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Abstract. Accuracy of automatic cancer diagnosis is largely determined
by two factors, namely, the precision of tumor segmentation, and the
suitability of extracted features for discrimination between malignancy
and benignancy. In this paper, we propose a new framework for accu-
rate characterization of tumors in contrast enhanced MR images. First,
a new graph cut based segmentation algorithm is developed for refining
coarse manual segmentation, which allows precise identification of tu-
mor regions. Second, by considering serial contrast-enhanced images as
a single spatio-temporal image, a spatio-temporal model of segmented
tumor is constructed to extract Spatio-Temporal Enhancement Patterns
(STEPs). STEPs are designed to capture not only dynamic enhancement
and architectural features, but also spatial variations of pixel-wise tem-
poral enhancement of the tumor. While temporal enhancement features
are extracted through Fourier transform, the resulting STEP framework
captures spatial patterns of temporal enhancement features via moment
invariants and rotation invariant Gabor textures. High accuracy of the
proposed framework is a direct consequence of this two pronged ap-
proach, which is validated through experiments yielding, for instance,
an area of 0.97 under the ROC curve.

1 Introduction

Dynamic contrast-enhanced MR imaging (DCE-MRI) is emerging as an impor-
tant complementary diagnostic tool for early detection of breast cancer [1]. It
involves characterizing temporal response of a tumor to a contrast agent prior
to analyzing discriminating features between various tumor types. High sensi-
tivity of DCE-MRI to breast cancer detection is, however, confounded by its
relatively low specificity [2]. Existing approaches attempt to improve low speci-
ficity through better segmentation [3] and/or complete characterization of tumor
(using architectural and dynamic features [4,1]).

Expert manual segmentation, regarded as gold standard for tumor segmenta-
tion, is usually tedious and time consuming. In addition, it suffers from inaccu-
racy due to imprecision, which results in high inter- and intra-rater variability.
Numerous segmentation methods [3,5,6] have recently been proposed to address
these limitations. These algorithms are driven by a simple assumption that con-
siders enhancements within tumor to be uniform, limiting only one class per
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tumor. Here, we propose a graph cut [7] based segmentation algorithm that ac-
counts for spatial variations of enhancements, and allows association of multiple
classes to the tumor and background for a more accurate tumor extraction.

Tumor classification employs segmented tumor to extract appropriate fea-
tures, which are eventually used for cancer diagnosis. Two such features, namely
dynamic and architectural features [4,1,2,3], have extensively been investigated
for quantifying tumor properties. For instance, an early strong enhancement
with rapid washout has been observed in malignant tumors. On the other hand,
a slow increase in the temporal enhancement followed by a tapering off is typ-
ically exhibited by benign tumors. Majority of the existing dynamic features
exploit these simple enhancement differences within a region of interest taken
inside a tumor. Architectural features, on the other hand, are driven by mor-
phological differences, with a spiculated border and irregular shape attributed
to malignancy versus a smooth border and regular shape related to benignancy.
The information in such dynamic and architectural features is, however, limited
in the scope in the sense that their combination lacks comprehensive spatial vari-
ations of pixel-wise temporal enhancements (TE). These spatial patterns have
been shown to be fundamentally important for distinguishing malignant and be-
nign tumors [4,1]. Although the spatial information incorporated in [4,1] offers
some improvement, their dependence on qualitative ratings by experts limits
their utility for automatic diagnosis.

In this paper, we propose a framework for cancer diagnosis that combines
temporal, spatial, and morphological attributes of an automatically segmented
tumor in a Spatio-Temporal Enhancement Pattern (STEP). STEP views a serial
contrast-enhanced images as a single spatio-temporal image and consequently
models its temporal variations through Fourier transform coefficients. Spatial
and morphological features are then accounted for by moment invariants [8]
and Gabor texture features [9]. Our segmentation refinement algorithm coupled
with STEP features provides a robust framework for cancer diagnosis, which is
validated with tumor classification using a linear classifier. Instead of using the
entire set of STEP features in the classifier, we employ a simple ranking-based
feature selection method that helps in finding the most discriminating features
between malignancy and benignancy.

2 Methods

This section describes our breast cancer diagnosis framework, which consists of
tumor segmentation, STEP feature extraction, and tumor classification.

2.1 Segmentation

Discrimination between benign and malignant breast tumors may be greatly en-
hanced by accurate segmentation [3] that precisely identifies spatial domain of a
tumor. To this end, we develop a graph-cut based algorithm [7] for tumor segmen-
tation, which improves on a coarse manual segmentation, thereby eliminating the
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need of an expert rater. It involves assigning same labels to pixels with similar TE
vectors by minimizing an energy functional.

TE vector Ci = [C(i, 1) · · ·C(i, T − 1)] of a pixel i is defined as:

C(i, t) =
I(i, t) − I(i, 0)

I(i, 0)
, t = 1, · · · , T − 1 (1)

where I(i, t) denotes the intensity of ith pixel at scanning time t.
The energy function is defined as below, which consists of four terms:

E=
∑

i∈Ω

E1(li)+λ1

∑

<i,j>∈N
E2(li, lj)+λ2

∑

<i,j>∈Nd

E3(li, lj)+λ3

∑

<i,j>∈Ntb

E4(li, lj)

(2)
where li is the label of pixel i. Factors λ1, λ2, λ3 are used to adjust the relative
importance of the four terms, and are empirically set to 1 in this paper.

E1 ensures the statistical similarity of pixel-wise TEs within each class, and
is defined as E1(li) = (1 − Pr (Ci|μli , σli)) for pixels in image Ω, where Pr
measures probability of Ci belonging to class li, and the class li is represented
by a Gaussian model with mean μli and variance σli .

E2 penalizes different label assignment to neighboring pixels, which in fact
introduces a Markovian property. It is defined for neighboring pixel-pairs as
E2(li, lj) = (1 − δ(li − lj)), where δ is a Kronecker delta function.

E3 introduces fidelity in segmentation by forcing boundary to regions of large
enhancement gradients. It is defined for all neighboring pixel-pairs having dif-
ferent labels as E3(li, lj) = g1 (‖Ci − Cj‖), where ‖ · ‖ means L2-Norm and
g1(ζ) = 1

ζ+1 .
E4 attempts to find the tumor boundary in the vicinity of manually placed

contour, and is defined for the pixel pairs which are neighboring and belong
differently to tumor and background as E4(li, lj) = g2 (β · Di,j), where Di,j is
the distance from the center point between pixel i and pixel j to the manually
delineated boundary, and β is a control parameter for Di,j , and g2(ζ) = ζ

ζ+1 .
In order to initialize the graph-cut based segmentation algorithm, tumor is

first specified and roughly segmented by a manual rater. Then, a rectangle region,
larger than the bounding box of segmented tumor, is specified as a domain
for segmentation. After that, tumor and background are both classified into 3
classes using k-means clustering. The energy functional described above is then
minimized by the expansion move algorithm [7] with the output of the k-means
algorithm as initialization. After convergence, the union of all tumor classes
found by the algorithm is taken as the refined tumor region.

Fig. 1 compares segmentation refinement with expert manual segmentations
(ground-truth). It can be observed that the refined segmentations yield a result
very close to expert manual segmentations.

2.2 Extraction of STEP Features

To extract STEP features, segmented tumor samples (from Section 2.1) are first
spatially normalized and then temporally modeled. Finally, both spatial and
temporal properties of TE are combined to construct the STEP features.
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Rough Refined Expert

Fig. 1. Rough manual segmentations by a manual rater, corresponding refined results,
and manual segmentations by an expert

Original Normalized TE Map

Fig. 2. Tumor samples before and after normalization, and corresponding TE map of
the 1st DFT coefficient. For each panel, top row is malignant, while bottom row is
benign.

Tumor Normalization: In order to extract spatial and temporal properties, tu-
mors are first rigidly registered using an approach similar to Procrustes analysis,
which aligns principal directions corresponding to the distribution of pixels of
each tumor sample and scales tumor sizes for equal largest principal modes. As
a result, all tumor samples are normalized to have similar predefined principal
directions, in addition to the same “largest eigenvalues” as shown in Fig. 2.

Temporal Enhancement (TE) Modeling: While several signal decompositions,
such as Fourier, wavelet transforms, and wavelet packets, may be exploited to
model temporal response of a breast tissue, we adopt Fourier transform to model
pixel-wise temporal enhancement, due to its simplicity. Discrete Fourier Trans-
form (DFT) of TE (given by Eq. (1)) yields T −1 coefficients for each pixel. Com-
bining all pixels in the tumor results in Nt = T − 1 DFT coefficient maps which
provide a frequency domain representation of the spatio-temporal enhancement
image. An example of a DFT based TE map is given in Fig. 2.

Spatial Description of TE Maps: DFT based TE maps given in Fig. 2 indicate
that both global morphological attributes of a tumor and local variations in the
TE map can form distinguishing characteristics of malignant and benign tumors.
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Accordingly, we employ two types of rotation-invariant features, namely, moment
invariants [8] for global properties, and Gabor textures [9] for local attributes.
Consequently, we compute Hu’s Hm = 7 moment invariants for each of Nt TE
maps in addition to Hg = Z × K rotation-invariant Gabor texture features for
K orientations within a period of π and Z radial frequencies. We set K = 4 and
Z = 8 in our experiments.

The resulting N
′

t × (Hm + Hg) STEP features for N
′

t TE maps out of a total
of Nt TE maps provide a rich characterization of a tumor, thereby incorporating
spatial, temporal, and morphological attributes.

2.3 Tumor Classification

We validate tumor segmentation and the resulting STEP features by classify-
ing tumors into benign and malignant. It should be noted that STEP features
are derived for complete characterization of a tumor, some of which may not
be discriminative between the two classes. It is, therefore, important to select a
smaller set of most distinctive STEP features before tumor classification. In this
paper, we employ Fisher Linear Discriminant based Linear Discriminant Analy-
sis(LDA) [10] classifier, along with a simple t-score ranking-based feature selec-
tion method. Although one may obtain better performance by using advanced
features selection [11] and nonlinear classification [12], the results provided serve
as the baseline performance. Due to limited sample size, leave-one-out cross-
validation framework is employed.

3 Experimental Results

DCE-MRI data of bilateral fat suppressed T2 weighted image for 31 subjects
were acquired from UPenn under PO1CA085424 (Clinical evaluation of multi-
modality breast imaging). Sequential post contrast acquisitions were acquired
for approximately 6 minutes following contrast injection. There are 22 malig-
nant and 9 benign tumors, which were histologically verified. All the subjected
were aligned before performing our algorithms.

Two experiments were performed to evaluate the proposed segmentation al-
gorithm and the STEP features. Classification performance was consequently
compared through receiver operating characteristic (ROC) curves (fitted with
[13]), sensitivity, specificity, and accuracy for various tumor features.

• Evaluation of Segmentation Algorithm

We compare the performances of tumor classification on roughly-segmented tu-
mor samples by manual rater, segmentation-refined tumor samples, and expert-
segmented tumor samples.

As indicated by ROC curves in Fig. 3, the segmentation refinement algorithm
improves tumor classification, which is consistent with the results reported in
[3]. Highly coincident ROC curves for refined segmentation based- and expert
segmentation based-classification given in Fig. 3 indicate that our segmentation
algorithm yields a performance comparable to that for expert segmentations.
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Rough           AUC:0.81
Refinement    AUC:0.97
Expert            AUC:0.97

Fig. 3. ROC curves of tumor classification on rough segmentation, refinement segmen-
tation, and expert segmentation, along with their AUC values. Notice that ROC curves
of ‘refinement’ and ‘expert’ are overlapped together, as identical curves.

Besides, based on all our testing samples, the mean and the standard devia-
tion of boundary distances between our segmentation and expert segmentation
are 4.10 and 5.62 pixels, which are much less than the mean and the standard de-
viation of boundary distances obtained between rough segmentation and expert
segmentation, i.e., 7.67 and 8.24 pixels.

• Validation of STEP Features

Performance of STEP features was compared with various existing features.
Seven dynamic features (D = {D1, · · · , D7}), six architectural features (A =
{A1, · · · , A6}), and nine features of spatial variations of TE (V = {V1, · · · , V9})
were selected (See Appendix for details). Classification performance of individ-
ual features {A, D, V }, their combinations {A∪D, A∪D∪V }, and the proposed
STEP features was compared using feature selection and leave-one-out classifi-
cation procedure explained in Section 2.3.

Table 1. Best classification accuracy, along with corresponding sensitivity and speci-
ficity, for different sets of features used in tumor classification

Feature Accuracy(%) Sensitivity Specificity Selected Features
A 87.1 0.91 0.78 A3,A5,A6

D 64.5 0.68 0.56 D6

V 90.3 0.91 0.89 V3,V5

A ∪ D 87.1 0.91 0.78 A3,A5,A6

A ∪ D ∪ V 90.3 0.91 0.89 A3,A5,V3,V5

STEP 96.8 0.95 1.00 3(moment)+1(Gabor)
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ROC curve

A               AUC:0.87
D               AUC:0.75
V               AUC:0.89
A∪D          AUC:0.87
A∪D∪V     AUC:0.93
STEP         AUC:0.97

Fig. 4. ROC curves of tumor classification using different sets of features. The corre-
sponding AUC values are also provided. Notice that ROC curves of A and A ∪ D are
overlapped together, as identical curves.

ROC curves and their AUC values for various features are given in Fig. 4.
Best classification accuracy, corresponding sensitivity and specificity, along with
features selected by our feature selection method, are listed in Table 1. Four
selected STEP features (shown in the last row of Table 1) include 3 moment
invariants and 1 local Gabor texture feature.

Combining general architectural and dynamic features (A ∪ D) for tumor
diagnosis, did not improve the AUC value or the best classification rate as com-
pared to the architectural features. This may be due to the simple ranking-
based feature selection, which may fail to optimally combine architectural and
dynamic features. On the other hand, spatial variation of contrast enhancement
was proved very effective in distinguishing malignant and benign tumors. Al-
though the combination of this feature with architectural and dynamic features
(A∪D∪V ) fell short of providing an outright improvement in classification rate
(compared to V ) as shown in Table 1, it improved AUC from 0.89 to 0.93 as
shown in Fig. 4. This clearly demonstrates that TE, architectural structure, and
spatial variation of TE all play an important role in distinguishing malignant
and benign tumors.

In all experiments, STEP features offered the best performance, with AUC,
classification rate, sensitivity, and specificity all showing improvements. The fact
that both moment invariants and local Gabor texture features were selected as
STEP features for tumor classification validates our hypothesis that capturing
both global and local variations of contrast enhancement is important in dis-
tinguishing between malignant and benign breast tumors. In particular, the 6th
moment invariant of the 2nd DFT coefficient map, the 1st moment invariant of
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the 1st DFT coefficient map, the 2nd moment invariant of the 4th DFT coefficient
map, and one texture feature were selected, respectively.

4 Conclusion

In this paper, we have proposed a framework for extracting Spatio-Temporal
Enhancement Pattern (STEP) that completely characterizes three tumor prop-
erties, namely, temporal enhancement, architectural structure, and spatial varia-
tions of pixel-wise temporal enhancement. STEP features were validated through
tumor classification, where experimental results show better tumor classification
performance with STEP features, than that with individual and pairwise fea-
tures. We have also shown that STEP features are benefited greatly by the
proposed segmentation refinement algorithm as indicated by the tumor classifi-
cation results, which are consistent with those for expert segmentations. Future
work involves extensive evaluation of our methods with a larger database.
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5 Appendix

For the dynamic features, we selected the standard deviation of enhancement
(D1), maximum washout (D2) [14], the maximum uptake (D3), uptake rate
(D4), washout rate (D5) [15], and the two features (D6) and (D7) extracted
from the enhancement curve modelled by the Hayton-Brady pharmacodynamic
model in [16]. Notice that the dynamic features were all computed from the
average intensities over the tumor area at every time point.

For the architectural features, we selected the compactness (A1) [14], circu-
larity (A2) [15], irregularity (A3), eccentricity (A4), rectangularity (A5), and
entropy of radial length distribution (A6) [3].

The features that can account for spatial variations of TE are the variance
of uptake (V1), change in variance of uptake (V2), margin gradient (V3), vari-
ance of margin gradient (V4), variance of radial gradient histogram (V5) [2], the
maximum variation of enhancement (V6), the enhancement-variance increasing
rate (V7), the enhancement-variance decreasing rate (V8), and the enhancement-
variance (V9) at the first post-contrast frame [15].
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