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Abstract. This paper examines the application of Shifted Delta Cepstral (SDC) 
features in biometric speaker verification and evaluates its robustness to chan-
nel/handset mismatch due by telephone handset variability. SDC features were 
reported to produce superior performance to delta features in cepstral feature 
based Language Identification systems. The result of the experiment reflects 
superior performance of SDC features regarding to delta features in biometric 
speaker verification using speech samples from Ahumada Spanish database.  
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1   Introduction 

Existing methods of user authentication can be grouped into three classes: possessions 
(something that you have: a key, an identification card, etc); knowledge (something 
that you know: a password, a PIN, etc) and biometrics [1]. Biometrics is the science 
of identifying or verifying the identity of a person based on physiological characteris-
tics (something that you are: fingerprints or face) or behavioural characteristics de-
pendent on physical characteristics (something that you produce: handwritten signa-
ture or speech).  

Early user authentication was based on possessions and knowledge, but problems 
associated with these methods, restrict their use. The most important drawbacks of 
these methods are: possessions can be lost, stolen, shared or easily duplicated; knowl-
edge can be shared, easy to guess, forgotten, and both, knowledge and possessions 
can be shared or stolen [1]. Consequently it is easy to deny that a given person carried 
out an action, because only the possessions or knowledge are checked, and these are 
only loosely coupled to the person’s identity. Biometrics provides a solution to these 
problems by truly verifying the identity of the individual. 

As a biometric user authentication method, speech is a behavioural characteristic 
that is not considered threatening or intrusive by users to provide. The goal of speaker 
recognition is to extract, characterize, and recognize the information in the speech 
signal conveying speaker identity [2]. Telephony is the main modality of biometric 
speaker recognition, since it is a domain with ubiquitous existing hardware and 
doesn’t need for special transducers to be installed.  
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Current automatic speaker recognition systems face significant challenges caused 
by adverse acoustic conditions as telephone band limitation and channel and handset 
variability. Degradation in the performance of speaker recognition systems due to 
channel mismatch has been one of the main challenges to actual deployment of 
speaker recognition technologies. Several techniques have been proposed to address 
this problem, new speech features that are less sensitive to channel effects can be 
extracted [3], the effect of mismatches can be reduced via cepstral normalization [4, 
5], the speaker models can be transformed to compensate for the mismatches [6, 7], 
and rescoring techniques can be used to normalize the speaker scores and reduce the 
channel and handset effects [8]. 

This paper introduces the application of a new set of dynamic cepstral features in 
speaker recognition: Shifted Delta Cepstral (SDC) features, and evaluates its perform-
ance in front of channel/handset mismatch, typical in remote applications. SDC  
features were recently reported to produce superior performance to delta features in 
cepstral feature based Language identification [9, 10]. 

SDC features are obtained by concatenating the delta-cepstral computed across 
multiple frames of speech. As a combination of dynamic cepstral features, SDC fea-
tures contain useful information about speaker identity. 

Nevertheless, in our knowledge, this is the first attempt on using SDC features for 
speaker recognition. This evaluation was performed using telephone speech samples 
of Ahumada Spanish database [11].    

2   Biometric Speaker Verification 

Voice is a combination of physiological and behavioral characteristics. The features 
of an individual’s voice are based on invariant physiological characteristics, as the 
shape and size of the vocal and nasal tract, mouth and lips, used in the synthesis of the 
sound. Nevertheless, this technology is usually classified as a behavioural too, be-
cause the way the individual speaks, their attitude and their cultural background 
strongly influences the resulting speech signal. This behavioral characteristics of a 
person’s speech (and some physiological, too) changes over time due to age, health 
conditions, emotional state, environmental reasons, etc. 

Biometric application of speaker recognition is identified as speaker verification 
because a user claims to be a client, and the system verifies this claim. Many applica-
tions of speaker verification systems are accessed remotely by users and the channel 
involved in the communication is the telephone. Because the handset and the line can 
vary from call to call, there is often an acoustic mismatch between the speech col-
lected to train the speaker models and the speech produced by the speakers at run time 
or during testing. Such mismatches are known to severely affect the performance of 
the system. However, in a remote banking application, the voice-based technique 
combined with other user’s authentication method, may be preferred since it can be 
integrated without additional effort, into the existing telephone system. 

Speaker verification systems are categorized depending on the freedom in what is 
spoken; this taxonomy based on increasingly complex tasks also corresponds to the 
sophistication of algorithms used and the progress in the art over time [1]: 
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Fixed text: The speaker says a predetermined word or phrase which was recorded at 
enrolment. The word may be secret, so it acts as a password, but once recorded a 
replay attack is easy, and re-enrolment is necessary to change the password.  

Text prompted: The speaker is prompted by the system to say a specific expression. 
The system matches the utterance with known text to determine the user. For this, 
enrolment is usually longer, but the prompted text can be changed at will. Expression 
as digit strings are more vulnerable than phrases, to splicing-based replay attacks.  

Text independent: The system processes any utterance of the speaker. Here the 
speech can be task-oriented, so it is hard to acquire speech that also accomplishes the 
impostor’s goal.  

Combined with utterance verification [2]:  The system presents to the user, a series 
of randomized phrases to repeat, and verifies not only the voice matches but also the 
required phrases match. Additionally, it is possible to use forms of automatic knowl-
edge verification where a person is verified by comparing the content of his/her spo-
ken utterance against the stored information in his/her personal profile. 

This paper evaluates the performance of SDC features as a new set of dynamic fea-
tures for speaker recognition, in a remote speaker verification system using text 
prompted task using short phrases.  

3   Shifted Delta Cepstral Features 

First proposed by Bielefeld [12], features called Shifted Delta Cepstral (SDC) are 
obtained by concatenating the delta-cepstral computed across multiple frames of 
speech information, spanning multiple frames into the feature vector. Recently, the 
proposal of using SDC features of a speech signal for language identification with 
GMM [13] and SVM [14] classifiers, has produced promising results. In our knowl-
edge, this is the first attempt to using SDC for speaker recognition. 

Cepstral features contain information about speech formants structure, and delta-
cepstral about its dynamics. SDC features evaluate speech spectral dynamics better, 
because can reflect the movement and position of vocal and nasal articulators if its 
time interval of analysis is adjusted to include spectral transitions between phonemes 
and syllables. In each cepstral frame, SDC computation obtains the dynamic of the 
articulatory movement in next frames, as a pseudo-prosodic feature vector [10] com-
puted without having to explicitly find or model the prosodic structure of the speech 
signal. Is known that the prosodic structure of the speech conveys important informa-
tion about the identity of the speaker [15].  

The computation of SDC features is a relatively simple procedure [16] and is illus-
trated in Fig. 1. First, a cepstral feature vector is computed in each frame. A shifting 
delta operation is applied to frame based cepstral feature vectors in order to create the 
new combined feature vectors for each frame. 

The SDC features are specified by a set of 4 parameters, (N, d, P, k) where: 

• N: number of c cepstral coefficients in each cepstral vector. 
• d: time advance and delay for the delta computation. 
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Fig. 1. Computation of SDC feature vector for each cepstral coefficient 

• P:  time shift between consecutive blocks. 
• k: number of blocks whose delta coefficients are concatenated to form the SDC 

vector 
For the case shown in Fig 1 the final SDC vector at frame time t is given by the 

concatenation from i =  0  to  k-1 of all the  Δc (t + iP), where:   

( ) ( ) ( )diPtcdiPtciPtc −+−++=+Δ  (1) 

Accordingly, kN parameters are used for each SDC feature as compared with 2N 
for conventional cepstral and delta-cepstral feature vectors. In language identification 
applications, SDC features substitute cepstral and delta-cepstral features, using differ-
ent combinations of (N, d, P, k). 

More recently, a modified version of SDC was reported to have even higher per-
formance in LID [9], calculated using a recurrent expression: 
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4   Front End Processing 

Cepstral coefficients derived from a Mel-frequency filter bank (MFCC) have been 
used to represent the short time speech spectra. All speech material used for training 
and testing is pre-emphasized with a factor of 0.97, and an energy based silence re-
moval scheme is used. A Hamming window with 30ms window length and 30% shift 
is applied to each frame and a short time spectrum is obtained applying a FFT. The 
magnitude spectrum is processed using a 30 Mel-spaced filter bank, the log-energy 
filter outputs are then cosine transformed to obtain 12 Mel-frequency cepstral coeffi-
cients, the zero cepstral coefficient is not used. Therefore, each window of signal 
frame is represented by a 12-dimensional MFCC features vector.  

In order to reduce the influence of mismatch between training and testing acoustic 
conditions, a robust feature normalization method for reducing noise and/or channel 
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effects has been proposed, the Cepstral Mean and Variance Normalization (CMVN) 
[16]. Assuming Gaussian distributions, CMVN normalizes each component of the 
feature vector according to the expression: 

[ ] [ ]
i

ii
i
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nc

σ
μ−=ˆ  (3) 

where [ ]nci   and [ ]ncî  are the i-th component of the feature vectors at time frame n 

before and after normalization, respectively, and iμ  and iσ  are the mean and vari-

ance estimates of the sequence [ ]nci . 

Delta-cepstral features are obtained for each MFCC features vector, using d=2 as 
time advance and delay for the delta computation, at last, and using equation 2, SDC 
features are obtained.  

Three set of features are used in each one of the experiments: 

1. 12 MFCC  + 12 delta , dimension 24 (baseline) : MFCC + D 
2. 12 MFCC  + SDC (12,2,2,2), dimension 36: MFCC + SDC 
3. 12 SDC(12,2,2,2), dimension 24: SDC 

5   Database and Experiments 

Ahumada [11] is a speech database of 103 Spanish male speakers, designed and ac-
quired under controlled conditions for speaker characterization and identification. 
Each speaker in the database expresses six types of utterances in seven microphone 
sessions and three telephone sessions, with a time interval between them. 

In order to evaluate the performance of SDC features in front to handset and chan-
nel mismatch in a remote biometric speaker verification using text prompted phrases, 
ten phonologically and syllabically balanced phrases in the three telephone sessions of 
Ahumada were used, the ten phrases are the same for each one of the 103 speakers. 
The performance of the verification is evaluated using a 64 mixtures GMM/UBM 
classifier, trained and tested with a subset of 50 speakers of the database; other subset 
of 50 speakers is used to train the 256 mixtures UBM. 

In our approach, the behaviour of a text prompted biometric speaker verification is 
simulated, so the system is trained with ten phrases of each one of 50 speakers in 
session T1 and tested with each one of the phrases of the same speakers in session T2 
and T3. All 50 speakers were used as targets for their corresponding models and as 
impostors for the rest of models, so we obtain 500 target and 4500 impostors in each 
test. 

In each telephone sessions, conventional telephone line was used. In session T1, 
every speaker was calling from the same telephone, in an internal-routing call. In 
session T2, all speakers were requested to make a call from their own home tele-
phone, trying to search a quiet environment, so the channel and handset characteris-
tics are unknown. In session T3, a local call was made from a quiet room, using 9 
randomly selected standard handsets, for each handset, three characteristics are 
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known: microphone sensibility and frequency response, and the ranges of signal to 
noise ratio in its associated channel.  

Each speaker in session T3 uses one of the 9 handset, then the speakers can be 
grouped in two classes, for each one of the three measured characteristics: 

• Low sensibility (< 1 mV/P) and high sensibility (> 2.5 mV/P) of the microphone. 
• Low attenuation level (< 20 dB) and high attenuation level (> 35 dB) of the mi-

crophone band pass frequency response. 
• Low and high signal to noise ratio mean (threshold: 35 dB) in the channel. 

    The experiments are organized in the following manner: 

1. Evaluation of channel mismatch  in uncontrolled conditions: trained with ses-
sion T1 and tested  with session T2 

2. Evaluation of channel mismatch due to handset sensibility: trained with 
speakers in session T1 and tested with speakers in session T3, grouped in two 
classes, low sensibility (24 speakers) and high sensibility (26 speakers). 

3. Evaluation of  channel mismatch due to handset frequency response: trained 
with speakers in session T1 and tested with speakers in session T3, grouped in  
two classes, low attenuation level (30 speakers)and high attenuation level (20 
speakers). 

4. Evaluation of channel mismatch due to signal to noise ratio in the channel: 
trained with speakers in session T1 and tested with speakers in session T3, 
grouped in two classes, low (19 speakers) and high (31 speakers) signal to 
noise ratio mean. 

6   Results  

Evaluation of the results was performed using detection error tradeoff (DET) plot 
[17].Two indicators are used to evaluate the performance: Equal error rate (EER) and 
minimum of Detection Cost Function (DCF), defined as:  

DCF= (CFR * PFR * PTarget) + (CFA * PFA * PNonTarget)   (4) 

Where 
CFR (cost of a missed detection) = 10 
CFA (cost of a false alarm) = 1 
PTarget (a priori probability of a target speaker) = 0.01 
PNonTarget (a priori probability of a non-target speaker) = 0.99 
PFR   (Miss probability) 
PFA   (False alarm probability) 
The results of the four experiments are reflected in DET plots in figures 2 to 5 and 

Tables 1 to 4 with values of indicators EER and DCF. 
DET plot of experiment 1 reflects a similar behaviour of SDC and MFCC features 

in front of  channel mismatch  where the channel and handset characteristics are un-
known. Table 1 shows that MFCC + SDC features have better performance that 
MFCC +D features (better EER and DCF). 
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Fig. 2. Experiment 1: T1 train, T2 test 
Fig. 3. Experiment 2: T1 train, T3 test black : 

high sensibility , green: low sensibility 

 

Fig. 4. Experiment 3: T1 train, T3 test   black 
: low attenuation,  green: high attenuation  

Fig. 5. Experiment 4: T1 train, T3 test  
black : high s/n,  green: low s/n 

Table 1. Experiment 1: channel mismatch in uncontrolled conditions 

Features EER DCF 
MFCC +D 0.107 0.048 
MFCC+SDC 0.102 0.047 
SDC 0.111 0.051 

 
DET plot of experiment 2 reflects a better behaviour of both sets of SDC features 

compared to MFCC features in front of  mismatch due to handset sensibility . Table 2 
shows that both sets of SDC features have lower EER and similar DCF that MFCC 
+D features in both sensibility conditions. 
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Table 2. Experiment 2: channel mismatch due to handset sensibility 

 Low sensibility High sensibility 
Features EER DCF EER DCF 

MFCC +D 0.154 0.057 0.091 0.045 
MFCC+SDC 0.119 0.057 0.080 0.049 

SDC 0.132 0.061 0.084 0.046 

Table 3. Experiment 3: channel mismatch due to handset frequency response 

 High attenuation Low attenuation 
Features EER DCF EER DCF 

MFCC +D 0.154 0.062 0.049 0.031 
MFCC+SDC 0.12 0.064 0.055 0.037 

SDC 0.133 0.067 0.05 0.032 
 
DET plot of experiment 3 reflects a better behaviour of both sets of SDC features 

compared to MFCC features in front of  high attenuation of handset frequency 
response. Table 3 shows that both sets of SDC features have lower EER and similar 
DCF that MFCC +D features in  this condition. 

Table 4. Experiment 4: channel mismatch due to signal to noise ratio in the channel 

 Low s/n High s/n 
Features EER DCF EER DCF 

MFCC +D 0.157 0.070 0.058 0.032 
MFCC+SDC 0.121 0.072 0.063 0.039 

SDC 0.127 0.074 0.061 0.035 
 
DET plot of experiment 4 reflects a better behaviour of both sets of SDC features 

compared to MFCC features in front of  low signal to noise ratio in the channel.  
Table 3 shows that both sets of SDC features have lower EER and similar DCF that 
MFCC +D features in  this condition. 

Results of experiments 2, 3 and 4 reflect a better performance of both sets of SDC 
features in front of the worst mismatch condition: low handset sensibility, high 
attenuation in handset frequency response and low signal to noise ratio in the handset 
associated channel. Table 5 reflects the relative reduction in % of EER, in each ex-
periment for both sets of SDC features respect to MFCC features. 

Table 5. Reduction in % of EER for both sets of SDC features respect to MFCC features 

Mismatch condition MFCC 
+ SDC 

SDC 

low handset sensibility 22 14 
high handset attenuation 22 13 
low s/n ratio in channel 23 19 
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7   Conclusions and Future Work 

The result of the experiments reflect a superior performance of SDC features respect 
to MFCC + delta features in speaker verification using speech samples from  tele-
phone sessions of Ahumada Spanish database. 

• Test in uncontrolled conditions (experiment 1) reflects similar behavior of SDC 
and MFCC features. 

• Tests under controlled conditions (experiments 2, 3 and 4) reflect a better behav-
iour of SDC respect to MFCC features in front of worst mismatch conditions. 

• In these experiments, the EER reduction due to utilization of SDC features in-
stead of MFCC features is superior to 22% using MFCC+SDC, and superior to 
13% using SDC alone.  

• Test under controlled conditions (experiment 2,3 and 4) reflect a similar behavior 
of SDC respect to MFCC features in front to better mismatch conditions, in ex-
periment 2, SDC features have a better behavior than MFCC features in both  
mismatch conditions. 

    Shifted Delta Cepstral features must be considered as a new alternative of cepstral 
features, in order to reduce the effects of channel/handset mismatch in remote speaker 
verification performance. SDC features appended to MFCC features show the best 
results, but SDC features instead of MFCC +delta features show a good result too, 
maintaining the same feature dimensionality (24 dimensions). 
    Future work will be in the direction of evaluate the influence of SDC parameters  d 
and P. SDC features must be assumed as a pseudo-prosodic vector, and these parame-
ters are related with its time-dynamic behaviour. Also, H-Norm score normalization 
must be applied.  
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