 0.801 0.638 0.820 0.674 0.813 0.656

5 Conclusions and Future Work

Multiple alignment of biological sequences is one of the commonest task in bioin-
formatics and have several important applications. Structural alignment of RNA
remains as an open problem despite the effort on the development of new align-
ment procedures to protein sequences. In this work, we address this task using
only the sequences of the molecules to align.

Inductive inference is one of the possibilities to tackle the problem of Au-
tomatic Learning. In our work we used a grammatical inference algorithm and
biological information to learn a finite automaton. This automaton is used to
obtain an alignment using the each sequence accepting path in the automaton.

It is important to note that the time complexity of our approach to multiple
sequence alignment improves previous results. Our method achieves the same
performance but reduces by one degree the time complexity of previous ap-
proaches (O(nM?) instead O(n?M?) where n denotes the number of sequences
to align and M denotes the length of the longest sequence).
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Several lines of work remain open and could lead to improve our results. As
noted above, ECGI algorithm obtains different automata when the training set is
ordered in different ways. Therefore it should be possible to improve the results
by ordering the samples as a preprocessing of the training set. Nevertheless this
preprocessing would lead to an increasing of the time complexity, and it has to
be studied whether the performance worth the increased complexity.

Another important feature of the grammatical inference algorithms is that the
more data available, the best results obtained. Therefore, it has to be studied
whether the more sequences considered, the better alignment results obtained.

One of the drawbacks of previous alignment methods is the greedy behaviour
of the approach that makes impossible of change first stages alignments. It can
be argued that our approach can also produce bad first-stage decisions. In order
to smooth this greedy behaviour, it should be possible to take advantage of
the ambiguity of the automata by using stochastic automata. In this way, those
better accepting paths in the automata would be selected, leading to better
alignment results.
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