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Abstract. One of the biggest challenges in building grid schedulers is
how to deal with the uncertainty in what future computational resources
will be available. Current techniques for Grid scheduling rarely account
for resources whose performance, reliability, and cost vary with time
simultaneously. In this paper we address the problem of delivering a
deadline based scheduling in a dynamic and uncertain environment rep-
resented by dynamic Bayesian network based stochastic resource model.
The genetic algorithm is used to find the optimal and robust solutions so
that the highest probability of satisfying the user’s QoS objectives at a
specified deadline can be achieved. It is shown via a simulation that the
new methodology will not only achieving a relatively high probability of
scheduling workflow with multiple goals successfully, but also be resilient
to environment changes.

Keywords: workflow scheduling, grid computing, genetic algorithm,
optimal scheduling scheme.

1 Introduction

A Grid’s ability to produce an efficient plan or schedule for its task execution
is critical to its service performance. Given the dynamic nature of a complex
resource environment [I], an effective resource management system is to create
the robust schedules at the right nodes and at the right time. Therefore, en-
vironmental conditions affect the feasibility of Grid’s schedules, making some
schedules more likely to succeed than others.

There are some approaches that try to solve the problem. The multicriteria
resource selection method implemented in the Grid Resource Management Sys-
tem (see [2] and [3]) has been used for the evaluation of knowledge obtained from
the prediction system. Nevertheless, due to incomplete and imprecise informa-
tion available, results of performance prediction methods may be accompanied
by considerable errors (to see examples of exact error values please refer to [4]
and [0]). Another aid to avoid uncertain problems comes in the form of contracts
([6],[7]). In the simplest contracts, clients use initial estimates of job completion
time to bind Grid resources, and then monitor job progress during execution to
determine if the contract will be met for reacting swiftly and appropriately to
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recover if it is not. However, the contract based work is limited to the system
where estimates may be gathered a priori and where clients may monitor runtime
progress. Some research such as FailRank [§] try to monitor the Grid sites with
the highest potential to feature some failure. Thomas model the Grid scheduling
system as a collection of queues where servers break down and are subsequently
repaired to investigate the penalty of prolonged delays in information propaga-
tion to the scheduler [9]. Anyhow, current distributed service scheduling research
has not presented a complete solution that incorporates uncertainty.

This paper introduces a framework for devising a robust Grid scheduler to
maximize the probability of successfully achieving the QoS objectives, while
minimizing its variability. A normative model of the stochastic Grid resource
environment, based on a dynamic Bayesian network [I0], to infer indirect influ-
ences and to track the time propagation of schedule actions in complex Gird
environment is developed. For a user specified QoS requirements and resource
constraints, a near-optimal Grid scheduling strategy is obtained via genetic al-
gorithms, where the DBN serves as a fitness evaluator for candidate schedules.

2 DBN Model for Job Scheduling Optimization

The stochastic scheduling problem faced by an uncertain Grid system can be
defined as follows: given an initial system state, determine optimal scheduling
strategy that will bring the system to a specified objective state at a specified
time with a relatively high probability. The objective, in our case, is the set of
desired QoS objectives. The process to solve this problem is to:

1. Represent the joint dynamics of the jobs and its assigned resources;

2. Optimally select appropriate scheduling strategy;

3. Assess the probability of successfully achieving the desired QoS objectives
under resources constraints.

A dynamically evolving DBN-based scheduling model G, =G(tx)=(V, E, Py),
which can be viewed as a Bayesian network at time ¢;, combines knowledge about
the jobs and its execution environment. Gy, is a directed acyclic graph consisting
of a set of nodes V' and a set of directed edges E with a fixed structure. Every
node is considered as a random variable and can assume Boolean values. For each
node v; € V, we define a probability mass function (pmf) Py (v;) = P{vi(tx)} to
characterize the environment uncertainty at time ¢g.

The dynamic evolution of the DBN-based scheduling model unfolds through a
finite horizon timeline as in shown in Fig.[Il which is discretized into T time steps
(from ¢1 to t7). The solid arcs are used to represent the causal relationship in a
single time step, and the dashed edges are used to show the temporal evolution
of the model between neighboring time steps.

Based on Fig. [l The definition of our DBN model for scheduling jobs is
described below:

1. System state: A state consists of current execution tasks, execution time and
current location, with S(t;) = {Py(v;)|vi € Vi} to portray the overall state
of the Grid at time t;
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Fig. 1. Time evolution of scheduling model as a DBN

. Objectives: Objectives are regarded as desired states of DBNs. O = {O,|1 <
n < No} specified by the desired probability of QoS satisfied (’1” or ’0’) and
the corresponding terminal time to, for each QoS objective: O, (tp,) =1 or
O, (to, ) = 0. Here No = |O| is the total number of QoS objectives specified
by users;

. Critical system events: regarded as noise factors, whose occurrence is beyond
the control of the Grid resource management system, but will affect the re-
source dynamics: B = {B;|1 < j < Np}. Np = |B| is the total number of
system events in the environment. In many cases, one has partial knowledge
of the statistical properties (e.g., means and variances, probability distribu-
tions) for these events. For instance, if event B; in Fig. [[loccurs with a prob-
ability that is uniform between [0.2,0.6] at time ty, then P,{B; = 1} = p1,
P{B; =0} =1 — p;, where p; ~ U[0.2,0.6]. The prior pmfs in the model
are normally acquired from domain experiences or analysis of Grid feedback
sources [§]. Note that some events may have inhibiting effects in that they
reduce the probability of achieving certain desired QoS objectives;

. Actions: An action in the model is to allocate a time slot on a service or
node resource to a task. Actions are regarded as control factors, which can
be employed by an Grid scheduling system to influence the state of the
environment: A = A4|1 < ¢ < N4, where Ny = |A] is the total number of
feasible actions. Each action will take a value of ”true” or ”false” at each
time step once the scheduling system determines a strategy. That is, Py {4, =
1} =1 if action A, is activated at time step tj; otherwise, Pr{A, =1} = 0.
Without loss of generality, we assume that (r, + 1) < 27 feasible choices
for action A, from a domain 24, = {a),a},a2, A, aq"} are available. Each
element a’(0 < i < ry)in this set maps to a time series based actions ’a, (t1)A
al(tr) with al (tx) € {0,1}(0 < k < T') which representing task ¢ is mapped
to resource node i at time t;. Let C,, be the cost of selecting schedule a, for
action A,. A strategy under a given initial environment state S(to) is a set
of series for all the actions: R = {(a1, a2, an,)|aq € £24,},Thus, the cost

of the strategy is Cr = Zflvz’/“‘l Cay-
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5. Intermediate states are defined to differentiate those states that are not
desired finishing state, but are useful in connecting the actions and events
to the QoS objectives. They can be regarded as the predefined states of a
workflow. All the intermediate states form a set I = {I,,|1 < m < N;} with
Ny = |I|. Fig. [l shows that only desired states and intermediate states are
connected by diachronic edges;

6. Direct influence dependencies between all the objects of the system and
their mechanisms are specified by conditional probability tables (CPTs) in
Bayesian networks, which can attained from the priori analysis of system
feed sources.

7. The total resource available for the Grid is constrained by Chydget-

Conceptually, the problem is to achieve the desired objective states {O} with a
high probability at specified times. The mathematical formulation of the schedul-
ing strategy optimization problem is as follows:

max(P{O(ty)]S5(to), R}) = max(P{O1(to,)Oz(to,) A Ono (tox )5 (to), B})

No
- msa}x (H P{On(ton”‘s(to)’ R}) (1)
n=1
Subject to:
Na

CR = anq < Cbudget (2)

q=1

3 Applying DBNs to a Robust Scheduler

3.1 Framework of the Solution Approach

As shown in Fig. Bl We combine concepts of robust design, DBNs and genetic
optimization algorithms to solve the scheduling optimization problem. DBNs in-
tegrated with probability evaluation algorithms are used to model the dynamics
of the Grid resources and to calculate the probability of desired QoS objectives at
specified deadline. Monte Carlo runs are made to account for uncertainty in sys-
tem parameters in the inner loop of DBN. That is, disturbances are introduced
by randomly choosing DBN parameters (prior pmfs of events and conditional
probabilities). In each Monte Carlo run, DBN will evaluate the joint probability
of achieving the desired QoS objectives. The histogram provided by the results
of Monte Carlo runs is approximated as a Gaussian density (based on the Cen-
tral Limit Theorem) with sample mean and sample variance. Using the sample
mean and variance and following robust design techniques, a signal-to-noise ra-
tio (SNR) is computed; this criterion maximizes the probability of achieving the
desired QoS objectives while minimizing its variability. A genetic algorithm is
employed in the outer loop to optimize the scheduling strategies.

Conceptually, the probability of achieving the desired QoSs is a function of
actions A, exogenous events B and time t, that is P(O) = f(A, B, t). In iter-
ations of the genetic algorithm, since we choose candidate scheduling strategies,
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Fig. 2. Framework Overview

thereby fixing the values of A, the probability will be a function of events B
and time t, that is, P(O|A) = ¢(B,tx). Then, in each Monte Carlo run of
DBN inference, for the given sequences of actions A, we estimate the occurrence
probabilities of exogenous events B. Consequently, from a single Monte Carlo
run, we have P(O|A, B) = h(tx). We can see that Monte Carlo runs inside the
DBN inference makes it possible to measure the robustness of a schedule in an
uncertain environment in terms of the signal-to-noise ratio.

3.2 Probability Propagation Through DBN

Based on the DBN of Fig. [[] we extended from the initial static Bayesian Net-
work by introducing dummy nodes for all the intermediate and desired states.
Dummy nodes are defined as: V! = {v?|v; € T UO} with Peypi{v{} = Pe{v;}.
The probability will propagate vertically from causal nodes to effect nodes, and
propagate horizontally from one time step to the next as follows:

(1) Set the initial pmfs of nodes:P;{v)} = Py{v;} based on known S(to);

(2) Let k= 1;

(3) Select an action strategy: R = {(a1,az2, -+ ,an,)|aq € 24,,1 < q¢ < Na},
where if a,4(ty) = 1, set Py(A, = 1) = Lelse Pi(A, =1) = 0;

(4) Randomly select probability mass functions of exogenous events Py{B;};
(5) Calculate probability mass functions of the intermediate and desired objec-
tives using Bayesian model averaging:

Pf{v;} = Z P{u|m(v;), 00} - Pe{m(v;) Y Pe{vd}, v; € TUO

W(Uz),v?

Where 7(v;) is the possible instantiation of the parent nodes of v;;

(6) Propagate the current probability mass functions to the next time step:
Pe1{vy} = Pe{vi};

(7) Let k =k + 1. If k <T, go back to step (3); otherwise, stop.
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3.3 Scheduling Optimization with GA

Our implementation of GA for strategy optimization is explained in detail in the
following.

1) Chromosome Representation: In section 2, the feasible actions are given
by A = {1 < ¢ < Na} with A, € {a),a}, A,aq"}. Thus, the chromosome can
be represented as a series of integer genes = (wiws - -wq),where 0 < wy < 7.
If w, = 1, al is picked for A,, that is, task ¢ is assigned to node or service 1,
If wy =2, aqéz is picked for A, and so on. In other words, the gene is coded to
represent the assignment of a task to resource at what time steps, and the whole
chromosome is a code representing a schedule [ITIT2].

2) Population Initialization: It is the first step in GA. In our problem, we
generate the initial schedule randomly. Thus, for any individual w = (wiws Awy),
in the initial population, w,(1 < ¢ < ry) satisfying the constraints of cost and
resource budgets is selected from {0, 1, A, r,}.

3) Fitness function: DBN performs the inner loop inference to compute the
evaluation function for GA. The evaluation function will map the population
candidate into a partially ordered set, which will be input to the next step, i.e.,
population selection. DBN is used to obtain the probability of achieving the
desired effects at certain time slices for a given strategy P{O1(to,)O2(to,) A
Ono (ton)|S(to), R}. In a noisy environment, this probability is a random vari-
able because of the uncertainty in the statistical description of exogenous events
B. In the DBN loop, we generate a histogram of this probability via Monte Carlo
runs, the sample mean and variance are computed via:

M
p= 13 P{O0u(t0,)0u(t0,) A Oxy t0,)|S (ko). B) )
i=1
,_ 1+ ,
= Z (Pi{O1(t0,)02(to,) N Ong (toy)|S(te), R} — 1) (4)

Signal-to-noise ratio (SNR) provides a measure of goodness or fitness of a
strategy. SNR is computed via:

1 o?
SNR = —10log1g 2 1+ 3H2 (5)

The optimized evaluation function, SNR, corresponds to a schedule that has
high probability of success, and that is also robust to changes in the environment
(unforeseen events, uncertainty in parameters, etc.).

4)Selection function: Since SNR is negative in our case, we use the normalized
geometric ranking method as follows. When population is {S;|1 <1i < Np}, the
probability of selecting S; is defined as:

g1 —qr !

P(select S;) = 1= (1—g)Nr (6)
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Where ¢ is a specified probability of selecting the best individual, r is the rank
of the individual with the best individual ranked at 1’

5) Genetic operators: Mutation and crossover are basic operators to create new
population based on individuals in the current generation. Since our chromosome
is a series of integers, we employ the following genetic operators to generate
individuals for the new strategy:

U(0,7,), if the ¢! gene is selected for mutation

Uniform mutation: wj = i
Wy, otherwise

(7)
Integer-valued simple crossover generates a random number [ from U(1, Ny4),
and creates two new strategies w; and w;» through interchange of genes as follows:

wi, if (i<l wi, if (i<l
wj, else w;, else
6) Termination criteria: We Define a maximum number of generations and stop
at a predefined generation.

4 Experimental Results and Analysis

To validate our work, we conducted experiments in a small eight-node Grid of
which includes 2 sensors (senl, sen2), one storage server (st1), two IBM X260
servers (wsl ,ws2) and three workstations (ws3, ws4, ws5). We simulate a simple
workflow job including four tasks tkl, tk2, tk3, tk4.

The feasible actions of the workflow are to schedule tasks to perform their
work: A;— tkl execute FFT1 algorithm on the signal data read from senl;
Ag— tk2 execute FFT2 algorithm on the signal data read from sen2; Az— tk3
execute correlation analysis algorithm on the frequency data read from tkl and
tk2 and save the result to stl; A4— tk4 read the result from stl and transfer it
to a remote monitor.

We generate three exogenous events, where: Bj—mnetwork channel to senl is
congested; Bo—mnetwork channel to sen2 is congested; Bs—storage server stl
is overloaded. Each event has an approximate probability, based on the result

® 5 RLBRT
R

Fig. 3. Workflow Scenario



58 7. Bin, L. Zhaohui, and W. Jun

of benchmark software on the network and computers if in real application.
However, the time at which the events happen is unpredictable.

Desired QoS objectives are defined as: O1— the result is transferred to remote
monitor; O,—keep the measurement error to a minimum.

The following intermediate states are designed to connect actions or events
to the desired objectives: Iy —measure from senl; I —measure from sen2;
I3 —store the correlation result to stl; I — the error in FFT algorithm.
Since the events may happen at arbitrary times, the problem is, given a pos-
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Fig. 4. Simulation Result

sible combination of events, which schedule will maximize the probability of
achieving the desired objectives. Consider two cases: (1) senl and sen2 are
congested at time ¢;. Whenever tk4d will transfer data, the storage is over-
loaded immediately; (2) senl is congested at time ¢; and sen2 is congested
at time to; the stl will act as in case (1). The results from these two cases
under schedule Rj(a},a3,a3,a}) are illustrated in Fig. 4(a) and Fig. 4(b), re-
spectively. In this scenario, we assumed the probabilities of events happen are:
P{B; =1} =0.8,P{By; =1} = 0.7, P{B3 = 1} = 0.8. Since senl and sen2 are
separately congested in case (2), the FFT algorithm will be under a moderate
packet loss probability. On the other hand, in case (1), the combination of two
events may put the tk1l and tk2 in the measurement under severe loss probability.
Thus, the computation error will be higher in case (1).



Grid Scheduling Optimization Under Conditions of Uncertainty 59

1 T T T T T T T T T 60 T T T T T T
0.9 - 50 u
= =
o 0.8 . 2
S _ 540 T
€ 0.7 [ 4 =
ie 9230 _
Z 06 E
£ o5 | |l £20r 7
[T [T
0.4 | s3 i 10 | i
S2
03 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0O 2 4 6 8 10 12 14 16 18 20 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Generation Generation

Fig. 5. Schedule Optimization through GA Fig. 6. 1000 Monto Carlo Runs for R»

Now, we focus on case (2) to see which action strategy will be better. Compar-
ing Ry with Ra(al,a3,al,a}) and Rs(al,a3,a3,a}), we can see from
Fig. 4(c) and Fig. 4(d) that R is the best among these three schedules because
all the data are immediately processed. As a consequence, the computation error
due to packet loss is low. Fig. 4(c) and Fig. 4(d) depict the joint probability of
achieving both of the desired objectives: P{O;(t;) = 1,02(tx) = 0}. Fig. 5 is
the result from genetic algorithm, where we use P{O1(5) = 1,05(5) = 0} as a
fitness measurement.

Table 1. Potential Actions for GA

Action Ay Ao Az As
at a2 af at a3 ab a3 a3 b ad ab a2 ai o2

tl 1000010O0O0OO0ODOOO0ODO
t2 01 000O0OT1TO0O0O0O0O0OO0OO0ODO
t3 00100O0OO0O1TO0O0OO0OT® OO
t4 00010O0OO0OO0OT1TO0T1TO0T1TO0
t5 000O01O0OO0O0OO0OT1TO0OT1TT1TT1

Additionally, we consider a scenario where the data from benchmark is noisy.
We suppose P{Bl(tl) = 1} = Pl, P{BQ(tQ) = 1} = P27 P{Bg(t4) = 1} = Pg,
where P; is uniformly distributed between [0.6,1], P is uniformly distributed
between [0.5,0.9] and Ps; uniformly distributed between [0.7,0.9]. Results of
P{01(5) = 1,02(5) = 0} from 1000 Monte Carlo runs are shown in the his-
tograms of Fig. 6, with the Gaussian distribution superimposed. The sample
mean and standard deviation are 0.8641 and 0.0089, respectively. The two-sided
95% confidence region of this schedule is (0.8467, 0.8816). A narrower confidence
region means better control of the environment.
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Conclusion

This paper introduced a general methodology, based on an integration of dy-
namic Bayesian networks and the genetic algorithms, to optimize schedules for
Grid. The main contributions of this paper are: the use of DBN to compute
time-dependent probability propagation for desired objectives; use of GA to op-
timize job scheduling; introduction of signal-to noise ratio (SNR) as a measure
of robustness of a strategy in an uncertain environment.
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