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Abstract. Many advanced machine learning and statistical methods have 
recently been employed in classification of gene expression measurements. 
Although many of these methods can achieve high accuracy, they generally 
lack comprehensibility of the classification process. In this paper a new method 
for interpretation of small ensembles of classifiers is used on gene expression 
data from real-world dataset. It was shown that interactive interpretation 
systems that were developed for classical machine learning problems also give 
a great range of possibilities for the scientists in the bioinformatics field. 
Therefore we chose a gene expression dataset discriminating three types of 
Leukemia as a testbed for the proposed Visual Interpretation of Small 
Ensembles (VISE) tool. Our results show that using the accuracy of ensembles 
and adding comprehensibility gains not only accurate but also results that can 
possibly represent new knowledge on specific gene functions.  
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1   Introduction 

Gene expression analysis is a novel technique that in contrast to measurement of a 
single gene transcription enables measurement of all genes in an organism at once. 
Finding combinations of genes whose expression levels distinguish different groups 
of diseases is a complex task that is usually solved by different machine learning or 
statistical algorithms. While most of the algorithms gain very accurate results in 
classification of gene expression samples, there is still very limited number of 
algorithms that can offer a good interpretation of the results that were gained using 
advanced machine learning techniques.   

Methods like bagging, boosting and random forests, which combine decisions of 
multiple hypotheses, also called ensemble methods, are some of the strongest existing 
machine learning methods. Ensemble methods are learning algorithms that build a set 
of classifiers which are used to classify new instances by combining their predictions. 
It was shown that ensembles clearly outperform the single classifiers in terms of 
classification accuracy [1-5]. 

One of the main drawbacks of ensemble classifiers is weak comprehensibility of 
the produced classification models. Many times it is possible to convert all single 
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models from an ensemble to a set of rules, but such rule sets quickly become too 
complex to be comprehensible. Main scheme for such methods is rule extraction, that 
is, symbolic rules are extracted from the ‘black-box’ model. Most usual method is 
simple rule extraction from all components of a classification model that is followed 
by aggregation of the extracted rules. One of first such systems was presented by 
Setiono in [5], where the neural network is pruned and the outputs of hidden units are 
discretized. The rule extraction algorithm is executed iteratively for each sub-network 
constructed from hidden units with many outputs. Sometimes this process can be even 
simpler – e.g. when working with decision tree (DT), rules can be extracted directly 
from the branches of a tree. 

Another option when improving the comprehensibility of classification process is 
introduction of classification visualization. One of the first papers where visualization 
of high-dimensional classifiers is presented was written by Melnik [6], where visual 
interpretation of neural networks is described. An extensive work in visualization of 
multiple and single DTs that also includes their interpretation was done by Urbanek in 
[7]. He presents a tool for interactive visual interpretation of DT forests. Another 
paper by Frank and Witten [8] presents a technique that uses a two-dimensional 
visualization based on class probability estimates. All above mentioned papers 
suggest that visual interpretation of classification models is worth further research to 
help both experts and non-experts understand the most accurate classification 
techniques. 

Above mentioned examples demonstrate use of visual interpretation in classical 
machine learning problems, while it should also be mentioned that there were some 
experiments that combine visualization and microarray classification process. A study 
that uses Support Vector Machines and tries to interpret the results using visualization 
was presented by Caragea et al. [9]. A similar study in terms of visualization of 
microarray data to interpret results of classification was conducted by Lee et al. [10]. 
Their tool called GeneGobi is mostly based on statistical instead of machine learning 
methods. Another tool was developed by Curk et al. [11] where visualization is used 
for setting the experiments and interpretation of results, which represents a major 
simplification of experimental process in microarray analysis. 

The following sections of this paper present a case study where a novel Visual 
Interpretation of Small Ensembles (VISE) method [12] is used on a microarray 
dataset discriminating three types of Leukemia that was initially presented by 
Armstrong et al. [13]. In contrast to experiments described in [12] another version 
of VISE tool was used where DTs are generated based on bagging instead of 
boosting DTs. Section 2 contains a presentation of virtual interpretation of small 
ensembles. It is followed by a section describing the experimental settings and 
results. Section 4 presents a validation study by providing an interpretation of the 
results in the context of rule sets and then by comparing the proposed adaptations 
with the combined and simple DTs for leukemia grouping. In the last section, the 
main contribution of this paper is summarized and several issues for future works 
are indicated. 
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2   Interpretation Tool 

Usually as the number of classifiers in ensemble increases it means an increase of 
complexity and decrease of comprehensibility, assuming that single models combined 
in an ensemble are comprehensible models (e.g. DTs or a set of rules). This paper 
demonstrates a novel tool for visual interactive interpretation of ensembles consisting 
of three DTs. It is based on idea that a small ensemble can increase the accuracy and 
still keep the complexity of the ensemble as low as possible. To ensure the diversity 
of induced DTs is high enough we use a simple variant of bagging [14] technique for 
building DTs. Training set is split into three equal parts, where the first DT is 
generated from the first two thirds, the second from the last two thirds and the last tree 
from first and last third of the examples in training set. Default pruning settings are 
used to achieve lower complexity levels of generated DTs. All DTs used are standard 
C4.5 trees as implemented in Weka environment [15]. The same environment was 
used as a core for the developed small ensembles interpretation tool.  

Main screen of the VISE (Visual Interpretation of Small Ensembles) tool is 
presented in Fig. 1. Primary DT window can be seen on the left hand side of the 
screen, while on the opposite side the other two DTs are displayed in smaller 
windows. Each of the trees on the right side can be magnified and transferred to the 
main window by switching the main and one of the two side windows containing 
simplified visualization of the tree. Bottom of the screen contains a set of rules that 
are extracted from the above trees in an interactive way. Interaction is an integral part 
of the tool; therefore user is allowed to select branches of trees that he is interested in, 
either by decision at the terminal node of the branch or by features (i.e. nodes) that are 
included in the branch. The first interactive step is selection of a significant branch 
(according to expert’s opinion) in a tree, which is followed by automatic extraction of 
the rule from this branch and all the rules that could possibly contribute to the 
decision from the remaining two trees. 

First step is followed by automatic extraction of rules that can be done in two 
ways: 

1. Using the training set examples, a single or a group of branches is selected 
(and rules are extracted from them) which contain the examples that were 
used when the selected branch was built. 

2. In case there are too few examples in the selected branch, we artificially 
create the examples whose attribute values correspond to the selected branch 
and label them using a robust and accurate ensemble (in our case we use 
random forests ensemble consisting of 100 DTs) 

This way user is able to observe which rules (i.e. DT branches) could possibly vote 
against decision of the main DT. Using this knowledge we are able to understand how 
and why an ensemble would vote differently in case of using a single DT for specific 
samples that fit in the selected branch of the tree. 

For each small ensemble we can also get the quick accuracy estimation using  
10-fold cross-validation. 
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Fig. 1. Main screen of VISE tool 

The informative value of resulting rules is marked by their color that represents 
their origin and by their decision class. The following section demonstrates usage of 
the tool on a gene expression dataset discriminating three types of Leukemia. 

3   Experimental Settings and Results 

This section highlights the details of our study and key findings that were obtained 
by applying the VISE tool to Leukemia microarray dataset. In the original research 
by Armstrong et al. [13] clustering algorithms revealed that lymphoblastic 
leukemias with MLL translocations can clearly be separated from conventional 
acute lymphoblastic and acute myelogenous leukemias. The same dataset consisting 
of 72 tissue samples, each of them containing 12582 gene expression measurements 
was used in our experiment. In the original study a dataset was split in a training set 
containing 57 samples and testing set with another 15 samples. In our study all 72 
samples (24 ALL, 20 MLL, 28 AML) were used in a single dataset, while 10-fold 
cross validation was used for accuracy estimations. Basic DT that was used to 
extract rules from a small ensemble of three DTs is presented in Figure 2 where 
number in parentheses indicates that all examples from training set were correctly 
classified. 
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Fig. 2. Primary decision tree induced by VISE 

Rules that were directly extracted from small ensemble are presented in Table 1. 
All rules extracted from primary DT are displayed in bold and are followed by rules 
that are fired in other two DTs using the corresponding samples from the selected 
primary tree branch. When evaluating the accuracy of decision trees that were built 
using Leukemia dataset [13] it was indicated that three decision trees together reached 
an average 10-fold cross validation accuracy rate of 90.5% compared to 84.2% that 
was achieved by single decision trees. 

For easier understanding and rule interpretation gene id to gene description 
mappings are presented in Table 2. When interpreting the results from VISE tool it 
should be noticed that among the rules fired in secondary DTs it is possible to find 
rules that are voting against the rule extracted from primary DT. Those rules could 
also be called opposing rules and should be taken into consideration when interpreting 
results. In our case there are two genes that are included in such rules – i.e. genes with 
identification numbers 41503_at and 38046_at. 

Table 1. Rules fired for each branch in the primary DT 

AML Branch 
IF 35307_at NOT EXPRESSED AND  1389_at NOT EXPRESSED THEN AML 
IF 1389_at NOT EXPRESSED AND 38046_at NOT EXPRESSED THEN AML 
IF 41503_at EXPRESSED AND 1389_at NOT EXPRESSED THEN MLL 
IF 41503_at NOT EXPRESSED THEN AML 
MLL Branch 
IF 35307_at EXPRESSED AND  1389_at NOT EXPRESSED THEN MLL 
IF 1389_at NOT EXPRESSED AND 38046_at EXPRESSED THEN MLL 
IF 1389_at NOT EXPRESSED AND 38046_at NOT EXPRESSED THEN AML 
IF 41503_at EXPRESSED AND 1389_at NOT EXPRESSED THEN MLL 
ALL Branch 
IF 1389_at EXPRESSED THEN ALL 
IF 1389_at EXPRESSED THEN ALL 
IF 41503_at NOT EXPRESSED THEN AML 
IF 41503_at EXPRESSED AND 1389_at EXPRESSED THEN ALL 
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Table 2. Gene descriptions for easier interpretation of results in Table 1 

Gene ID Description 
35307_at Homo sapiens mRNA for GDP dissociation inhibitor beta 

 
1389_at Human common acute lymphoblastic leukemia antigen (CALLA) 

mRNA, complete cds 
38046_at Homo sapiens mRNA for Prer protein 

 
41503_at Homo sapiens mRNA for KIAA0854 protein, complete cds 

 

4   Interpretation of Results 

This section provides an expert evaluation of results and shows the differences 
between traditional gene expression analysis techniques and VISE tool in terms of 
results interpretation. Evaluation is based on rules that were extracted from DTs and 
are presented in Table 1. 

GDP dissociation inhibitor (GDI) is a protein that controls the GDP-GTP exchange 
reactions. GTP-binding proteins involve in trafficking of molecules between cellular 
organelles. GDIs slow the rate of dissociation of GDP and release GDP from 
membrane-bound Rabs [16]. The GDI beta gene is vulnerable to inversion/deletion 
mutation and may cause leukemia. The association of GDI and its expression 
involving cellular transport have been reported by many researchers, for example [17] 
and [18]. It is evident from many researches that GDI expression is responsible for 
chronic myelogenous leukemia. 

Common acute lymphocytic leukemia antigen (metallo endopeptidase; neutral 
endopeptidase) is an important cell surface marker in the diagnosis of human acute 
lymphocytic leukemia (ALL) [19]. It is present on leukemic cells of pre-B phenotype, 
which represent 85% of cases of ALL. Yagi et al. [20] and Fasching et al. [21] have 
suggested that the specific antigen receptor may be present at birth in some patients 
with ALL, suggesting a prenatal origin for the leukemic clone. They also have 
showed that some patients with ALL characterized by specific translocations have 
been demonstrated to have cells showing the translocation at the time of birth. This is 
because Lymphoblasts antigen receptors are unique to a particular patient. Sheikh et 
al. [22] has reported of peripheral blood lymphocytosis caused by CD23, CD25 in 
addition to CD5 and CD10. The expression of antigens for ALL have been reported 
my many researchers. For example, Ogawa et al. [23], Cutrona et al. [24] and Shipp 
[25] have reported the close correlation between expression of CD10/neutral 
endopeptidase and tumor development.  

Red protein (RER protein; IK factor; cytokine IK) involves in the negative 
regulatory pathway of constitutive MHC Class II antigens expression. It expressed at 
similar levels in fetal and adult tissues in developmental stage. A lower expression of 
mRna for the protein may lead to fetal brain placenta COT 25-normalized squamous 
cell carcinoma, B cell metastatic chondrosarcoma and colon tumor.  
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Transcription factor ZHX2 involves in transcription factor activities and regulates the 
transcription [26, 27]. The irregular expression of mRNA may lead to lymphoma, B-
cell lymphatic leukemia and lung and spleen lymphoma. 

The rules above, although, show the direct association of GDI and lymphoblastic 
leukemia antigen to the ALL and AML, some of the features of leukemia exhibit a 
mixed type of leukemia, for example, MLL. The morphological features and 
immunophenotypic profile of the leukemia is not readily classifiable and may be 
influenced by some other expressions, for example, expression of Prer proteins and 
Transcription factors. The importance of these genes that influence the classification 
of leukemia cannot be ignored. 

5   Conclusions and Future Work 

From the previous section it is evident that results obtained from VISE tool can reveal 
potential new knowledge and make interpretation of results a simple task for 
bioinformatics experts. It was shown that in most cases it is enough to select a few 
crucial genes that are sufficient for improvement of classification accuracy. But a step 
further enables extraction of additional rules and significant genes that can be decisive 
for comprehensibility of classification results.  

Another important aspect of VISE tool is the interactiveness of the classification 
process. It enables interaction with the expert in a way where it can be specified 
which rules (i.e. DT branches) are important for him and does not rely only on 
automatic feature selection like most of other methods.   

As usual in the gene expression research we should emphasize that all the results 
are obtained from datasets containing a low number of samples. The increase of 
datasets that will provide us with more samples in the future also brings some new 
challenges. We can expect more complex classifiers which will also be more accurate. 
Therefore one of the main aims for the future is reduction of produced classifiers 
when working with many of them at once as it is the case in ensembles of classifiers.  
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