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Abstract. Information Fusion is becoming increasingly relevant in fields
such as Image Processing or Information Retrieval. In this work we pro-
pose a new technique for information fusion when the sources of infor-
mation are given by a set of kernel matrices. The algorithm is based on
the joint diagonalization of matrices and it produces a new data rep-
resentation in an Euclidean space. In addition, the proposed method is
able to eliminate redundant information among the input kernels and it
is robust against the presence of noisy variables and irrelevant kernels.

The performance of the algorithm is illustrated on data reconstruction
and classifications problems.

Keywords: Information Fusion, Approximate Joint Diagonalization,
Kernel Methods, Support Vector Machines.

1 Introduction

Fusion information techniques are becoming increasingly relevant in different
fields such as classifier combination [9] or image processing [17]. Data fusion
processes combine different sources of information to feed some data processing
algorithm. For instance, in the problem of kernel combination [4], there are
several metrics available and the task is to produce a single kernel to increase
the classification performance of Support Vector Machine algorithms. In image
fusion [3], a typical problem considers different satellite pictures, with different
resolutions and different color qualities, and the task is to produce a picture that
has maximum resolution and the best color quality. In the field of Information
Retrieval, the goal can be to classify a set of web pages [8], and the information
that has to be combined lies in the co-citation matrix and in the terms-by-
documents matrix.

In this paper we approach the problem of information fusion in the context of
kernel methods. Consider a set of kernels K1, ..., Kt. By the Mercer theorem [11]
each positive-definite kernel Ki induces a transformation of the data set into a
(possibly) high dimensional Euclidean space IRni . Thus, each kernel induces a
particular representation of the data set using some basis {vi} for IRni . If we
want to combine the information provided by a set of kernels, we will have to find
some ‘common’ basis {v∗} from the individual basis {vi}, such that the inmersion
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of the data set in the resulting IRn∗
contains all the relevant information from

the individual kernels Ki.
Any technique to produce the desired combination basis needs to take into

account the problem of information redundance. To illustrate this problem, let
us consider a data set, and two representations given by two projections on
two pairs of principal axes: (x, y) and (x, z), where the x variable is present
in both representations. If we use the direct sum of the corresponding spaces as
solution for the combination problem, we will have the representation (x, y, x, z).
Thus, the weight of the x variable will be doubled when using the Euclidean
distance and the results of the classification and regression algorithms will be
distorted. In the general case the correlation between the variables will cause
similar problems.

The Joint Diagonalization (JD) is a procedure that can be applied for fusion
information purposes. The basis {vi} for the individual representation spaces
are given by the eigenvectors of the Ki matrices. JD is able to produce a new
basis {v∗i } from the {vi} basis and provides information to weight the new vari-
ables. Redundant kernel information can be removed during the process and the
problem of overweighting variables avoided.

The paper is organized as follows. In Section 2 we review the simultaneous
diagonalization process and introduce the case for more than two kernels. In
Section 3 a new algorithm for kernel fusion is presented based on the joint
diagonalization of matrices. Finally, in Section 4 the performance of the new
data fusion methodology is tested using an ilustrative example.

2 Joint Diagonalization of Matrices

The calculus of eigenvalues is an usual task in many pattern recognition algo-
rithms such as FDA [10], Kernel PCA [13,1], or Kernel Canonical Correlations
[6] among others. Given a matrix A ∈ IRn×n the diagonalization process seeks
matrices V orthogonal and D diagonal such that AV = V D, or equivalently:

A = V DV T . (1)

When A is symmetric then a solution always exists and the elements of D are
real numbers.

Some algorithms require the simultaneous diagonalization of two matrices. For
instance, in FDA the within-class scatter matrix and the between-class scatter
matrix have to be simultaneously diagonalized to find discriminative directions.

It is well known that exact simultaneous diagonalization is always possible
[12]. This problem is referenced in the literature as the Generalized Eigenvalue
Problem. Given two matrices A, B ∈ IRn×n the problem is stated as finding
V ∈ IRn×n, and two diagonal matrices D1 and D2 such that AV = BV D. In
other terms,
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V T AV = D1
V T BV = D2. (2)

The base of vectors given by the columns of V is not necessarily orthonormal.
This base is not unique and it is proven that V is orthogonal when the matrices
A and B conmute, that is when AB = BA. If B is non-singular, the problem can
be solved as and ordinary eigenvalue problem where the target matrix is B−1A.
See [7,5] and references therein for further details.

Next we afford the problem of diagonalization of more than two matrices at
the same time.

2.1 Approximate Joint Diagonalization Algorithm

Given a set of matrices S = {A1, ..., At} it is not possible in general to achieve
perfect joint diagonalization in a single step, unless AiAj = AjAi ∀i, j ∈ {1, ..., t}.
These restrictions do not hold for most theoretical or practical problems. In
practice we will have to find an orthonormal change of basis which makes the
matrices in S ‘as diagonal as possible’ in a sense that will be detailed right away.

In this paper we consider the Approximate Joint Diagonalization (AJD) of
symmetric matrices [14,2,15]. Given a square matrix A, we can measure the
deviation of A from diagonality by defining

off(A) = ‖A − diag(A)‖2
F =

∑

i�=j

a2
ij , (3)

where ‖A‖F =
∑

i

∑
j a2

ij is the Frobenius norm. If A is a diagonal matrix then
off(A) = 0, while off(A) will take small positive values when the off-diagonal
values of A are close to zero.

Given the set S, the target is to find an orthonormal matrix V such that the
departure from diagonality of the transformed matrices D′

i = V T AiV is as small
as possible ∀i ∈ {1, ..., t}. Therefore the goal will be to minimize

J(V ) =
∑t

k=1 off(V T AkV )
s.t.

‖V T V − I‖F = 0
‖diag(V − I)‖F = 0,

(4)

where the restrictions have to be included to achieve orthonormality and to
avoid the trivial solution V = 0. After solving (4) we will obtain quasi diagonal
matrices D′

1, ..., D
′
t, where D′

i = V T AiV ∀i ∈ {1, ..., t}.
There is no closed solution for the problem in (4) and some type of numerical

approach has to be adopted. We will apply the algorithm described in [2,16]. The
idea is to generate a sequence of similarity transformations of the initial matrices
that drive to zero the off-diagonal entries. The convergence of the algorithm is
proven to be quadratic and the obtained eigenvalues and eigenvectors are robust
against small perturbations of the data.
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3 Fusion Joint Diagonalization Algorithm (FJDA)

As already mentioned, Approximate Joint Diagonalization involves the compu-
tation of a base of orthogonal vectors in which the set of kernels approximately
diagonalize. We will obtain relevant information about the data structure by an-
alyzing the resulting eigenvalues, or equivalently, the diagonal matrices obtained
from the joint diagonalization procedure. The ideas are similar to that used in
Principal Components Analysis, where the covariance matrix is diagonalized and
the resulting eigenvalues can be interpreted as the weights of the new variables.

Let {v1, ..., vn} be the column vectors of the matrix V obtained from the
JD algorithm (the {v∗i } vectors in the introduction). These vectors constitute
the basis where both kernels diagonalize and can be interpreted as the average
eigenspace of the kernels. A detailed analysis of the kernels redundancy can be
done in terms of the values of the diagonal matrices D′

1, D
′
2, ..., D

′
t obtained.

Given the kernel Kl, their components can be interpreted as follows:

– D′
l(i, i) = 0: the vector vi is irrelevant for the kernel Kl. That is, the i-th

variable vi is in the null space of Kl.
– D′

l(i, i) �= 0: in this case vi is a relevant component for Kl.
– D′

l(i, j): These values can be interpreted as the interactions among the new
variables. Due to the JD operation, D′

l(i, j) ≈ 0.

Given V and D′
1, D

′
2, ..., D

′
t, the straightforward sum of the kernel matrices can

be reexpressed as:
t∑

i=1

Ki = V T

(
t∑

i=1

D′
i

)
V (5)

Given that the off-diagonal values of {D′
1, ..., D

′
t} are quite close to zero, D′

l(i, i)
can be interpreted as the weight that kernel Kl assigns to the i-th variable in
the new basis. Since the new base is orthogonal, independent information is
given by each component. The straightforward sum of kernels implies to include
redundances in the operation and to overweight variables that appear in more
than one kernel at the same time. In order to avoid these redundances, the sum
of the quasi-diagonal matrices of expression (5) can be replaced by the function
F (D′

1, D
′
2, ..., D

′
t) defined as follows:

F (D′
1, D

′
2, ..., D

′
t) =

{
max{D′

1(i, j), ..., D
′
t(i, j)} if i = j

0 if i �= j
(6)

The justification of this choice is as follows. The relevance of the i−th variable in
the basis induced by kernel Kl is given by D′

l(i, i). The use of the max function
guarantees that the i-th variable will be relevant in the resulting combined basis
if this is the case for any of the individual representations. Thus, the weight of
ith variable in the fusion kernel will be max{D′

1(i, i), ..., D
′
t(i, i)}.

The final algorithm for kernel fusion is shown in Table 1 and it provides a
global framework for kernel fusion. Notice that, since the matrix V is orthogonal
and the diagonal matrices of F (D′

1, D
′
2, ..., D

′
t) are positive, K∗ is always a Mercer

kernel matrix.
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Table 1. Scheme of the Fusion Joint Diagonalization Algorithm in three steps

INPUT: Kernel matrices K1, ..., Kn

OUTPUT: Kernel combination K∗

1.- (V, D′
1, ..., D

′
n) = AJD(K1, ..., Kn)

2.- D∗ = F (D′
1, ..., D

′
n)

3.- K∗ = V T D∗V

4 Experiments

In order to validate the effectiveness of the proposed methodology some exper-
imental results are shown in this section. First, the algorithm is tested in a
data reconstruction example where partial information about the data is given.
Finally, the methodology is successfully tested in a real classification problem..

4.1 Simulated Example

In this example we illustrate the performance of the new JD algorithm in a data
structure recovery task.

We consider two different one-dimensional random projections π1 and π2 of
the spiral data in Figure 1 and calculate the kernel matrices K1 and K2 by
applying the linear kernel k(x, y) = xT y to the projected data points, that is,
Ki(x, y) = πi(x)T πi(y). We add a corrupted (random) representation of the data
and calculate K3 from this representation in the same way. K3 plays the role of a
non informative (non-related) piece of information in the system. This situation
happens when the distance function is not appropiate for the data set under
consideration or when we try to use irrelevant information to solve a problem.
The task is to recovery the original data set from the three projections.

Two fusion schemes were compared in the experiment: The straightforward
sum of kernels Ksum = K1 + K2 + K3 and the combination K∗ calculated with
the Fusion Joint Diagonalization Algorithm. In Figure 2 the results are shown.
It is clear that our procedure is able to recover the original data set structure
while the straightforward sum of kernels fails on the task of recovering the data
set structure.

4.2 Sonar Data

In this example we perform a study of classification of sonar signals [18]. The
goal is to discriminate between two types of signals: those bounced off a metal
cylinder and those bounced off a roughly cylindrical rock. The data set has 208
observations measured on 60 variables that take values in the interval [0, 1]. Each
value represents the energy within a particular frequency band, integrated over a
certain period of time. The goal is classify the objects as rocks or mines.
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Fig. 1. Spiral data
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(a) Direct fusion of kernels for
the Spiral data
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(b) Fusion Joint Diagonaliza-
tion Algorithm applied to the
Spiral data set

Fig. 2. Representations for recovered data structures after the direct combination of
three kernels and after the Fusion Joint Diagonalization algorithm

We consider two Radial Basis Funtion kernels Ki(x, y) = e−γi‖x−y‖2
, i ∈

{1, 2}, where γ = 1 and γ = 0.1. We want to combine K1 and K2 using the
straightforward sum and the AJD fusion method. In order to evaluate the per-
formance of both fusion approaches we will feed one SVM classifier with the
resulting fusion kernels. The penalty value C is set to one in all the experiments.
Table 2 shows the classification results for the SVM classifier using four different
kernels: the individual kernels K1 and K2, and the two fusion kernels: Sum for
the straightforward sum and KAJD for the AJD kernel.

It is apparent from the results that K1 performs better than K2. When the
straightforward sum is considered, the performance of the SVM is worse than in
the case of using the RBF kernel with γ = 1. It seems that the bad performance
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Table 2. Percentage of missclassied data, and percentage of support vectors for the
Sonar data set after 10 runs. Standard deviations in brackets.

Kernel Train Error Test Error %SV

K1 (γ = 1) 1.144 (0.460) 15.952 (0.372) 40.0 (0.0)
K2 (γ = .1) 16.56 (0.077) 25.761 (0.170) 48.7 (0.0)

KSum 1.325 (0.516) 16.666 (0.380) 76.6 (1.8)
KAJD 0.783 (0.499) 15.238 (0.404) 82.9 (2.2)

of K2 damages the performance of the straightforward sum approach. On the
other hand, the kernel obtained by the AJD algorithm shows a better classifi-
cation performance than the other fusion method and also than the individual
kernels.

5 Conclusions and Future Work

In this work, we present a new framework for information fusion when the sources
of information are given by a set of kernel matrices. The algorithm, based on the
Approximate Joint Diagonalization of matrices, produces a new representation
of the data set in a Euclidean space, where the basis is created from the rep-
resentations induced by the individual kernels. In addition our method is able
to eliminate redundant information from the individual kernels. The proposed
fusion scheme has been tested in a couple of significative examples. Furthermore,
the procedure is shown to be robust against the inclusion of noisy variables.

Future research will include the study of Joint Diagonalization Algorithms
that take into account the label information in classification problems and also
JD algorithms specific for regression problems.
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11. Moguerza, J., Muñoz, A.: Support Vector Machines with Applications. Statistical
Science 21(3), 322–336 (2006)

12. Beresford, P.N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathe-
matics. SIAM (1997)

13. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear Component Analysis as a Ker-
nel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)

14. Wax, M., Sheinvald, J.: A least-squares approach to joint diagonalization. IEEE
Signal Processing Lett. 4, 52–53 (1997)

15. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous
diagonalization. SIAM Journal on Matrix Analysis and Applications 14(4), 927–949
(1993)

16. Yeredor, A.: Non-Orthogonal Joint Diagonalization in the Least-Squares Sense
With Application in Blind Source Separation. IEEE Transactions on Signal Pro-
cessing. 50 (7), 1545–1553 (2002)

17. Piella, G., Heijmans, H.: Multiresolution Image Fusion Guided by a Multimodal
Segmentation. In: Proceedings of ACIVS 2002, Ghent, Belgium (September 9-11,
2002)

18. Newman, D.J., Hettich, S., Blake, C.L. and Merz, C.J.UCI Repository of
machine learning databases. Irvine, CA: University of California, Department
of Information and Computer Science 1998, http://www.ics.uci.edu/mlearn/
MLRepository.html

http://www.ics.uci.edu/ mlearn/MLRepository.html
http://www.ics.uci.edu/ mlearn/MLRepository.html

	Joint Diagonalization of Kernels for Information Fusion
	Introduction
	Joint Diagonalization of Matrices
	Approximate Joint Diagonalization Algorithm

	Fusion Joint Diagonalization Algorithm (FJDA)
	Experiments
	Simulated Example
	Sonar Data

	Conclusions and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




