
Automatic Streaming Processing of XSLT
Transformations Based on Tree Transducers

Jana Dvořáková

Department of Computer Science,
Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava, Slovakia
dvorakova@dcs.fmph.uniba.sk

Summary. Streaming processing of XML transformations is practically needed es-
pecially if we have large XML documents or XML data streams as the transforma-
tion input. In this paper, we present the design of an automatic streaming processor
of transformations specified in XSLT language. Unlike other similar systems, our
processor guarantees bounds on the resource usage for the processing of a particular
type of transformation. This feature is achieved by employing tree transducers as the
underlying formal base. The processor includes a set of streaming algorithms, each
of them is associated with a tree transducer with specific resource usage (memory,
number of passes), and thus captures different transformation subclass. The input
XSLT stylesheet is analyzed in order to identify the transformation subclass to which
it belongs. Then the lowest resource-consuming streaming algorithm capturing this
subclass is applied.

1 Introduction

A typical XML transformation processor (e.g., processors for the popular
transformation languages XSLT and XQuery) is tree-based, i.e., it reads the
whole input document into memory and then performs particular transforma-
tion steps according to the specification. References to any part of the input
document are processed in a straightforward way by traversing the in-memory
representation and the extracted parts are combined to form a required output
fragment. The output document may be constructed either in the memory or
sequentially as a data stream.

This approach has been sufficient for most of XML documents. However,
now there appear more and more XML documents that require specific han-
dling, such as large XML documents and XML data streams. A natural solu-
tion is to employ streaming processing, when the input document is read as a
stream, possibly in several passes; and the output document is generated as
a stream in one pass. Only a part of the input document may be accessed at
a time, and thus advanced techniques must be used to process references to

Jana Dvořáková: Automatic Streaming Processing of XSLT Transformations Based on Tree

Transducers, Studies in Computational Intelligence (SCI) 78, 85–94 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

www.springerlink.com

86 Jana Dvořáková

the input document and connect the extracted parts to the proper position
within the output document.

Currently, the most frequently used XML transformation languages are
XSLT [10] and XQuery [9], both general (Turing-complete) languages intended
for tree-based processing. There is great interest in the identification of XSLT
and XQuery transformations that allow efficient streaming processing. The
key issue in the design of a streaming processor is to find the way of han-
dling the non-streaming constructs of the languages. The goal of this work is
to propose a system that performs automatic streaming processing of XSLT
transformations, so that the upper bounds on the resource usage for particular
transformation subclasses are guaranteed. This feature is achieved by employ-
ing tree transducers as the base of the processor. More precisely, the processor
represents a demonstration implementation of the formal framework for XML
transformations introduced in [4]. In this paper, the framework is simplified
and customized in order to facilitate the implementation. It contains a general
model – an abstract model of general, tree-based transformation languages,
and a set of streaming models that differ in the kind of memory used and num-
ber of passes over the input allowed. Each streaming model can simulate some
restricted general model. The framework contains a simulation algorithm for
each such pair streaming model → restricted general model. The framework is
abstract, and thus can be used to develop automatic streaming processors for
other general transformation languages as well.

The implementation of the framework for XSLT language includes the im-
plementation of streaming models and two modules: (1) an analyzer that asso-
ciates the input XSLT stylesheet with the lowest resource-consuming stream-
ing model that is able to process it, and (2) the translator that automatically
converts the XSLT stylesheet into the streaming model chosen according to
the associated simulation algorithm. The processor based on the framework
is easily extensible since new transducers and algorithms may be specified
and implemented, as well as optimizable since the current algorithms may be
replaced by the more efficient ones. Although there are some XML transforma-
tions such that their streaming processing is always high resource-consuming
(e.g., complete reordering of element children), most of the practical transfor-
mations can be processed with reasonable bounds on the resource usage.

Related Work. Much of the previous work is devoted to streaming eval-
uation of XPath expressions, e.g. [1, 2]. Besides, several automatic streaming
processors for XSLT and XQuery have been implemented. XSLT processor
based on SPM (Streaming Processing Model) [3] is a simple one-head, one-
pass transformer without an additional memory. The conversion of XSLT
stylesheet to a streaming algorithm is well-described, however, only a small
subset of XSLT is captured. Existing processors for XQuery language [5, 6]
are equipped with memory buffers. Therefore they are able to handle large
subsets of XQuery, but the algorithms employed are not provided with a
complexity analysis, and therefore the resource requirements for processing a
particular type of transformation are not known. Empirical studies presented

Automatic Streaming Processing of XSLT Transformations 87

in [3, 5, 6] show that the streaming processors introduced tend to be less
resource-consuming than the tree-based processors, but the results hold only
for ad-hoc transformations chosen for the experiments. To our best knowledge,
our work is the first attempt to design an automatic streaming processor for
a large subset of a general XML transformation language that guarantees
specific resource usage for a given transformation class.

2 Complexity of Streaming Processing

In this section, we specify the relevant complexity measures for the streaming
algorithms for XML transformations.

The basic constructs of the XML document are elements, element at-
tributes, and text values. It may be represented as a tree that is obtained
by a natural one-to-one mapping between elements and internal nodes of the
tree. Text values appear in the leaves. Reading a document in document order
then exactly corresponds to the preorder traversal of the constructed tree.

The tree-based processing of XML transformations is flexible in the sense
that the input document is stored in the memory as a tree and can be tra-
versed in any direction. On the contrary, during the streaming processing the
elements of the input document become available stepwise in document or-
der and similarly the output elements are generated in document order. The
actual context is restricted to a single input node. Clearly, one-pass stream-
ing processor without an additional memory is able to perform only simple
transformations, such as renaming elements and attributes, changing attribute
values, filtering. It must be extended to perform more complex restructuring.
The common extensions are (1) allowing more passes over the input docu-
ment, (2) adding an additional memory for storing temporary data. The ex-
tensions can be combined1. We obtain the corresponding complexity measures
for streaming processing of XML transformations:

1. the number of the passes over the input tree, and
2. the memory size.

It is reasonable to consider the complexity of the streaming processing in
relation to the tree-based processing. As mentioned in Sect. 1, all XML trans-
formations can be expressed in both XSLT and XQuery, and processed by their
tree-based processors. Various transformation subclasses can be then char-
acterized by putting restrictions on these general transformation languages,
typically by excluding certain constructs.

When designing streaming algorithms, we have a choice regarding three
settings – the type of the memory used (none, stack, buffers for storing XML

1 More passes over the input tree are not possible for XML data streams that must
be processed “on the fly”.

88 Jana Dvořáková

fragments), and the values of the two complexity measures mentioned. Stream-
ing algorithms with different settings may capture different transformation
subclasses. Since the transformation subclasses are characterized as some sub-
sets of the general transformation language considered, the key issue in the
algorithms is to realize a streaming simulation of the non-streaming constructs
included in the restricted language.

We use tree transducers to design the streaming algorithms formally and to
model transformation subclasses. They are included in the formal framework
for streaming XML transformations that we describe in the next section.

3 Formal Framework

The framework is intended as a formal base for automatic streaming processors
of the general transformation languages. It does not cover all XML transfor-
mations. In order to keep the models employed simple and comprehensible,
we restrict it to model mainly the transformations that capture the relevant
problems of streaming processing. In Sect. 4, we mention how some of the re-
strictions on the transformation set can be overcome in the implementation.

The framework consists of the following formal models:

1. a basic general model for tree-based processing of XML transformations
and its restrictions,

2. a basic streaming model for streaming processing of XML transformations
and its extensions.

Fig. 1. A schema of the formal framework

Both models are based on tree transducers, models for tree transformations
[7] originated in the formal language theory. We introduce two novel models –
a general XML transducer (GXT) used as the general model, and a streaming
XML transducer (SXT) used as the streaming model. They are defined in
common terms in order to facilitate development of the simulation algorithms.

The overall schema of the framework is shown in Fig. 1. The basic SXT
represents a simple one-pass streaming model without an additional memory.
Following the ideas from Sect. 2, it can be extended by memory for storing
temporary data and by allowing more passes over the input document. The

Automatic Streaming Processing of XSLT Transformations 89

basic GXT represents the most powerful general model. As already mentioned,
it does not capture all XML transformations, but only a subset significant in
the case of streaming processing.

For each extended SXT, the transformation subclass captured is identified
by imposing various restrictions on the basic GXT. The inclusion is proved
by providing an algorithm for simulating this restricted GXT by the given
extended SXT.

XML Document Abstraction. In what follows, we do not consider
element attributes and data values2. Let Σ be an alphabet of element names.
The set of XML trees over Σ is denoted by TΣ , the empty XML tree is
denoted by ε. An indexed XML tree may in addition have some leaves labeled
by symbols from a given set X. A set of XML trees over Σ indexed by X
is denoted by TΣ(X). In the rightmost indexed XML tree, the element of the
indexing set occurs only as the rightmost leaf. The set of rightmost indexed
XML trees is denoted by TΣ(X)r.

Selecting Expressions. We use simple selecting expressions derived from
XPath expressions [8] to locate the nodes within the XML tree. The selecting
expression is a path consisting of a sequence of steps. It can be either absolute
(starting with /), or relative. The step consists of two components – axis and
predicate. They are specified as outlined below. Comparing to the XPath lan-
guage, the set of expressions is restricted and the syntax of some constructs is
simplified – we explain the meaning in parentheses. The semantics of the se-
lecting expressions follows the semantics of the equivalent XPath expressions.

step : axis [predicate]
axis : × (self), ↓ (child), ↓* (descendant), ↑ (parent), ↑* (ancestor),

← (left sibling), ∗← (preceding), → (right sibling), ∗→ (following)
predicate : ∗ (select all elements)

name (select the elements named name)
i (select the element on i-th position within siblings)
step (select the elements having context specified by step)

The names of the elements are taken from an alphabet Σ. We denote the set
of selecting expressions over Σ by SΣ .

General XML Transducer (Fig. 2a). The input heads of GXT traverse
the input tree in any direction and the output is generated from the root
to the leaves. At the beginning of a transformation, the transducer has only
one input head, which aims at the root of the input tree, and one output
head, which aims at the root position of the empty output tree. During a
single transformation step, the whole input tree is available as a context. One
or more new computation branches can be spawned and the corresponding
input control is moved to the input nodes specified by selecting expressions.
At the same time, the output heads may generate a new part of the output.

2 We refer the reader to [4] for the definition of the extended framework including
both element attributes and data values.

90 Jana Dvořáková

Formally, the GXT is a tuple T = (Q,Σ,∆, q0, R), where Q is a finite set
of states, Σ is an input alphabet, ∆ is an output alphabet, q0 ∈ Q is an initial
state, and R is a set of rules of the form

Q × Σ → T∆(Q × SΣ) .

For each q ∈ Q and σ ∈ Σ, there is exactly one rhs such that (q, σ) → rhs ∈ Q.
The right-hand side of a rule contains an XML tree over the output alphabet
indexed by recursive calls – pairs of the form (q, exp), where q is a state and
exp is a selecting expression that returns a sequence of input nodes to be
processed recursively. A simple example of a GXT transformation follows.

Example 1. Let T = (Q,Σ,Σ, q0, R) be a GXT where Q = {q0}, Σ =
{α, β, γ}. and R consists of the rules

(q0, α) → ε , (1)
(q0, β) → α((q0, ↓[∗])) , (2)
(q0, γ) → γ((q0, ↓[2]), (q0, ↓[1])) . (3)

The transducer processes the input trees over alphabet Σ. The subtrees at
nodes named α are completely removed (rule 1), the nodes named β are
renamed and get a new name α (rule 2), and at last, when encountering a
node named γ, the first two children are processed in reversed order (rule 3).

Fig. 2. The processing model of the transducers: (a) the GXT; (b) the SXT

Streaming XML Transducer (Fig. 2b). The SXT has a single input
head that traverses the input tree in preorder, and a single output head that
generates the output tree in preorder. Each node is visited twice during a
single pass – once when moving top–down, and once when moving bottom–
up. Thus, we recognize two types of SXT states (1) the states indicating the
first visit of nodes and (2) the states indicating the second visit of nodes.
During a single transformation step, the input head either moves one step
in preorder or stays at the current position. At the same time, an output
action is performed, depending on the type of rule applied. When applying a
generating rule, a new part of the output is connected to the current position
of the output head, and then the output head moves to the position under
the rightmost leaf of the new part. When applying a closing rule, no output

Automatic Streaming Processing of XSLT Transformations 91

is generated, only the output head is moved one step upwards in preorder
within the output tree.

Formally, the streaming XML transducer (SXT) is a tuple T = (Q,Σ,∆, q0,
R), where Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅ is a finite set of states, Σ,∆ are as
above, q0 ∈ Q1 is the initial state, and R = Rg ∪ Rc, Rg ∩ Rc = ∅ is a finite
set of rules of the form:

Rg : Q × Σ × Pos → T∆(Q × SΣ)r , Rc : Q × Σ × Pos → Q × SΣ ,

where Pos = {leaf, no-leaf} × {last, no-last}3. For each q ∈ Q and σ ∈ Σ
there is at most one rhs such that for each pos ∈ Pos there is a rule
(q, σ, pos) → rhs ∈ R. Furthermore, for each (q, σ, pos) → rhs ∈ R,
rec(rhs) = (q′, exp)4, one of the following preorder conditions holds:

1. moving downwards : q ∈ Q1, and
– pos[1] = no-leaf , q′ ∈ Q1, exp =↓[1], or
– pos[1] = leaf , q′ ∈ Q2, exp = ×[∗],

2. moving upwards: q ∈ Q2, and
– pos[2] = no-last, q′ ∈ Q1, exp =→[1], or
– pos[2] = last, q′ ∈ Q2, exp =↑[∗],

3. no input move: q, q′ are of the same kind, exp = ×.

The left-hand side of a rule consists of a state, an element name and a node
position. The position is used to determine the preorder move within the input
tree and it consists of two predicates – the first one indicating a leaf node,
and the second one indicating a last node among the siblings. The right-hand
side is an XML tree rightmost indexed by a recursive call.

In [4], it is demonstrated how to design streaming algorithms within the
original framework. Namely, there are identified restrictions that must be put
on the GXT in order to make possible the simulation by the one-pass SXT
using stack size proportional to the height of the input tree. As the result, the
simulation algorithm for the local and order-preserving transformations is pre-
sented. Since in this paper we focus on the implementation of the framework,
we do not mention particular simulation algorithms.

4 Design of XSLT Streaming Processor

We describe an automatic streaming processor for XSLT transformations
based on the framework introduced. The models within the framework are
abstract, and thus the framework provides means to develop efficient stream-
ing algorithms for XML transformation subclasses at abstract level, and to

3 If pos ∈ Pos is a node position, we refer to its first component by pos[1] and to
its second component by pos[2].

4 If rhs is a particular right-hand side, we refer to its recursive call by rec(rhs).

92 Jana Dvořáková

adapt them to an arbitrary general transformation language. We first focus
on the general issues regarding framework implementation, and then we deal
with an adaptation for the XSLT transformation language in more detail.

As mentioned in the previous section, the formal framework is restricted
in several ways. Some of the restrictions can be easily overcome in the imple-
mentation, while others require more complex handling.

• Restrictions on the XML document. Attributes and data values are as-
sociated with elements. They can be easily added to the implementation
– if such construct needs to be processed, it is accessed using the same
path like the parent element. On the other hand, if the construct needs
to be generated in the output, its content can be retrieved using selecting
expressions similar to those used for recursive processing of elements.

• Restrictions on the selecting expressions. The simple selecting expressions
used capture the typical problems that arise during the streaming loca-
tion of the nodes in XML document (context references in predicates,
backward axis). Other constructs must be handled separately – however,
the techniques used for constructs included in our restricted set may be
often exploited. Moreover, there has been already carried on a research on
the streaming processing of large subsets of XPath language [1, 2].

• Restrictions on the general transformation language. A part of the restric-
tions in GXT results from the restrictions on selecting expressions, and
others are caused by excluding certain general transformation constructs,
such as loops, variables, functions. However, the GXT models transfor-
mations that reorder the nodes within an XML tree with respect to the
document order, which is the important issue in streaming processing of
XML transformations.

Let us now describe the design of the prototype XSLT streaming processor.
The GXT represents an abstract model for general transformation languages.
Since our intention is to adapt the framework for the XSLT language, it does
not need to be implemented directly. Instead, we are looking for a correspon-
dence between restricted GXTs and XSLT subsets. The basic GXT can be
easily converted into an XSLT stylesheet:

(1) The initial XSLT template is created. Its purpose is to set the initial mode
that equals to the initial state q0 of the GXT.

<xsl:template match="/">

<xsl:apply-templates select="." mode="q0">

</xsl:template>

(2) Each rule (q, name) → rhs of GXT is translated into an XSLT template:
<xsl:template match="name" mode="q">

... template body ...

</xsl:template>

The template body depends on the rhs. If it is a single recursive call (q′, exp),
it is mapped to the xsl:apply-templates instruction, where the select

Automatic Streaming Processing of XSLT Transformations 93

expression contains the translation of the expression exp into a corresponding
XPath expression exp′:
<xsl:apply-templates select="exp’" mode="q’">

If rhs contains an indexed XML tree with some element nodes, all of them
must be generated as new elements within the template body. A single element
named name is generated using the xsl:element instruction:
<xsl:element name="name">

... element content ...

</xsl:element>

The element content contains instructions for generating child elements and
child recursive calls, if exist. Recursive calls are translated using the xsl:apply-
templates instruction as mentioned above. In a similar way, each restricted

Fig. 3. An implementation of the framework for XSLT language

GXT can be translated to the corresponding XSLT subset. According to the
principle of the formal framework, a restricted GXT (GXTr) can be simulated
by some extended SXT (SXTe) such that the simulation algorithm is known.
Then XSLT stylesheets from the XSLT subset associated with GXTr can be
converted to SXTe using the simulation algorithm. The conversion can be
performed automatically since the simulation algorithm exactly determines
how to convert constructs of the given XSLT subset into the rules of SXTe.
The resulting SXTe is constructed explicitly as an object and its method
transform() performs streaming processing of the transformation specified
by the stylesheet. The relation between the framework and the implementa-
tion for XSLT is shown in Fig. 3.

To sum up, the streaming processor works in three steps:

1. Analysis. The analyzer examines the constructs in the input XSLT style-
sheet (both XPath constructs and XSLT constructs themselves).It checks
whether there is specified an XSLT subset that allows all the constructs
encountered. If there are more such subsets, the smallest one is chosen.

2. Translation. The translator creates an object for the extended SXT asso-
ciated with the XSLT subset chosen. The creation is automatic, following
the simulation algorithm provided for the XSLT subset.

3. Processing. The method transform() of the new SXT object is run on
the input XML document. The streaming transformation performed is
equivalent to the one specified by the input XSLT stylesheet.

94 Jana Dvořáková

5 Conclusion

We have presented a design of an automatic streaming processor for XSLT
transformations. Comparing to other similar processors, the contribution of
our approach is that the resource usage for streaming processing of particu-
lar types of XSLT transformations is known. Our processor includes several
streaming algorithms, and it automatically chooses the most efficient one for
a given XSLT stylesheet. The process of choice has a solid formal base – a
framework consisting of tree transducers that serve as models both for the
streaming algorithms and for the transformation types.

We have already implemented tree transducers included within the frame-
work, a major part of the analyzer, and the translator for processing the local
and order-preserving XSLT transformations. In the future work, we plan to
include algorithms for the local and non-order-preserving transformations to
obtain a processor for a large subset of practically needed XML transfor-
mations. We intend to carry out performance tests and comparison to other
implementations subsequently.

Acknowledgments. This work was supported in part by the grants VEGA
1/3106/06 and GUK 358/2007.

References

1. Bry F, Coskun F, Durmaz S, et al. (2005) The XML Stream Query Processor
SPEX. In: ICDE 2005 1120–1121. IEEE Computer Society, Washington

2. Chen Y, Davidson S B, Zheng Y (2006) An Efficient XPath Query Processor
for XML Streams. In: ICDE 2006 79. IEEE Computer Society, Washington

3. Guo Z, Li M, Wang X, Zhou A (2004) Scalable XSLT Evaluation. In: APWEB
2004, LNCS 3007/2004:190–200. Springer Berlin / Heidelberg

4. Dvořáková J, Rovan B (2007) A Transducer-Based Framework for Streaming
XML Transformations. In SOFSEM (2) 50–60. Institute of Computer Science
AS CR, Prague

5. Florescu D, Hillery C, Kossmann D, et al. (2003) The BEA/XQRL Streaming
XQuery Processor. In: VLDB Journal 13/3 294–315. Springer-Verlag New York

6. Ludscher B, Mukhopadhyay P, Papakonstantinou Y. (2002) A Transducer-
Based XML Query Processor. In: VLDB 2002 227–238. Morgan Kaufmann

7. Thatcher J W (1973) Tree Automata: An Informal Survey. Currents in the
Theory of Computing 4:143–172. Prentice-Hall, Englewood Cliffs, NJ

8. W3C (1999) XML Path Language (XPath), version 1.0, W3C Recommendation.
http://www.w3.org/TR/xpath

9. W3C (2007) XQuery 1.0: An XML Query Language, W3C Recommendation.
http://www.w3.org/TR/xquery

10. W3C (1999) XSL Transformations (XSLT) Version 1.0, W3C Recommendation.
http://www.w3.org/TR/xslt

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

	Chapter 9
	Automatic Streaming Processing of XSLT Transformations Based on Tree Transducers
	1 Introduction
	2 Complexity of Streaming Processing
	3 Formal Framework
	4 Design of XSLT Streaming Processor
	5 Conclusion
	References

