Community Computing Model Supporting Community
Situation Based Strict Cooperation and Conflict
Resolution*

Youna Jung, Jungtae Lee, and Minkoo Kim

Graduate School of Information and Communication Engineering, Ajou University,
Suwon, Republic of Korea, 443-749
{serazade, jungtae,minkoo}@ajou.ac.kr

Abstract. Community computing is a new computing environment where ubig-
uitous services are provided by cooperation between existing smart object. In
these days, it is studied by many researchers but works on community comput-
ing are still at an early phase. To design and describe cooperation effectively, in
this paper, we propose the community situation based cooperation model. In
addition, we introduce conflict resolution scheme for community computing.
Consequently, we propose the community computing model supporting the
community situation based cooperation and conflicts resolution. Case studies
are also tried to examine the proposed community computing model.

1 Introduction

In recent years, ‘Community Computing’ has been suggested as a new technical envi-
ronment. For an instance, Jonathan Murray, Microsoft's chief technology officer for
the EMEA (Europe, Middle East and Africa) region, expressed his vision about com-
munity computing in InfoWorld magazine [1]. He said, “We are moving from a world
where we just have my own personal device that runs my own applications to a new
world where we are sharing other device’s computing capacity and resources”. Mi-
crosoft Company called such a new environment as community computing. In fact,
the idea is not totally new. By several projects such as PICO [2] and GAIA [3], com-
munity concept had been introduced. Yet despite these interests, a number of funda-
mental questions about community computing remained unanswered. In particular, a
formal model and development process for community computing system were not
well defined. In order to find an answer, we have researched on the model for com-
munity computing and a development process to generate a community computing
application system. As a progress, we proposed an early version of community com-
puting model and a development process using MDA approach [4] .

However, in the previous model, there is no cooperation model. At that time,
we didn’t have an idea to abstract cooperation, thus we just described a specific

* This research is supported by the ubiquitous Autonomic Computing and Network Project, the
Ministry of Information and Communication (MIC) 21st Century Frontier R&D Program in
Korea.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 475 2007.
© IFIP International Federation for Information Processing 2007

48 Y. Jung, J. Lee, and M. Kim

procedure of cooperation just like pseudo codes in protocol description part. Such
description style didn’t help to intuitively design cooperation of community at all. By
the difficulties in cooperation design, we have tried to find a cooperation model for
community computing. In addition, in the previous model, we assumed a conflict-free
circumstance but, in practice, conflicts are exists. Accordingly, we have also tried to
find a solution of conflicts.

In this paper, the major contribution is that we proposed the community situation
based cooperation model for community computing. By the cooperation model, each
member of a community cooperates with other members according to a community
situation. Additionally, we analyzed conflicts which can be happened in community
computing systems, and make up policies for conflict resolution. Using the coopera-
tion model and policies, we improve the previous community computing model.

The rest of the paper is organized as follows. In section 2, we introduce some re-
lated works, and then we propose the community situation based cooperation model
and conflicts resolution scheme in section 3. In Section 4, community computing
models supporting the community situation based cooperation model and conflicts
resolution scheme are proposed. Case studies are presented in section 5. Finally, sec-
tion 6 is dedicated to the conclusion and future works.

2 Related Works

2.1 Previous Community Computing Model

In our work, community computing is a computing technology to offer ubiquitous ser-
vices by exploiting the cooperation between smart objects. To design and develop a
community computing system effectively, we surveyed several existing models. In
particular, we concentrated on abstraction models for multi-agent systems such as
GAIA [3] because of agent’s flexible and autonomous problem solving behavior. How-
ever, the existing multi-agent based models focus on what agents are needed to satisfy
the requirements of a system, while community computing focuses on how to meet
requirements of a ubiquitous system using cooperation between given ubiquitous ob-
jects. In other middleware approach projects such as Active Space [5] and PICO [2], a
vision is similar with ours but there are no formal models. Therefore, we proposed a
community computing model [4] as an abstraction model for community computing
systems. In the previous community computing model, a community computing system
is abstracted as a society, and a society is composed of members and communities. A
community, a proactive organization consisting of members, is represented by its goals,
protocols, and necessary roles. A member is a ubiquitous object, which can play a cer-
tain role in a community. At the runtime, if a goal arises dynamically, ubiquitous objects
are selected for each role then a community is instantiated. After creation of a commu-
nity, each member cooperates with other members to attain a goal according to protocol
description. When the goal is finally achieved, the community is disorganized.

2.2 Existing Cooperation Models

In the previous community computing model, cooperation between members is con-
sidered as a predefined procedure. It means that a designer should know which task

Community Computing Model 49

should be executed in which order. However, in case of a huge and complex coopera-
tion, it is not easy that a designer lay out a whole cooperation procedure in once.
Therefore, we considered a cooperation model should be necessary to intuitively
design the cooperation. To find an appropriate cooperation model, we surveyed exist-
ing cooperation models. In many systems, infrastructures, and cooperation models,
cooperation is used and described.

First of all, in 1997, a refined formal cooperation model for ARCHON was pro-
posed [6]. In this model, cooperation is represented just as a recipe, a set of prede-
fined tasks. AGDRSCOM [7] is an agent cooperation model which member agents
are able to adjust own cooperative tasks according to the changes of environment and
the feedbacks from other members. In AGDRSCOM, an idea of adaptive cooperation
is introduced but the detailed mean of adaption is not proposed. Cooperation is just
represented as a programming element in a skill description. In the cooperation model
of MAPFS [8], a cooperation process is also procedural described by actions and
instructions. In 2006, Ji Gao is proposed the hybrid cooperation using recipes, poli-
cies, and advertisements [9]. In this model, policy is the obligations and restrictions
that agents should comply to, and advertisement is the record of interests of other
agents. However, the fundamental cooperation process is also represented by a recipe.

In most cooperation models, as you can see, cooperation is described as a prede-
fined static pseudo program called as recipe, plan, or skill. In many systems, infra-
structures, and cooperation models, means of realizing cooperation were introduced
but the mean of designing cooperation itself was not concerned. Therefore, we arrived
at a decision that we needed a new cooperation model to design cooperation of com-
munity intuitively.

3 Community Situation Based Cooperation Model

In order to design cooperation of community, we proposed the community situation
based cooperation model as a new cooperation model, especially for community com-
puting [10]. The idea is that cooperation is executed according to community situa-
tion. If community’s situation is changed then tasks of each member are also changed.
That is, tasks which each member should perform are decided by the community
situations. At this time, the final situation of a community should be a goal achieve-
ment situation. Since the proposed cooperation model is based on the community
situations, we define the community situation first.

3.1 Community Situation Model

In order to define the community situations, we proposed the community situation
model. In this model, a community situation is determined by situations of specific
members. At this time, a member situation is decided by attribute values of the mem-
ber. The definition of a community situation is as follows.

In this version of community situation model, a community situation is represented
as a logical association of attributes. However, the expression power of the commu-
nity situation model can be improved. If the power of community situation model
then the cooperation model is also improved.

50 Y. Jung, J. Lee, and M. Kim

Definition 1. Community Situation Model

<community-situation>::= <situation-name> = <community-situation>
<community-situation>:: = <single-community-situation> | <conjunctive-community-situation> |
<disjunctive-community-situation>

<single-community-situation>::= [<quantifier>] <role-name>.<role-situation>

<quantifier>::= ¥ | 3, <role-name>::=<string>, <role-situation>::=<member-situation>

<conjunctive-community-situation>::=(<community-situation>AND<community-situation>)

<disjunctive-community-situation>::=(<community-situation>OR<community-situation>)

<member-situation>::= <single-member-situation> | <conjunctive-member-situation> |
<disjunctive-member-situation>

<single-member-situation>::=<attribute>,<attribute>::=(<attribute-name> <operator><attribute-value>)

<attribute-name>::= <string> , <attribute-value>::= <value>

<operator>::= >| < | >= | <= | = |!= ,<value>::=<number>I<string>l<symbol>TUREIFALSE

<conjunctive-member-situation>::=(<member-situation>AND<member-situation>)

<disjunctive-member-situation>::= (<member-situation> OR <member-situation>)

3.2 Community Situation Based Strict Cooperation Model

Using the proposed community situation model, we define the cooperation for com-
munity computing. Before the definition the community situation based cooperation
model, let you know some promises of this model.

Assumptions. The community situation based cooperation model is founded on fol-
lowing strong promises.
1) Certainty of community situation
2) All members of a community are aware of community situations and know own
tasks to do according to each community situation
3) In a community situation, each member can perform more tasks than one in se-
quential order
4) Although tasks of members are not completely finished in a community situa-
tion, community situation can be changed
5) Community situation is dynamically changed, but finally reached the situation of
goal achievement

Definition 2. Community Situation based Cooperation Model

<community-cooperation>::= <goal-name> = {<cooperation-block>}"
<cooperation- block >::=<community-situation>=>{<role-task>}" ,<role-name>::=<string>
<role-task>::=<role-name>: { <role-action-name>}*,<role-action-name>::= <string>

When a member performs own actions in a certain community situation, conflicts
with other actions of the member or another member can occur. Such conflicting
actions may be executed to play another role for a different community or be not
finished in a previous community situation. In both case, we should resolve conflicts.

First of all, we defined that tasks of a member in a certain community situation are
executed by one thread, thus we do not need to worry about conflicts on a thread. Ac-
cordingly, what we should consider is conflicts between threads. These conflicts are
happened when a member cannot execute actions or when more than two members try
to execute conflicting actions simultaneously. To handle such conflicts, we classify
conflicting actions into two types, mutual exclusive conflict type and time dependent
conflict type. In case of the mutual exclusive conflict type, if a conflict occurs then one
among conflicting actions should be terminated. In case of the time dependent conflict

Community Computing Model 51

type, one among conflicting actions should be executed first and then another action is
executed. For handling conflicts in runtime, a community manager has an action-
conflicts list about conflicts between own actions of a member or actions of different
members. The list represents types of action conflicts. At this time, conflicts between
same actions can be included in the list. For example, assume that a member performs
action a, in community situation S;. Then a situation is changed to S,, although a, is not
finished. After that, a situation is changed again to S; and the member should perform a,
in a situation S;. However, a, executed in previous situation$S; is still operating.

Definition 3. Action-conflicts List

<action-conflict-list-in-community>::= {<mutual-exclusive-action-conflicts-in-community> |
<time-dependent-action-conflicts-in-community>}"

<mutual-exclusive-action-conflicts-in-community-in-community>::= MEC(<role-name>.
<remained-action-name>,<role-name>.<killed-action-name>)

<time-dependent-action-conflicts-in-community-in-community> ::= TDC(<role-name>.
<precedent-action-name>,<role-name>.<following-action-name>)

<remained-action-name>::= <action-name> , <killed-action-name>::= <action-name>

<precedent-action-name>::=<action-name>,<following-action-name>::=<action-name>
<action-name>::= <string>

4 Community Computing Models with Community Situation
Based Strict Cooperation

In order to design the community computing system, we had proposed the community
computing model called as CCM. In addition, to systematically develop community
computing systems, we had also proposed a development process [4]. Since the proc-
ess is based on MDA (Model Driven Architecture) approach, we had generated more
detailed models than CCM, CIM-PI (Platform Independent Community Computing
Implementation Model) and CIM-PS (Platform Specific Community Computing Im-
plementation Model). Using the proposed models and development process, we could
create a community computing system fast and conveniently.

However, as we mentioned above, the previous models did not concern about coop-
eration model [4]. In those models, cooperation was just described like a procedural
pseudo codes. Although the previous models aimed to abstract a cooperation system, an
idea of cooperation was not involved. In order to make up the defect, we generated the
community situation based cooperation model [10]. Thus, in this paper, we applied the
cooperation model to the previous community computing models. As a result of that, we
propose the improved community computing models, the community situation based
community computing models. In this section, we introduce the community situation
based CCM, the community situation based CIM-PI, and the community situation based
CIM-PS. The differences from the previous models are as follows.

= Community situation based cooperation between members
= Conflict Resolution in a community computing system

4.1 The Community Situation Based Community Computing Model

The community computing model, called as CCM, is the most high-level abstraction
model for a community computing system. The objective of the CCM is to describe

52 Y. Jung, J. Lee, and M. Kim

the requirements and the boundary of a system. In order to do, a community comput-
ing system is represented as a society, and a society consists of community types and
member types. The major difference between the previous CCM and the community
situation based CCM is in the cooperation description part. In the improved CCM, a
cooperation of a community is represented by community situations and description
about each role’s tasks in a certain situation. In Fig.1, an example of the community
situation based CCM is shown.

Society COEX_Mall {
Community Type Description {
Community Patrol_COEX{

| Action: Area_Assign();Patrol();Broadcast_Info();
1 Find_Person();Guide_To();
‘ Cast : POWER=ON; LOCATION= IN.COEX_Mall; }

Role Patrol_Robot: 1 ~10{ i Role Guidian_of_Lost_Person: 1 {
Attribute:POWER={ONIOFF}; E Attribute:LOCATION={locaton_type};
LOCATION={location_type};MODE={BUZYIORDINARY}; (CONTACT={OMD_ID};

Action:Area_Assign();Patrol(); E Action:
Cast : POWER=ON; LOCATION= IN.COEX_Mall;} ' Cast:LOCATION= IN.COEX_Mall; }

Role Patrol_Manager : 1~ 2{ ' RoleGuide : 1~ 5 {

Attribute:STATUS={ON DUTY| OFF DUTY}; ! Attribute : STATUS={ON DUTY| OFF DUTY};
LOCATION={location_type}; i LOCATION={location_type};

Action:Patrol_Management(); | Action:Patrol();Find_Person();Guide_To();Report_Police();

Cast : STATUS=ON DUTY; LOCATION=IN.COEX_Mall;} . Cast : STATUS=ON DUTY; LOCATION=IN.COEX_Mall;}

Role Guide : 1~ 5{ ...} i Role Salesman: 1~1000{ ...}

Goals Patrol_COEX(Patrol_Robot, Patrol_Manager, Guide){ : Goals Find_a_lost_person(Patrol_Robot,
PATROL_AREA_ASSIGN: Areas of All patrol_ robots, i Guidian_of_Lost_Person, Guide, Salesman){

guides, and patrol_manager is assinged E READ_PROFILE_OF_PERSON:Read a profile of a lost per-
PATROL_BEGIN: Start up a patrol service at COEX ' son
PATROL_END: Shut up a patrol service at COEX, and ' FIND_PERSON: Broadcast the profile, and try to find a
disorganize an instance of ‘Patrol_COEX’ community} ' person
Ontology : Patrol_COEX_Ontology; } ' PERSON_FOUNDED : The person is founded
Community Find_Person{ ' PERSON_NOT_FOUNDED: The person is founded}
Role Patrol_Robot: 1~ 10 { . Ontology : Patrol_COEX Ontology; }}
Attribute:POWER={ONIOFF}; \ Member Type Description {
LOCATION={locaton_type}; i Member Siociety_Member{
i Attribute : LOCATION={locaton_type};
| Cast:LOCATION= IN.COEX_Mall; }}

Fig. 1. An example of community situation based CCM

4.2 The Community Situation Based Platform Independent Community
Implementation Model Supporting Conflict Resolution

CIM-PI is a more detailed model than CCM. Its objective is to describe the implemen-
tation using given ubiquitous objects without knowledge of specific platforms. In order
to do, in CIM-PI, descriptions of society, community types, and member types are
more expanded and detailed. First of all, in the community type description, mapping
information between role and member types is added to represent which member types
can play which role. Secondly, description of cooperation is detailed. In particular,
tasks to be executed by a member shaped up as a sequence of actions of the member,
and the definition of community situations is also specified. In third, conditions of
community creation are described. To initiate a community instance, two ways are
allowed: a member requests an initiation to a society manager or a community man-
ager requests an initiation as a part of cooperation. Finally, policies are added to man-
age conflicts during the lifetime of a community. In the present version, member cast-
ing policy, member secession policy, and action conflicts list (see Definition.3) are
defined. The member casting policy represents a rule about member selection such as

Community Computing Model 53

distant dependent casting or response-time dependent casting. In the member secession
policy, treatments for sudden secession of a member are specified. For examples, if a
member disappears, then we can initialize a cooperation process with a new member,
continue cooperation with a new, or terminate the cooperation. In the member type
description part, all member types are described and hierarchy of member types is also
defined using the extends keyword. In addition, member situations are specified as a
logical association of attribute’s values. Finally, policies for a member are also de-
scribed. When a member performs tasks to play one or more than one role, conflicts
between own tasks can occur. To resolve such conflicts, we define an action conflicts
list (see Definition.3) and represent it in member policy description. In society descrip-
tion, society policy is additionally described. In society policy description, precedence
of communities and exclusive communities are defined. When a society manager takes
more than one requests for community creation, these policies are used to select one. In
Fig.2, an example of the community situation based CIM-PI is shown.

Society COEX_Mall { dependent; Guide: distance-dependent; }
Community Type Description { Sudden Secession of Member {
Community Patrol_COEX{.......eurrurersens } Patrol _Robot: Continue with a new; Salesman: Continue
Community Find_Person{ with a new; Guidian_of_Lost_Person: Initialize with a new;
Role Patrol_Robot: 1 ~10{covsren} Guide: Continue with a new; }
Role-MemberType Mapping { Action Conflicts List={ MEC(Report_Police(* lost person”,
Patrol_Robot:ARGUS; Guidian_of_Lost_Person: profile),Find_Person(profile)); }}
Human; Guide:Guide;Salesman:Human; } Ontology : Patrol_COEX_Ontology; } }
Goals Find_a_lost_person(Patrol_Robot,Guidian_of_Lost_ {Member Type Description {

Person, Guide, Resident) Member COEX_MallTIZEN {

{FIND_PERSON_REQUEST=> Attribute : LOCATION=IN.COEX_Mall; }
Patrol_Robot : Read_Personal_Profile(); Broadcast_Info Member Animate Object extends COEX_MallTIZEN { }
(' Patrol_Robot and ¥ Guide and Y Resident, “Finda | Member ARGUS extends Robot {
person”, profile);; Attribute : MODEL=STRING; FIND_PERSON={YESINO};
FIND_PERSON=> TAKE_REQUEST_FIND_PERSON={YESINO};
Patrol_Robot : Find_Person(profile); PERSON_FOUNDED={YESINO},
Guide : Find_Person(profile); Actions Area_Assign(COEX_Mall, Patrol_Robot);
Salesman : Find_Person(profile); Patrol(COEX_Mall); END_Patrol();
PERSON_FOUNDED=> Read_Personal_Profile(); Broadcast_Info(
Patrol_Robot and Guide and Salesman : 7 Patrol_Robot and ' Guide and V Resident,

Announce(¥ Patrol_Robot and ¥ Guide and “Find a person”, profile); Find_Person(profile);

' Resident, “Person is founded”, location); Announce(V Patrol_Robot and ' Guide and

Guide_To(founded person, information office);; 7 Resident, “Person is founded”, location);

PERSON_NOT_FOUNDED=> Guide_To(founded person, information office);
Patrol_Robot and Guide and Resident : Announce(“Person is not founded”, ¥ Patrol_Robot);
Announce(“Person isn’t founded”, 7 Patrol_Robot);; Member Situation {

Guide: Report_Police(“ lost person”, profile);;} TAKE_REQUEST_FIND_PERSON:
Community Situation { TAKE_REQUEST_FIND_PERSON=YES;
FIND_PERSON_REQUEST={ FIND_PERSON:FIND_PERSON:

Patrol_Robot. TAKE_REQUEST_FIND_PERSON}, FIND_PERSON:FIND_PERSON=YES;
FIND_PERSON={Patrol_Robot.FIND_PERSON}; PERSON_FOUNDED:PERSON_FOUNDED:
PERSON_FOUNDED={ 3 (Patrol_Robot and Guide PERSON_FOUNDED:PERSON_FOUNDED=YES;}

and Resident. PERSON_FOUNDEDY}; Member Policy {
PERSON_NOT_FOUNDED={NOT 3 Patrol_Robot. Exclusive Actions={ MEC(Patrol(COEX_Mall), END_Patrol_
PERSON_FOUNDED=YES) }} Service();}}} .. }
Community Creation { Society Policy {
ByMember: {ARGUS. TAKE_REQUEST_FIND_PERSON;} | Community Precedence {
By Community:} High_Priority: Find_Person
Community Policy { Medium'_P{'iority: Patrol_COEX, Sell_Product
Member Casting Policy { Low_Priority}
Patrol_Robot: distant-dependent; Salesman: distant- | Exclusive Community={}} }

Fig. 2. An example of community situation based CIM-PI

54 Y. Jung, J. Lee, and M. Kim

4.3 The Community Situation Based Platform Specific Community
Implementation Model Supporting Conflict Resolution

In a community situation based CIM-PS, combines the description in the CIM-PI with
the details that specify how that system uses a particular platform. In improved CIM-
PS, descriptions about attribute acquisition, action mapping, and member configura-
tion are added. In attribute acquisition part, we describe where values of each attribute
derived from. The source of attribute values can be a kind of sensor or action. In ac-
tion mapping description, we describe how to realize actions of members. In case of
using existing programmed objects, we should make a connection between actions in
model and programmed actions in an existing object. On the other hand, in case that
we should program a ubiquitous member object, we use action names in models to
program a member. In member configuration part, components of each member are
described.

Society COEX_Mall { Read_Personal_Profile():Read_RFID(person_RFID);
Community Type Description{ ... } Broadcast_Info(V' Patrol_Robot and ' Guide and
Member Type Description{ ... Y Resident, “Find a person”, profile): BroadCast
Member ARGUS extends Robot { (towhom, msg); Find_Person(profile):Search_Obj(Info);
:‘t:tt’}f’:'s‘e Do Announce(' Patrol_Robot and ¥ Guide and

Y Resident, “Person is founded”, location):Notify

%:mg:: ggz;tlz’;a{t.i;;;:{. """"" } (towhom,msg);Guide_To(founded person, information
Vision Sonso? V3 San;sung Location_Sensor_v1:} office):GuideServie(who,where);An.nounce(“Person is
Attribute Acqui_sition { N - - not founded'”, ' Patrol_Robot):Notify(msg,towhom);}
TAKE_REQUEST_FIND_PERSON:Vision_Sonsor_v3;} ME";‘I"’S’ ,P°’/’4°CJ; _{o st

Action Mapping { Xclusive Actions= .
Area_Assign(COEX_Mall, Patrol_Robot):Set_patrol_ (Patrol(COEX_Mall), END_Patrol_Service()); } }}
range(location); Patrol(COEX_Mall):CyberCap(patrol); '."})
END_Patrol_Service():CyberCap(patrolstop); iSociety Policy { ... }

Fig. 3. An example of community situation based CIM-PS

5 Case Study

In a huge shopping mall, several robots exist. These robots have various functional-
ities such as move, vision sensing, alarm, voice recognition, information search, and
so on. At the ordinary time, each robot offers its own services such as guide service or
information presentation. Sometime, robots compose a community to achieve a com-
munity’s goal. Each robot can take multiple roles, depending on its ability.

Level-1 Cooperation: When a shopping mall is opened, a Patrol_COEX commu-
nity is initiated by casing all robots and guides. Area to patrol is assigned to all robots
and guides as soon as a community is created, then each robot and guide patrols as-
signed area. When a robot or guide cannot patrol because of too much load or sudden
interruptions, they request to reassign.

Level-2 Cooperation: When a robot is on patrol as a member of a Patrol_COEX
community, the robot is asked for finding a lost child by child’s mother. The robot
generates TAKE_REQUEST_FIND_PERSON member situation, and then requests a
creation of Find_Person community to a society manager. The society manager,
which supervises the COEX-Mall Community computing system, creates a commu-
nity manager for Find_Person community, and then the community manger initiates a

Community Computing Model 55

Find_Person community by casting necessary members. The robot taking a request
sends child’s profile to all robots, guides, and salesman in COEX-Mall. After robots
get the profile, they start to find the child while patrolling. At this time, each robot

takes at least two roles in Patrol_COEX community and Find_Person community.

a0

PATROL RANGE
| __ASSIGN____

=(Patro Managel PATROL
BEGIN) ANL [(Patro Robo

PATROL BEGIN

= [Patro Managel PATROL

PATROL END

[Patro Managel PATROL
ENC

PATROL RANGE ASSIGN <:| BEH
Goa REC) Goal
(;?;?gglgg :> Patro Robot |:> Patro Robot Patro Robot Achievement
Area Assign(COEX) Patro (arez) End Patro ()
Guide Guide Guide
Area Assign(COEX) Patro (area) End Patro ()

Patro Manager
Area Assign(COEX)

Patro Manager
Patro Management()

Patro Manager
End Patro Managemeni()

a) Community Situation based Cooperation for Patrol_COEX community

Goal

FIND PERSON
REQUEST

= [Patrol Robo TAKE

FIND PERSON

= [Patrol Robtc FIND

o REQUEST FIND PERSON PERSON
(Fina g e Q Patrol Robo! Patrol Robo
e Reas Personal Prov(|) Find Persor (profi) BERSONJNOL
Broadcas! Infor participan Guide FOUNDED
Find a person” profile Find Persor (profile) [<1 Patrol Robtc PERSON
Patrol Manage! NOT FOUNDEL

Find Persor (profile)

PERSON
FOUNDED

= [Patrol Robtc PERSON
FOUNDEL

Patrol Robo
Announce(" Person is
foundec ")
Guide
Announce(” Person is
foundec ")
Patrol Manage!
Announce(" Person is
foundec ")

Patrol Robot
Announce(” Person is
not founded")
Guide
Announce(" Person i
not founded")
Report Police (profile)
Patrol Manage!
Announce(” Person is
not founded")

Goal

Achievement

b) Community Situation based Cooperation for Find_Person community

Fig. 4. Community Situation based Cooperation for level-1 case and level-2 case

6 Conclusion

In this paper, we proposed the community situation based cooperation model and
conflict resolution scheme for community computing. Using the cooperation model
and policies, we improved the previous community computing model. In addition, to
examine the improved community computing model, we introduced case studies.
However, our proposal leaves space for further works as follows.

= Improvement of power of community situation based cooperation model and
situation model. — This version of community situation based cooperation
model is based on strict assumptions.

56

Y. Jung, J. Lee, and M. Kim

= Improvement of conflict resolution scheme
= Various case studies

References

10.

Blau, J.: Microsoft: Community computing is on the way. InfoWorld Magazine (November
22, 2005), http://www.infoworld.com/article/05/11/22/HNcommunitycomputing_1.html
Kumar, M., et al.: PICO: A Middleware Framework for Pervasive Computing. Pervasive
Computing 1268-1536, 72-79 (2003)

Jennings, R., et al.: Developing Multiagent Systems: The Gaia Methodology. ACM Trans-
actions on Software Engineering and Methodology 12(3), 317-370 (2003)

Youna, J., Jungtae, L., Minkoo, K.: Multi-agent based Community Computing System De-
velopment with the Model Driven Architecture. In: Proc. of Fifth International Joint con-
ference on Autonomous Agents and Multiagent Systems, May 12, 2006, pp. 1329-1331
(2006)

Romadn, M., Campbell, R.H.: GAIA: Enabling Active Spaces. In: 9th ACM SIGOPS Euro-
pean Workshop, Kolding, Denmark, pp. 229-234 (2000)

Brazier, F.M.T., Jonker, C.M., et al.: Formalization of a cooperation model based on joint
intentions. In: Tambe, M., Miiller, J., Wooldridge, M.J. (eds.) Intelligent Agents II - Agent
Theories, Architectures, and Languages. LNCS, vol. 1037, pp. 141-155. Springer, Heidel-
berg (1996)

Hua, C,, Gao, J., et al.: AGDRSCOM: A complicated Dynamic Real-time Strong Coopera-
tion System Model. In: Proc. of the Second International Conf. on Machine Learning and
Cybernetics, pp. 318-323 (November 2003)

Perez, M.S., Sanchez, A., et al.: Cooperation Model of a Multiagent Parallel File System
for Clusters. In: Proc. of IEEE International Symposium on Cluster Computing and the
Grid, pp. 595-601 (2004)

Guo, H., Gao, J., et al.: Recipe, Policy and Self-Organizing: A Hybrid Collaboration Ap-
proach for Agent-based Cooperative Design. In: Proc. of the 10th International Conf. on
computer Supported Cooperative Work in Design (2006)

Jung, Y., Lee, J., Kim, M.: Community Situation based Strict Cooperation Model for Co-
operative Ubiquitous Systems. Journal of Convergence Information Technology 2(1)
(2007)

	Community Computing Model Supporting Community Situation Based Strict Cooperation and Conflict Resolution
	Introduction
	Related Works
	Previous Community Computing Model
	Existing Cooperation Models

	Community Situation Based Cooperation Model
	Community Situation Model
	Community Situation Based Strict Cooperation Model

	Community Computing Models with Community Situation Based Strict Cooperation
	The Community Situation Based Community Computing Model
	The Community Situation Based Platform Independent Community Implementation Model Supporting Conflict Resolution
	The Community Situation Based Platform Specific Community Implementation Model Supporting Conflict Resolution

	Case Study
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

