Continuous RDF Query Processing over DHTs*

Erietta Liarou', Stratos Idreos', and Manolis Koubarakis?

I CW1, Amsterdam, The Netherlands
2 National and Kapodistrian University of Athens, Athens, Greece

Abstract. We study the continuous evaluation of conjunctive triple pattern
queries over RDF data stored in distributed hash tables. In a continuous query
scenario network nodes subscribe with long-standing queries and receive an-
swers whenever RDF triples satisfying their queries are published. We present
two novel query processing algorithms for this scenario and analyze their prop-
erties formally. Our performance goal is to have algorithms that scale to large
amounts of RDF data, distribute the storage and query processing load evenly
and incur as little network traffic as possible. We discuss the various performance
tradeoffs that occur through a detailed experimental evaluation of the proposed
algorithms.

1 Introduction

Continuous querying of RDF data has been studied only by a few Semantic Web re-
searchers, although it is an important component of many Semantic Web applications
[6U5IT3IT414UT3]). In a continuous query scenario, users post long-standing queries ex-
pressing their interests and are notified whenever new data matching their queries be-
come available (e.g., “Notify me when a new article by John Smith becomes available”).
Prominent examples of applications based on continuous querying of RDF data are the
following: alert systems for Web resource management systems with resources anno-
tated by RDF metadata (e.g., e-learning systems like ELENA [19], semantic blogging
systems [10], RSS feeds etc.), notification mechanisms for Semantic Grid software [7]],
data coordination in heterogeneous P2P databases [2] based on RDF and so on.

In this work, we study the evaluation of continuous conjunctive queries composed of
triple patterns over RDF data stored in distributed hash tables (DHTs). Conjunctions of
triple patterns are core constructs of some RDF query languages (e.g., RDQL [18] and
SPARQL [16]) and used implicitly in all others (e.g., in the generalized path expres-
sions of RQL [I1]]). DHTS are an important class of P2P networks that offer distributed
hash table functionality, and allow one to develop scalable, robust and fault-tolerant dis-
tributed applications [1]]. DHTs have recently been used for instantaneous querying of
RDF data by [4/12] and continuous querying of RDF data by [4U13]]. Unfortunately, both
papers use a rather limited query language allowing only aromic triple patterns or
conjunctions of triple patterns with the same variable or constant subject and possibly
different constant predicates (the so-called conjunctive multi-predicate queries). Thus,
the problem of evaluating arbitrary continuous conjunctive queries composed of triple
patterns is left open by [4U13]].

* E. Liarou and M. Koubarakis were supported in part by the European project Ontogrid.

K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 324 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Continuous RDF Query Processing over DHTs 325

In this paper, we solve this problem by presenting two novel algorithms (the con-
tinuous query chain algorithm - CQC and the continuous spread-by-value algorithm
- CSBV) for the continuous evaluation of conjunctive triple pattern queries on top of
DHTs. The core ideas of CQC and CSBV come from the algorithms QC and SBV of
[12] that solve the corresponding query processing problem for one-time queries. The
first contribution of the present paper is to show that the main ideas of QC and SBV
are powerful enough to be applicable in a continuous query setting, and to develop the
required machinery of the new algorithms CQC and CSBV. The second contribution is
a detailed experimental evaluation of CQC and CSBV. We focus on two critical param-
eters in a distributed setting; load distribution and network traffic. Both algorithms are
designed in such a way that they try to involve as many nodes as possible in the query
processing procedure, while taking into account the amount of traffic they create. This
involves a tradeoff and we clearly demonstrate that one algorithm can sacrifice some
nice load distribution properties to keep network traffic at a lower level or vice versa.

For a continuous conjunctive query of k triple patterns, we may need k different
triples and each triple may participate in more than one answer sets for a given query.
These triples may arrive asynchronously. This means that when a triple 7 arrives and we
detect that it can be used to generate an answer for a query ¢, we should “remember” this
information to use it in the future, when the rest of the triples that are necessary to create
an answer for ¢ (together with ¢) arrive. To avoid recomputing queries each time new
matching data arrive, we keep a distributed state of already received triples. We achieve
this by careful assignment of intermediate results to the proper nodes (where future
matching data might arrive) and by rewriting queries into ones with fewer conjuncts that
reflect the fact that certain triples have arrived. Another key point is that our algorithms
split the responsibility of handling events at the triple pattern level. When a query ¢ is
inserted in the network, it is not assigned to a single node. Instead, different nodes are
responsible for different triple patterns of g which allows for better load distribution.

We present a large number of experimental results. For example, we study the effect
of varying the number of indexed queries. The larger the number of continuous queries
indexed in the network waiting for data, the harder it is to find answers each time new
data arrives. We show that our algorithms manage to spread the extra load created to
a large part of the network by maintaining their nice load distribution and limited net-
work traffic creation properties. Another important parameter we study is the rate of
triple publication in the network. If RDF triples arrive more frequently, we also have to
perform query processing operations more often. We demonstrate that our algorithms
manage to keep distributing the extra load without creating heavy network traffic and
without overloading a restricted set of nodes. We also show that if more resources are
available they can nicely be used by our algorithms, e.g., when more nodes connect in
the network, they will be assigned parts of the current query processing operations to
remove load from existing nodes.

The rest of the paper is organized as follows. Section [2] presents our assumption re-
garding the system architecture, the data and query model. Sections[3and @ present the
alternative indexing and query processing algorithms. In Section [5 we present a de-
tailed experimental evaluation and comparison under various parameters. Finally, Sec-
tion [@] presents related work and Section[7] concludes the paper.

326 E. Liarou, S. Idreos, and M. Koubarakis

2 System Model and Data Model

In this section, we introduce the system and data model. Essentially, we extend the
models of [12] to deal with the continuous query scenario of this paper.

System model. We assume an overlay network where all nodes are equal, they run
the same software and they have the same rights and responsibilities. Nodes are orga-
nized according to the Chord DHT protocol and are assumed to have synchronized
clocks. In practice, nodes will run a protocol such as NTP and achieve accuracies within
few milliseconds [3]]. Each node can insert data and pose continuous queries. Each node
n has a unique key, denoted by key(n) and each data item (RDF triple or query) has a key
denoted by key(i). Chord uses consistent hashing to map keys to identifiers. Each node
and item is assigned an m-bit identifier using function Hash(k) (e.g., SHA-1, MD3) that
returns the m-bit identifier of key k. Identifiers are ordered in an identifier circle (ring)
modulo 2" i.e., from 0 to 2" — 1. Key k is assigned to the first node which is equal
or follows Hash(k) clockwise in the identifier space. This node is called the successor
node of identifier Hash(k) and is denoted by Successor(Hash(k)). A query for locating
the node responsible for a key k can be done in O(logN) steps with high probability
[20], where N is the number of nodes in the network.

Our algorithms use the API defined in that provides two functionalities not
given by the standard DHT protocols: (i) send the same message to multiple nodes
and (ii) send d messages to b nodes where each node receives one or more messages.
Function send (msg,id), where msg is a message and id is an identifier, delivers msg
from any node to node Successor(id) in O(logN) hops. Function multiSend (msg,I),
where [is a set of d > 1 identifiers I, ..., I, delivers msg to nodes ny,no, ..., ng such that
n;j = Successor(I;), where 1 < j < d. This happens in O(dlogN) hops. This function
is also used as multiSend (M,I), where M is a set of d messages and I is a set of d
identifiers (b distinct ones). If more than one messages, say j, have the same receiver
node n, then the identifier of n will appear j times in the set /. For each I;, message M ;
is delivered to Successor(l;) in O(blogN) hops.

Data model. In the application scenarios we target, each network node is able to de-
scribe in RDF the resources that it wants to make available to the rest of the network, by
publishing metadata in the form of RDF triples. In addition, each node can subscribe
with continuous queries that describe resources that this node wants to receive answers
about. Different schemas can co-exist but we do not support schema mappings. Each
node uses some of the available schemas for its descriptions and queries.

We will use the standard RDF concept of a triple. Let D be a countably infinite set
of URIs and RDF literals. A triple is used to represent a statement about the application
domain and is a formula of the form (sub ject, predicate,ob ject). The subject of a triple
identifies the resource that the statement is about, the predicate identifies a property or
a characteristic of the subject, while the object identifies the value of the property. The
subject and predicate parts of a triple are URIs from D, while the object is a URI or a
literal from D. For a triple 7, we will use subj(t), pred(t) and ob j(t) to denote the string
value of the subject, the predicate and the object of ¢ respectively.

As in RDQL [18], a triple parttern is an expression of the form (s, p,0) where s and p
are URIs or variables, and o is a URI, a literal or a variable. A conjunctive query ¢ is a

Continuous RDF Query Processing over DHTs 327

formula of the following form: ?xi,...,2x, : (s1,p1,01) A (52, p2,02) A+ A (Sn, Pn,0n)
where 2x1, ..., 2x, are variables, each (s;, p;,0;) is a triple pattern, and each variable 2x;
appears in at least one triple pattern (s;, p;,0;). Variables will always start with the *?’
character. Variables ?xi,..., 7x, are called answer variables distinguishing them from
other variables of the query. A query with a single conjunct is called atomic.

Let us define the concept of valuation (to talk about values satisfying a query). Let V
be a finite set of variables. A valuation v over V is a total function v from V to the set D.
In the natural way, we extend a valuation v to be identity on D and to map triple patterns
(si, pi,0;) to triples and conjunctions of triple patterns to conjunctions of triples.

Each triple ¢ has a time parameter called publication time, denoted by pubT (t), that
represents the time that the triple is inserted into the network. Each query ¢ has a time
parameter too, called subscription time, denoted by subscrT (q). Each triple pattern ¢;
of a query ¢ inherits the subscription time, i.e., subscrT (q;) = subscrT(q). A triple t
can satisfy/trigger a triple pattern of query g only if subscrT (q) < pubT(t), i.e., only
triples that are inserted after a continuous query was subscribed can participating in its
satisfaction. Finally, each query ¢ has a unique key, denoted as key(q), that is created
by concatenating an increasing number to the key of the node that posed g.

Let us now give the semantics of query answering in our continuous query processing
setting. We first deal with instantaneous queries [[12], and then use their semantics to
define the concept of answer to a continuous query.

An RDF database is a set of triples. Let DB be an RDF database and ¢ an instanta-
neous conjunctive query q; A --- A g, where each g; is a triple pattern. The answer to
q over database DB consists of all n-tuples (v(?x1),...,v(?x,)) where v is a valuation
over the set of variables of ¢ and v(g;) € DB foreachi=1,...,n.

Let g be a continuous query submitted to the network at time Ty to be evaluated
continuously for the interval [Tj,e]. Let 7 be a time instant in [Ty, <], and DB; the set of
triples that have been published in the network during the interval [T, ¢]. The answer to
query g at time t, denoted by ans(q,t), is the bag union of the results of evaluating the
instantaneous query g over DB, at every time instant Ty < ¢’ < t.

The above definition assumes bag semantics for query evaluation. This semantics is
supported by the algorithms CQC and CSBV. Simple modifications to the algorithms
are possible so that set semantics (i.e., duplicate elimination) is also supported.

Note also that the above definition defines the answer to a query at each time ¢ after
this query was submitted. In practice, continuous query processing algorithms such as
CQC and CSBV will evaluate submitted queries incrementally i.e., triples in the answer
will be made available to the querying node as soon as possible after they are generated.

3 The CQC Algorithm

Let us now describe our first algorithm, the continuous query chain algorithm (CQC).
In the presentation of our algorithms, it will be useful to represent a conjunctive query
q of the form g1 A--- A g, in list notation i.e., as [g1,. .., qx].

Indexing a query. Assume a node n that wants to subscribe with a conjunctive query
q=1q1,...,qx] with set of answer variables V. Node n indexes each triple pattern ¢; to
a different node n;. Each node n; is responsible for query processing regarding ¢, and

328 E. Liarou, S. Idreos, and M. Koubarakis

all nodes ny,...,n; will form the query chain of q. To determine the satisfaction of g
for a given set of incoming triples, the nodes of a query chain have to collaborate by
exchanging intermediate results.

Now let us see how a node indexes each triple pattern. For each triple pattern g; of g,
n computes an identifier /; using the parts of ¢; that are constant. For example, assume
a triple pattern ¢; = (?sj,p;,?0;). Then, the identifier for ¢; is I; = Hash(pred(q;))
since the predicate part is the only constant part of ¢;. This identifier is used to locate
the node n; that will be responsible for ¢;. In Chord terminology, this node will be the
successor of the identifier /;, namely n; = Successor(l;). If a triple pattern has just one
constant, this constant is used to compute the identifier of the node that will store the
triple pattern. Otherwise, if the triple pattern has multiple constants, n will heuristically
prefer to use first the subject, then the object and finally the predicate to determine the
node that will evaluate ¢;. Intuitively, there will be more distinct subject or object values
than distinct predicates values in an instance of a given schema. Thus, our decision helps
us to achieve a better distribution of the query processing load.

So, for the query g, we have k identifiers whose successors are the nodes that will
participate in the query chain of ¢g. Node n has to send to each one of these nodes a
message with the appropriate information notifying them that from there on, each one
of them will be responsible for one of the triple patterns of g. The exact procedure is as
follows. For simplicity, assume that triple patterns are indexed in the order they appear
in the query. Thus, the first node in the query chain is responsible for the first triple
pattern in the query, the second node is responsible for the second triple pattern and so
on. In Section[d] we revisit this issue. For each triple pattern g1, ..., g, n creates a mes-
sage IndexTriplePattern(q;,V,key(q),lj+1,First) to be delivered to nodes ni,...,ng
respectively. Identifier /;, allows node n; to be able to contact the next node in the
query chain n;; 1. When the message is sent to the last node 7 in a query chain, this
argument takes the value key(n) so that n; will be able to deliver results back to the node
n that submitted g. Parameter First is a Boolean that indicates whether n; will be the
first node in the query chain of g or not. After having created a collection of k messages
(one for each triple pattern), n uses function multiSend() to deliver the messages. Thus,
q is indexed in k * O(logN) overlay hops, where N is the size of the network.

When a node n; receives a message IndexTriplePattern(), it stores all its parameters
in the local query table (QT') and waits for triples to trigger the triple pattern.

Indexing a new triple. Let us now proceed with the next logical step in the sequence of
events in a continuous query system. We have explained so far how a query is indexed.
We will now see how an incoming triple is indexed. We have to make sure that a triple
will meet all relevant triple patterns so that our algorithm will not miss any answers.
Looking back to how a triple pattern is indexed, we see that we always use the constant
parts of a triple pattern. Thus, we have to index a new triple in the same way. Therefore,
a new triple # = (s, p,0) has to reach the successor nodes of identifiers I = Hash(s),
I, = Hash(p) and Is = Hash(o). The node that inserts 7 will use the multiSend() func-
tion to index ¢ to these 3 nodes in O(logN) overlay hops. In the next paragraph we
discuss how a node reacts upon receiving a new triple.

Continuous RDF Query Processing over DHTs 329

Receiving a new triple. Assume a node n; that receives a new triple ¢. n; has to deter-
mine if 7 is relevant to any already indexed queries so n; searches its local QT for triple
patterns that match . Assume that a matching triple pattern g; belonging to query ¢ is
found, i.e., there is a valuation v over the variables of ¢; such that v(¢;) = ¢. Accord-
ing to the position/order of n; in the query chain of g, n; now acts differently. We will
distinguish between two cases: (a) when n; is the first node in the query chain of g and
(b) when n; is any other node but the first one. For ease of presentation we point out
now that in the second case, a node always stores the new triple in its triple table (TT).
Later on, we will come back to this case to explain the rest of the steps.

If n; is the first node in the query chain of a query g. n; forwards valuation v to
the next node 7, in the chain. Valuation v holds a partial answer to g. Thus, from
here on, we will call such valuations intermediate results. In the implemented system,
n; creates the following message FwdValuation(v,key(q)) that has to be delivered to
nji1 = Successor(Hash(Ij;1)). So, for all [queries in QT whose triple patterns have
been triggered in n; by ¢, n; will perform the operations we just described and use
the multiSend() function to forward the various intermediate results to the appropriate
nodes in query chains. This will cost I« O(logN) overlay hops.

Receiving intermediate results. Let us now see how a node n; reacts upon receiving
an intermediate result i.e., a valuation w. First, n; applies w to g}, the triple pattern it is
responsible for, to compute q’j =w(q;). Then n; tries to find if triples matching q.’- have
already arrived. So, n; searches its T'T" and for each triple t € TT that matches ¢; (i.e.,
there is a valuation v over the variables of q’j such that v(q’j) = 1), n; produces a new
intermediate result, the valuation w' = wUv. Then, n ;j forwards the new intermediate
results to the nextnode n; | in the query chain of ¢ in a single message using the Send ()
function with a cost of O(logN) hops. In addition, n; will store the intermediate result
w locally in its intermediate results table (IRT) to use it whenever new triples arrive.
Node n | that receives the set of new intermediate results will react in exactly the same
way for each member of the set and so on. When the last node in the chain for a query
q (i.e., ny) receives a set of intermediate results, stored triples in 7T are checked for
satisfaction against each g}, and for each successful triple, an answer to the query g is
generated using each valuation w' and is returned to the node that originally posed g.

Now we come back to finish the discussion on what happens when a node n; receives
a new triple ¢ that triggers a triple pattern g; and n; is not the first node in the query
chain of g. So far, we have only said that n; will store ¢ in its 77'. In addition, n; has to
search its /RT table to see whether the evaluation of a query that has been suspended can
now continue due to ¢ that has just arrived. For each intermediate result w found in /RT
that can be used to compute q’j = w(g;) that matches t, n; produces a new intermediate
result (i.e., a valuation w' = wUv where t = v(q’j)) and forwards it to the next node 71 |
in the query chain of ¢ with a FwdValuation() message.

Example. CQC is shown in operation in Figure [[l Each event represents an event in
the network, i.e., the arrival of a new triple or query. Events are drawn from left to
right which represents the chronological order in which these events have happened. In
each event, the figure shows the steps of the algorithm that take place due to this event.

330 E. Liarou, S. Idreos, and M. Koubarakis

Event 1 Event 2 | Event 3 | Event 4

|
qis 7,2y, 72451, p1, TXIALTX, P2, Ty)A(Py, 72, 03) | Triple t1 arrives atnt | Tﬂﬂll’-ig 3“:"95 | Triple t3 arrives atn2 and matches g2
Node n submits q and matches g1 | 8t nd an |- ta=(s2p2,s3) nasearchesin TT
| malooesgs | and finds 12

(s1,p1,7x} (7,72,09) , t1=(g1,p162) i

i Sl - 12=(s3,p3,03) | forward
on2t) @ s 4‘ g | 4 ’ @_ T _'@

SuccessorHash(s1)) Succemor{Hash{uanl@)—b@ @ Itas stored visstored gacelyes answer

v
b= o) VB SRS in 77 N IATy - {7x=s2,7y=53,22=p3t

Successor{Hash(p2)) | nIAT | 12isstoredin TT| v' ={7x=52, 7y=53}

Fig. 1. The algorithm CQC in operation

For readability and ease of presentation in each event we draw only the nodes that do
something due to this event, i.e., rewrite a query, search or store queries or triples etc.

4 The CSBV Algorithm

Let us now proceed with the description of our second algorithm, the continuous spread-
by-value algorithm (CSBV). CSBV extends the ideas of CQC to achieve a better distri-
bution of the query processing load. In CQC, a query chain for a query ¢ is created at the
time that ¢ is submitted and leads to a query plan with a fixed number of participating
nodes (one node per triple pattern in the absence of collisions in the DHT). Notice that
whenever the first node n; in the chain for query ¢ = [q1, .. .,qx] creates a new interme-
diate result (i.e., a valuation v), the triple pattern g; corresponding to n is satisfied by v
and g has been partially evaluated. The motivation for CSBYV is that node n can now use
valuation v to rewrite ¢ into a new query with fewer conjuncts ¢’ = [v(q2),...,v(qn)]
and decide on the fly the next node of the network to undertake the query processing of
q'. Because ¢’ is conjunctive like g, its processing can proceed in a similar manner. The
answer bag of g can then be computed by the union of the answer bags of queries ¢’
combined with valuations v. In this way, a node n; in the chain of CQC for a query g can
be said to have multiple next nodes in CSBV depending on the triples that trigger g;.
Thus, the responsibility of evaluating the next triple pattern of g is distributed to multi-
ple nodes (depending on values used) compared to just one in CQC, leading to a much
better query processing load distribution. If we generalize this to all nodes participating
in a query plan, it is easy to see that a query plan in CSBV does not have the shape of
a chain (as in CQC) but rather that of a tree. We will describe CSBV by pointing to the
different actions that are taken comparing with CQC in each step.

Indexing a query. In CQC, when a query ¢ = [q1,...,qx] is inserted, we immediately
create a query chain of £ nodes. In CSBV, no query chain is created. Instead, g is indexed
only to one node that will be responsible for one of the triple patterns of g. Thus, a query
is indexed with only O(logN) hops. For now assume that, as in the description of CQC,
triple patterns are handled in the order they appear in the query i.e., g is used to index
g tonode nj.

In CSBYV, we follow the same indexing heuristics as in CQC, when there is just one
constant part in a triple pattern. But in case that there are multiple constants, we use the
combination of all constant parts to index the query. For example, if ¢; = (?s;,p},0;),
we have I; = Hash(pred(q;) + obj(q;)). We use the operator + to denote the con-
catenation of string values. Multiple constants typically occur in triple patterns where

Continuous RDF Query Processing over DHTs 331

Event1 Event 2 | Eventd 1 Event 4 | Event5 | Eventé
qis ™77 (1, p1, 2A | Triplett amivesatntand | po_eq o9 o) | Triple t3 alives at n2aand | Triggyy | Triplets anrives at n2s
(7, p2, 7y)a | salisfies 0. s rewritento gl | ot | maiches q : Qaisrewrien | anives | and maiches gl
g 1 % [0" I atnd . g5
- m;?:; 708 | " N=LRL . | % s ‘m—(: m)‘ . ;5—102,;:2‘55)
[tisstoredin T | megny | 4 | {4=(s5,05,03))
query g atni | L | . w={x=02} | @ Gissoredin T | \‘q | lswsslored inTT
| v={?x=52) : /\d 5=(02,p2,7y)A } . } } W={7¥=02, 7y=85)
| lesszmaynrynon | [\ (wned | ittt ‘C:) | Y quelssmad
a=au, 1Lk
\ I | (. [.— ===)
i n2s .
I (v stored i IAT . @ ! (va's s stored in A7 I;E;I—,rred In3searches Recelve answer
Successor{Hash(s1+p1)) | Successor(Hash(s2+p2)) | Successor(Hashio2+p2)' Successor(Hash(z3+03)) I " in T {7%=02, 7y=85, 72=p5}

Fig. 2. The algorithm CSBYV in operation

variables have been substituted by values of incoming triples (see discussion below in
Paragraph “Receiving a new triple”). Using these combinations, a node in CSBV can
direct intermediate results towards different branches of the distributed query plan tree
(or dynamically create a new branch) depending on values used in incoming triples.

Indexing a new triple. As we discussed, CSBV uses the combination of constant parts
in a triple pattern to index a query. Thus, in order not to miss possible answers, a new
triple 1 = (s, p,0) has to reach the successor nodes of identifiers I} = Hash(s), L, =
Hash(p), Iz = Hash(o), 14 = Hash(s+ p), Is = Hash(s + o), Is = Hash(p + o) and
I; = Hash(s+ p+ o). Thus, a node n; that inserts t will use the multiSend() function
to index to these 7 nodes in 7 « O(logN) overlay hops.

Receiving a new triple. As in CQC, when a node n; receives a new triple 7, first it has
to find if ¢ triggers any local query g (possibly in combination with some valuation v).
If it does, n; rewrites ¢ using ¢ and v, and new intermediate results will be forwarded to
the next node in the query chain. The critical difference with CQC, is how n; decides
who will be the next node n;4 . In CQC this information is given to each node in the
chain upon insertion of the original query where the whole chain is created at once.
Thus, in CQC, n; knows that n;,; is always the same node no matter what the triple
that arrived is. On the contrary, in CSBY, this is a dynamic procedure and node 7
can be a different node for different triples that arrive in n;. Nodes in CSBV use the
rewritten queries that they create to decide who the next node is.

Let us see an example. Consider the query ¢ = [(s1,p1,?x), (?x, p2,2y), (?y, p3,03)]
indexed at node ny. If t; = (s1,p1,s2) arrives, then the new rewritten query is ¢’ =
[(s2,p2,2y),(?y, p3,03)] and the valuation is v = {?x = s, }. Now the intermediate result
is the pair (v,q'). In CQC, ny would be Successor(Hash(p2)) since this has been de-
cided upfront (using the second triple pattern of g). However, CSBV uses ¢’ to decide
what the next node will be. It exploits the new value s; in the first triple pattern of ¢’ to
decide that the next node is the Successor(Hash(sz + p2)). Assume now that another
triple 1, = (s1, p1,s3) arrives at nj. nj rewrites ¢ again and the new rewritten query now
is ¢" = [(s3,p2,7y),(?y, p3,03)], while the new valuation is w = {?x = s3}. In CSBY,
node ny will forward the pair (w,q”) to a different node than before, namely to node
Successor(Hash(s3+ p2)), whereas in CQC it would go again to Successor(Hash(p2)).

In CQC, nodes participating in a query plan for a query g have the knowledge that
they are members of this plan since they receive the appropriate triple pattern to be

332 E. Liarou, S. Idreos, and M. Koubarakis

responsible for at the time that ¢ is submitted. Thus, when a node receives a new triple
t, it does not need to store it if no locally stored triple pattern matches z. In CSBV, nodes
do not have such knowledge since they are becoming part of a query plan dynamically,
i.e., a node is not able to know if there is a query indexed in the network that can be
triggered by ¢ in the future when other triples with appropriate values arrive. Thus, a
node in CSBV always stores locally a new triple to guarantee completeness.

Receiving intermediate results. Let us now see how a node n; reacts upon receiving
an intermediate result (w, p) where w is a valuation and p = [py, ..., pn] is a conjunctive
query. First, n; tries to find if relevant triples have already arrived that can contribute to
the satisfaction of pj, and thus to the satisfaction of the original query ¢ from which p
has been produced after possibly multiple rewriting steps. For this reason, n; searches its
local table TT and for each triple t € TT that matches p; (i.e., there is a valuation v such
that v(p1) =1), nj produces a new intermediate result (v, p’). In this case, V' is the union
of wwith vand p’ is [V/(p2),...,V (pm)]). To decide which node x will receive the new
intermediate result, n; uses the first triple pattern in p’ using combinations of constant
parts whenever possible to compute the identifier that will lead to x. When all matching
triples have been processed, a set of new intermediate results has been created each
one to be delivered to a possibly different node. Then, function multiSend() is used to
deliver each intermediate result to the appropriate node with a cost of zx Olog(N) hops,
where z is the number of unique identifiers created while searching T'T. In addition, n;
will store the intermediate result (w, p) locally in its intermediate results table (IRT) to
use it whenever new triples arrive.

Each node n | that receives one of the new intermediate results will react in exactly
the same way and so on. When a node ry is responsible for the last triple pattern of a
query and receives a set of intermediate results of the form (w, [gx]) then no intermediate
results are generated. Instead, stored triples in 7T are checked for satisfaction against
qr, and for each successful triple, an answer to the query ¢ is generated using w and is
returned to the node that originally posed ¢. In Figure2] we show an example of CSBV.

Optimizing network traffic. To further optimize network traffic we use the IP cache
(IPC) routing table we proposed in [12]. In both algorithms, each time a node n; for-
wards intermediate results to the next node 71 in a query plan, we pay O(logN) over-
lay hops. With the /PC after the first time that n; has sent a message to n;1, n; keeps
track of the IP address of nj,; and uses it in the future when forwarding intermediate
results through this query chain. Then, n; can send a message to n;4 in just 1 hop.
Similarly, if a new triple initiates a new rewritten query ¢ in the root of a query chain
of k nodes, then ¢ will need k x O(logN) hops to reach the end of the query chain. With
IPC, it will need just k hops. The cost for the maintenance of the /PC is only local.

Optimizing a query chain. It is important to find a good order of nodes in the query
chain, so as to achieve the least possible network traffic and the least possible total
load. A simple but powerful idea is to take into account the rate of published triples
that trigger the triple patters of the query (e.g., the rate in the last time window). We
place early in a query chain nodes that are responsible for triple patterns that are trig-
gered very rarely, while nodes that are responsible for triple patterns that are triggered
more frequently are placed towards the end. An easy way to do this at the expense of

Continuous RDF Query Processing over DHTs 333

(a) ¢ co

2 8
— |(b) (©)
w2 \ vk\/\ £ T 6 ==
. 82 s
Legend ; ci = 5 //_
11512, pk ? % m £ AT cac
¢ PRI\ Ptk 92192 k1 - E —
. iSC)\ WS O F VA
. property B () o —cac a
. —CSBV
[xsd datatypes /\ 0 0
/C* R 130007800 11700 15600 19500 1 3900 7800 11700 15600 18500
s \ E Ranked nodes Ranked nodes

—k—

Fig. 3. Query processing and storage load

book-keeping by individual nodes and some extra messages upon query indexing is to
ask all nodes that will participate in the query chain for the rate of incoming triples
related to the triple pattern that they are going to be assigned. Thus, a node needs
3k +O(logN) messages to index a query instead of k + O(logN) . For example, in CQC,
when a node n wants to submit a query g of k triple patterns, it splits g to the triple
pattern it consists of and assigns each g; at a different node n;. Before sending the triple
patterns, n sends a message getRates(q;) to each node n;. When all answers return, n de-
cides the order of the nodes having the most frequently accessed triple pattern towards
the end of the query chain. Similarly in CSBV, when a node wants to submit a query g,
it asks all possible candidate nodes based on the triple patterns of g. Only one node n; is
chosen to receive the query, the one responsible for the triple pattern with the lowest rate
of incoming triples. From there on, when 71, or any other node in the query chain of ¢,
wants to forward intermediate results to a new node (i.e., create a new node in the query
chain), it will follow the same procedure as to determine who will be this next node.
These simple rules are sufficient to significantly improve network traffic in our setting
at a minimal cost. The order of nodes can be periodically reevaluated and change (by
migrating intermediate results through the nodes) in case the rates of incoming triples
change. Due to space limitations we omit further analysis of these techniques.

5 Experiments

In this section, we experimentally evaluate our algorithms based on a Java implemen-
tation where we can run multiple nodes in one machine. We synthetically create a uni-
form workload as we did in [12]]. We assume an RDFS schema of the form shown in
Figure Bla), i.e., a balanced tree of depth d and branching factor k. Each class has a
set of k properties. Each property of a class C at depth [< d — | ranges over another
class at depth / + 1. Each class of depth d — 1 has also k properties which have values
that range over XSD datatypes. To create a triple, we first randomly choose a depth.
Then, we randomly choose a class C; among the classes of this depth. We randomly
choose an instance of C; to be subj(t), a property p of C; to be pred(t) and a value
from the range of p to be obj(t). If the range of p are instances of a class C; that
belongs to the next level, then 0b (1) is a resource, otherwise it is a literal. For our ex-
periments, we use an important type of conjuctive queries, namely path queries of the
form: 2x : (?x,p1,?01) A (201, p2,202) A+ A (2041, pn,0,). To create a query, we ran-
domly choose a property p; of class Cp. p; leads to a class C| at the next level. Then we

334 E. Liarou, S. Idreos, and M. Koubarakis

(a) cQc = without IPC (b) CSBV = without IPC
2000 4~ —— mwith IPC

(IWPCsize o7

mwith IPC

P

~

J
|
|
!

|
N

average size of IPC (x100)
S

I
|
|
|

20 30 40 50 0 30 40 50 0 30 40 50

0 2 4 6 8 10 2 4 6 8 10 20 2 4 6 8 10 20
of indexed triples (x100) # of indexed triples (x100) # of indexed triples (x100)

Fig. 4. Network traffic and /PC cost

randomly choose a property p, of Cj. This is repeated until we create n triple patterns.
For the last one, we randomly choose a value (literal) from the range of p, as oy,.

Our experiments use a schema with d = 4. The number of instances of each class is
1000, the number of properties that each one has is k = 3 while a literal can take up to
1000 different values. Finally, each query has 5 triple patterns.

E1: Load distribution. We define two types of load; the query processing load (QPL)
and the storage load (SL). The QPL of node 7 is the sum of the number of triples that n
receives to check against locally stored queries plus the number of intermediate results
that arrive to n to be compared against its locally stored triples. The SL of a node is
the sum of the number of triple patterns for which it is responsible, plus the number of
triples and intermediate results that it stores.

We create a network of 2 x 10% nodes and insert 10° queries. Then, we insert 6 % 10°
triples and measure the QPL and the SL of each node. In Figure B(b), we show the
QPL distribution. On the x-axis of this graph, nodes are ranked starting from the node
with the highest load. The y-axis represents the cumulative load, i.e., each point (a,b)
in the graph shows that b is the sum of the a most loaded nodes. CSBV achieves to
distribute the QPL to a significantly higher portion of nodes, i.e., in CQC, there are
only 2685 nodes (out of 2 x 10%) participating in query processing, while in CSBV there
are 19779 nodes. CSBV has a slightly lower total load than CQC since nodes in CSBV
have more opportunities to group similar queries. Figure[Blc) shows the SL distribution.
In CQC, the total SL is significantly less because in CSBV a new triple is indexed/stored
four more times than in CQC, by using the combinations of the triple values. However,
because of dynamic creation of query plans, this SL is nicely distributed. A higher total
SL in the network is the price we pay for the better distribution of the QPL in CSBV.

E2: Network traffic and /PC effect. For this experiment, we create a network of 2% 10*
nodes and install 10° queries. Then, we train /PCs with a varying number of incoming
triples, starting from 200 triples up to 5000. In each training phase, we insert 1000
triples and measure (a) the average number of overlay hops that are needed to index
one triple and to evaluate all existing queries when using /PCs, (b) the size of IPCs at
each node and (c) the same as (a) but this time we do not use /PCs. Finally, after each
training phase, we measure how much it costs to insert a new triple.

Let us first see algorithm CQC, shown in Figure f{(a). The point 0 on the x-axis
has the minimum cost, since it represents the cost to insert the first triple. There are

Continuous RDF Query Processing over DHTs 335

3 g
(a) QPL of CQC (b) QPL of CSBV (c) SL of CQC — 150K (d) SL of CSBV
—300K
— 800K
/ 6 o —
=2 -—- I
e =
H —300K —150K | =, —— 600K
= — 600K —s00k | E pTTTTTTTTTIITIIT T m peeee
[—600K |
(I 4 -
/ 2 S g ——
JE— RS —
- -
=
] 0 " 7
13900 7600 11700 15600 195001 2900 7800 11700 15600 1950 13900 7800 11700 15600 195001 agpn 7800 11700 15600 19500
Ranked nodes Ranked nodes Ranked nodes Ranked nodes

Fig. 5. QPL and SL when increasing the rate of incoming triples

no previous inserted triples so there are no partial results waiting for triples; therefore
network traffic at this point is produced only because of the indexing of this triple to the
network. /PCs are empty at this point so their use has no effect. However, in the next
phases we observe a different behavior. Without /PCs, the network traffic required to
insert a triple is increased, after each time we inserted a number of triples. This happens
because each group of inserted triples results in the creation of new intermediate results.
Thus, a next triple insertion has a higher probability to meet and trigger queries (and
thus create more network traffic). This is why we see the gray bars in Figure[d(a) going
higher after each phase. However, for the same reason, the black bars that represent the
cost when using /PCs are going down. Triple insertions that trigger queries result in
the forwarding of intermediate results. But when we use IPCs, these actions also fill
the 7PCs with IP addresses that can reduce subsequent forwarding actions. Thus, a next
triple insertion will have a higher chance to cause forwarding of intermediate results
with cost 1 instead of O(logN) hops. For example, after 5000 triples, a triple insertion
costs CQC 800 hops but with /PCs it costs only 60. Of course, this huge gain comes
with a cost; in Figure dlc) we show the average size (number of entries) of the /PC at
each node. Naturally, this size is increased as more triples are inserted, but also observe
that this is only a local storage cost at each node (there is no maintenance cost). Since
even a small /PC size can significantly reduce network traffic (e.g., after 200 or 400
triples), we can allow each node to fill its /PC as long as it can handle its size.

In Figure E{(b), we show the network traffic cost for the CSBV algorithm. Results
are explained with the same arguments as in CQC. The difference this time is that we
see a much higher cost for CSBV both when using and when not using /PCs. This is
due to the fact that nodes in CSBV cannot always group new intermediate results and
send them with a single message to the next node in the query chain as it happens in
CQC since usually there are more than one next nodes in CSBV. For the same reason,
in Figured(c), we see that the IPC cost for nodes in CSBV is much smaller.

E3: Effect of increasing the rate of incoming triples. The base setting is a network of
2% 10* nodes with 10° queries and 1.5 % 107 incoming triples. We present how the two
algorithms are affected when the incoming triples become 7 = 3% 10° and T = 6 % 10°.

In Figures[Bla) and (b), we show the cumulative query processing load distribution.
In both algorithms the total load becomes higher, while the number of incoming triples
is increasing since the already indexed queries are triggered by more triples. In CQC,

336 E. Liarou, S. Idreos, and M. Koubarakis

3 3
(a) QPL of CQC (b) QPL of CSBV (c) SL of CQC __ 28K (d) SL of CSBV
| — 50K
’ s — 100K
n I —— —
B 2 E /// —~
: f e
z 4
g v / »
25K — 25K 2
— 50K —50K — ggﬁ
— 100K — 100K — 100K
o o
1 2000 7800 11700 15600 1gsool 3900 7800 11700 15800 19500 13000 7300 11700 15600 195001 3900 7800 11700 15600 1950
Ranked nodes Ranked nodes Ranked nodes Ranked nodes

Fig. 6. QPL and SL when increasing the number of indexed queries

3 8
15 T

(a) QPL of CQC (b) QPL of CSBV (c) SL of CQC (d) SL of CSBV
= s | ~ | ///

@ 2 w
£ g
= . 2
E L = 1
= 7 £
o -
1
° 10K oo
— 2
— 20K — 10K — 10K ok
— 40K —20K — 20K —20K
o —— 40K —40K — 40K
0]
1 960 1920 2880 | 5500 13000 19500 20000 37500 3E00 1 960 1920 2880 1 6500 13000 19500 26000 32500 39000
Ranked nodes Ranked nodes Ranked nodes Ranked nodes

Fig.7. QPL and SL when increasing the network size

the load distribution remains the same independently of the number of incoming triples;
since a query chain is fixed at query submission, the responsible nodes remain always
the same. Instead, in CSBYV, query plans are formed while triples are arriving, thus, as
the number of triples is increased, new responsible nodes are defined and inccur part
of the QPL. Thus, the load distribution in CSBV becomes more fair as the number
of triples increases. Notice, also that CQC reaches a higher total load. This is due to
the creation time of the query chains. In CQC, the nodes that are responsible for the
submitted queries are determined initially, so when triples are inserted they have to
check for satisfied triple patterns or forwarded intermediate valuations. On the other
hand, in CSBYV, the nodes that incur the QPL, start when the appropriate triples that
trigger the corresponding triple patterns are inserted, so they do not work in vain.

In Figures[3lc) and (d), we present the SL distribution. Naturally, in both algorithms,
the total load increases with the number of inserted triples since each incoming triple is
stored and creates intermediate results. As expected, the load in CSBV is higher since
it indexes a triple to four more nodes than in CQC. Also, in CQC, a node stores a triple
t only if it is responsible for a triple pattern that is triggered by ¢ while in CSBV, a node
always stores a triple it receives. Finally, CSBV uses a combination of the constant parts
of a triple to index it, and thus it achieves a better load distribution than CQC.

E4: Effect of increasing the number of queries. The base setting for this experiment
is a network of 2 % 10* nodes with 2.5 10% queries and 10° triples. We increase the
number of indexed queries to 5 * 10* and 10°. In Figures[6l we see that the performance
patterns remain the same while increasing queries, i.e., CSBV outperforms CQC in

Continuous RDF Query Processing over DHTs 337

terms of load distribution (both for QPL and SL) due to the dynamic query plans. This
comes at the expense of a higher SL per node.

E5: Effect of increasing the network size. In a network of N = [10% 2 % 10* 4 % 104]
nodes, we index 10° queries and then we insert 10° triples. Figure[Z]shows that CQC is
not able to exploit the new nodes while CSBV distributes the QPL and SL to almost as
many nodes are available by dynamically creating query plans.

6 Related Work

This paper extends the one-time query processing algorithms QC and SBV of [12]
to a continuous query processing environment. Historically, the study of continuous
querying of RDF data in P2P networks was initiated in [6]. [6l35] deal with conjunctive
multi-predicate queries (a subclass of the class of conjunctive triple pattern queries
studied in this paper) and adopt HyperCup as the underlying P2P infrastructure.
Thus, their algorithms are not directly comparable with the ones of this paper.

[4] introduced publish/subscribe in the system RDF-Peers. The query language of
RDF-Peers supports conjunctive multi-predicate queries, disjunctions of such conjunc-
tions and range queries. RDF-Peers is built on top of an extension to Chord that supports
order-preserving hashing so that range queries can be implemented easily. concen-
trates mainly on one-time queries and the publish/subscribe subsystem of RDF-Peers
is only briefly presented. Recently, implemented and evaluated the algorithms QC
and MQC for continuous conjunctive multi-predicate queries on top of Chord. QC is es-
sentially the algorithm sketched (but not implemented or evaluated) in [4] while MQC
is the algorithm that has motivated us to develop CSBV. It is not difficult to extend our
algorithms to deal with disjunctions or range queries. For the former type of queries the
extension is straightforward; for the latter, we could rely on an order-preserving hashing
extension of Chord such as the one of [4].

Finally, [21IT5I14]] are some other recent papers on continuous querying of RDF
data. In these papers, graph-based RDF queries are supported using centralized indices.

From the area of relational databases, [9] is the paper most closely related to our
work. In [9]], we have discussed algorithms for continuous two-way equi-join queries.

7 Conclusions and Future Work

We introduced and compared two novel algorithms for the evaluation of continuous
conjunctive triple pattern queries over RDF data stored in a DHT. The algorithms man-
age to distribute the query processing load to a large part of the network and keep net-
work traffic low. Our future work plans are to design techniques for handling skewed
workload efficiently and to take into account physical network proximity. We also
plan to support RDFS reasoning. Since RDFS triples can be handled similarly with
RDF triples, the main challenge is how to support the inference of new RDFS triples
using the RDFS inference rules in a compatible way with our query processing frame-
work. This can be done in a forward chaining manner by extending CSBV. The algo-
rithms of this paper have recently been implemented in our system Atlas available at
http://atlas.di.uoa.gr. We are currently evaluating Atlas on PlanetLab.

338 E. Liarou, S. Idreos, and M. Koubarakis

References

[1] Aberer, K., et al.: The essence of P2P: A reference architecture for overlay net-
works. In: IEEE P2P 2005, IEEE Computer Society Press, Los Alamitos (2005)

[2] Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, ., Miller, R.J., Mylopoulos,
J.: The Hyperion Project: From Data Integration to Data Coordination. SIGMOD
Record 32(3), 53-58 (2003)

[3] Bawa, M., et al.: The Price of Validity in Dynamic Networks. In: SIGMOD 2004
(2004)

[4] Cai, M., Frank, M.R., Yan, B., MacGregor, R.M.: A Subscribable Peer-to-Peer
RDF Repository for Distributed Metadata Management. Journal of Web Seman-
tics 2(2), 109-130 (2004)

[5] Chirita, P., Idreos, S., Koubarakis, M., Nejdl, W.: Designing semantic pub-
lish/subscribe networks using super-peers. In: Semantic Web and Peer-to-Peer,
Springer, Heidelberg (2006)

[6] Chirita, P., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/Subscribe for RDF-
based P2P Networks. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.)
ESWS 2004. LNCS, vol. 3053, Springer, Heidelberg (2004)

[7] Corcho, O., Alper, P., Kotsiopoulos, I., Missier, P., Bechhofer, S., Goble, C.: An
overview of S-OGSA: a Reference Semantic Grid Architecture. Journal of Web
Semantics 4(2), 102-115 (2006)

[8] Idreos, S.: Distributed Evaluation of Continuous Equi-join Queries over Large
Structured Overlay Networks. Master Thesis. Technical University of Crete
(September 2005)

[9] Idreos, S., Tryfonopoulos, C., Koubarakis, M.: Distributed Evaluation of Contin-
uous Equi-join Queries over Large Structured Overlay Networks. In: ICDE 2006
(2006)

[10] Karger, D.R., Quan, D.: What would it mean to blog on the semantic web? Journal
of Web Semantics 3(2-3), 147-157 (2005)

[11] Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: WWW 2002 (2002)

[12] Liarou, E., Idreos, S., Koubarakis, M.: Evaluating Conjunctive Triple Pattern
Queries over Large Structured Overlay Networks. In: Cruz, 1., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC
2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

[13] Liarou, E., Idreos, S., Koubarakis, M.: Publish-Subscribe with RDF Data over
Large Structured Overlay Networks. In: DBISP2P 2005,

[14] Liu, H., Petrovic, M., Jacobsen, H.-A.: Efficient and scalable filtering of graph-
based metadata. Journal of Web Semantics 3(4), 294-310 (2005)

[15] Petrovic, M., Liu, H., Jacobsen, H.-A.: G-ToPSS - fast filtering of graph-based
metadata. In: WWW 2005 (2005)

[16] Prud’hommeaux, E., Seaborn, A.: SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparqgl-query/

[17] Schlosser, M.T., et al.: HyperCuP - Hypercubes, Ontologies, and Efficient Search
on P2P Networks. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS
(LNAI), vol. 2530, Springer, Heidelberg (2003)

http://www.w3.org/TR/rdf-sparql-query/

Continuous RDF Query Processing over DHTs 339

[18] Seaborne, A.: RDQL - A Query Language for RDF. W3C Member Submission
(2004)

[19] Simon, B., et al.: Smart Space for Learning: A Mediation Infrastructure for Learn-
ing Services. In: WWW 2003 (2003)

[20] Stoica, I, et al.: Chord: A scalable peer-to-peer lookup service for internet appli-
cations. In: SIGCOMM 2001 (2001)

[21] Wang, J., Jin, B., Li, J.: An Ontology-Based Publish/Subscribe System. In: Mid-
dleware 2004 (2004)

	Continuous RDF Query Processing over DHTs
	Introduction
	System Model and Data Model
	The CQC Algorithm
	The CSBV Algorithm
	Experiments
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

