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Abstract. This paper focuses on parallel interactive applications rang-
ing from scientific visualization, to virtual reality or computational steer-
ing. Interactivity makes them particular on three main aspects: they are
endlessly iterative, use advanced I/O devices, and must perform under
strong performance constraints (latency, refresh rate). In this paper, we
propose an application description language based on a data flow and
hierarchical component model to cope with the complexity of parallel in-
teractive applications. It enables us to define highly generic components,
enforcing the application maintainability and portability. An implemen-
tation on top of the FlowVR middleware is presented.

1 Introduction

An interactive application is an endless iterative process involving a user user in-
teracting with a program through input and output devices. It is often referred to
as a "human in the loop simulation". Today, an emerging class of interactive ap-
plications intends to associate virtual reality, scientific visualization, simulation
and application steering. It leads to very complex applications coupling advanced
I/O devices, large data sets, various parallel codes. To be interactive, they must
perform under strong performance constraints, often measured in terms of la-
tency and refresh rate. Examples of such applications are described in [1,2,3].
In this paper we focus on two issues faced when designing such application:

– Software engineering issues where multiple pieces of codes (simulation codes,
graphics rendering codes, device drivers, etc.), developed by different per-
sons, during different periods of time, have to be integrated in the same
framework to properly work together.

– Hardware performance limitations bypassed by multiplying the units avail-
able (disks, CPUs, GPUs, cameras, video projectors, etc.), but introducing
at the same time extra complexity. In particular it often requires to intro-
duce parallel algorithms and data redistribution strategies, that should be
generic enough to minimize human intervention when the target execution
platform changes.

One challenge is to ensure the genericity and modularity of the application.
Scientific visualization applications are often developed with Modular Visu-

alization Environments (MVE) like OpenDX [4], Iris Explorer [5] or VTK [6].
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These environments are usually based on a data flow model where processing
tasks receive data and generate new ones. Most of MVEs support parallel exe-
cutions. An application is basically a list of filters applied to the data set before
rendering. The first natural level of parallelism is to distribute the different steps
of the filter pipeline on different machines. Because the data set is read only, the
pipeline can easily be duplicated and executed in parallel on sub parts of the data
set [7]. Advanced parallel rendering algorithms exist, based for instance on spe-
cific parallel data structures and dynamic work balancing schemes. In this case
they are implemented on their own, usually using classical parallel programming
languages, because MVEs do not provide the necessary constructs.

In virtual reality, to ensure an efficient data redistribution between paral-
lel algorithms that may run at different and varying frequencies, complex cou-
pling schemes associating data re-sampling and collective communications are re-
quired. Dedicated environments like FlowVR [8], OpenMask [9] or COVISE [10]
propose different approaches to support such features. However, the resulting ap-
plication code tends to be difficult to maintained when reaching a certain size.
Connectivity between processing tasks (communication channels) are expressed
by direct links between the corresponding elements: it requires the concerned
elements be directly visible one for each other, preventing attempts to strongly
structure the code by encapsulating patterns in methods or functions.

Component models, like CCA (Common Component Architecture) or CCM
(Corba Component Model), provide ADLs for the description of distributed ap-
plications. SCIRun, an environment dedicated to scientific visualization, is based
on the CCA model [11]. Some extensions intend to enforce the support of paral-
lel components and the associated coupling patterns [12]. But these models suf-
fer from the same limitations as the systems mentioned earlier (FlowVR, Covise)
regarding the modularity of parallel component coupling. Fractal [13] is a truly
hierarchical component model. We are aware of one implementation of Fractal
for parallel (grid) applications: ProActive [14]. A ProActive composite component
can be a parallel component. But redistribution patterns are coded into the ports
of the parallel components. A pattern cannot be modified without modifying the
component, limiting application modularity. In this paper we propose to encode
coupling patterns as standalone fractal components with a connectivity model be-
tween primitive components (processing tasks) that does impair this modularity.

We propose an application description language, called architecture descrip-
tion language or ADL following the uses of the component community, based on
a data flow and hierarchical component model. We focus on interactive appli-
cations, instead of a general purpose language, relying mainly on their iterative
nature, to restrain the domain of the language.

To enforce the genericity of the described application, components defer intro-
spection and auto-configuration processes to controllers. A controller is local to a
given component, but it may get extra data consulting the state of the neighbor
components or through external data repositories. These controllers, that can
generate new components for instance, are called recursively and repeatedly in
a traverse process until reaching a fixed point. Traverse either leads to an error
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(missing data impair the traverse completion) or a success. This approach enables
to define highly generic components, enforcing the application maintainability
and portability. In particular, we can define arbitrarily complex and adaptive
data redistribution components, for instance mixing collective communications
and re-sampling. This is an important feature for interactive applications where
these coupling mechanisms play an important role to enforce interactivity.

Section 2 presents our hierarchical model. Section 3 details our implementa-
tion on top of the FlowVR [15] middleware with a focus on the traverse process.
Section 4 concludes the paper.

2 Programming Model

In this section, we describe our hierarchical component model inspired by
Fractal[13] for large parallel interactive applications. Fractal is a component model
based on a component hierarchy. This model enables to encapsulate components
into high-level components. This encapsulation enforces reusability and modular-
ity. We will also present another feature, named controllers, inspired byFractal too.
Theses objects enables dynamic reconfiguration and component introspection.

2.1 Components

A component has an interface defined by a set of ports. We distinguish two kinds
of components:

Primitive components. A primitive component contains a loop. At each iter-
ation, the component reads data from its input ports. It writes computation
results on its output ports.

Composite components. A composite component contains other components
(composite or primitive). We impose a strong encapsulation paradigm: a
component cannot be directly contained into two parent components.

2.2 Port Typing

There are two types of ports: input and output ports. The input port receives
data and output port sends data. We do not impose a strong typing. We simply
require the input and output correspondence. Nevertheless, depending on the
needs, the port typing can be extended. We plan a stronger typing based on the
data type exchanged by the ports.

2.3 Example

Throughout this paper, we use a simple example (Fig. 1). It shows the classical
structure of an interactive application. The goal of this application is to compute
prime numbers and from these numbers compute a 3D image. The image is
updated each time a new prime number is computed. A keyboard enables the
user to change his point of view on the image.
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The Computes composite component is a parallel component programed with
MPI. It spawns n processes Computes/0,..., Computes/n-1 seen as primitive
components of Computes. Notice that n is only known once the application as
been configured for an execution on a particular target machine.

The composite component Renderer is divided in two main parts (Fig. 1.b).
The first one, Visu makes the rendering on a display. This display contains
several screens. For each screen, a rendering process must be instanced. The
Visu component contains all these rendering processes. The second one is the
component Capture. It gets key events from user and sends them to the Visu
component.

Two coupling components are dedicated to communication (Components Con-
nect and GreedyConnect). The Connect component transmits data from Com-
putes component to Renderer component. The Connect component contains a
communication pattern. The GreedyConnect resamples messages from Capture
for Visu.

Computes

Connect

Renderer

outPrimes

in

out

inPrimes

GreedyConnect

Capture

Renderer

Visu

inPrimes

inPrimes inKeys

out

outKeys

in

. . .

Computes

Compute/0 Compute/n

outPrimes

outPrimes

outPrimes

Fig. 1. a) The application : a composite component Computes generates primes num-
bers. They go through the Connect component to the renderer. b) The Renderer com-
posite component contains two components Render and Capture. c) The Computes
composite component is a MPI parallel component.

In this example, Computes, Renderer are examples of composite components.
Compute/0 and Visu are primitive objects. outPrimes from Computes is an
output port. inPrimes from Renderer is an input port.

2.4 Links

Links are used to model data flows between ports. We distinguish two kinds of
links. The parent link joins a port from a component to one of his children’s
port. The extremities of a parent link must have the same type. For example
(Fig. 1.b), the outPrimes port on computes component has the same type as all
its children (i.e. output port).
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The second kind of links are called sibling links. They go from a component to
an another. We assume that an object cannot share data with an another object
without using a connection. So a sibling link must join an input port to an output
port. Due to the strict encapsulation paradigm, a sibling link cannot directly con-
nect two components that are not brothers (child of the same parent). A chain of
sibling and parent links must be used to connect two non brother components.

The link between outPrimes port and in port of Connect in our example is a
valid sibling link.

2.5 Parallel Components

A composite component can be a container for parallel application. For example,
Computes is a parallel MPI code spawning when launched several processes,
each one being a primite compenent. These primitive components are linked to
the same parent port (Fig. 1.c). This kind of structure can express the data
and task parallelism for instance. Notice that the number of processes spawned
depends on the instanciation of the application for a given target architecture.
The Computes component has a mandatory parameter that defines the number
of MPI processes. It must be set to know the number of primitive components
it contains. Such level of dynamicity is classical for parallel components.

A composite component can also encapsulate a pipeline. Each stage of the
pipeline can be contained into a component. A sibling link from a component
to another will make the transition from one stage to an other. Thanks to com-
ponents reusability, we can also duplicate a pipeline by building a composite
component containing various parallel pipelines.

2.6 Communications and Redistribution Patterns

Communication between parallel components have a huge impact on application
performance. They need to be customisable and modular. A communication
component is simply a component encapsulating a generic redistribution pattern.
The simplest one is just a link transferring data from one output port of a
primitive component to one input port of a primitive component.

In our example, a connection schema is implemented in the MergeThenTree
component (Fig. 2). This component has a different implementation following
the number of primitive components Compute and Renderer will spawn. Un-
like the parallel components, user does not have to set the parameters of these
dynamic components. These components get their mandatory parameters from
their neighbors.

The simplest communication pattern is a simple connection. But it could be
a merge tree and a broadcast tree with different arities. The order of merged
messages could be customized. Communications may resample messages. Com-
ponents can contain filters that operate on messages or enforce synchronizations
between a set of components. Typically, filters are used to resample messages.
Several filters can be synchronized to perform a coherent sampling, i.e. ensure
they sample messages issued at the same logicial time.
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Fig. 2. Parallel compute component send data through a connection component to
a parallel renderer. According to N and M parameters, a communication schemes is
generated.

Some communication component parameters depends from the state of the
neighbor components. In the example (Fig. 2), the shape of the communication
pattern depends on the number of Compute and Render components connected
at its extremities. For this reason, these components can create dependence
relations between components.

Our model eases the development of generic communication patterns outside
the context of an application. An implementation of this model can be associated
for example with a library of N × M data redistribution components. Compo-
nents provide modularity. A user is able to change a communication pattern for
his application and see the impact on performance.

2.7 Controllers

Controllers are used for the configuration and the construction of dynamic com-
ponents. Parallel and communication components are often dynamic. Parallel
components can have a parameter to set the number of computational units (i.e.
the degree of parallelism). Communication component parameters often depend
on their neighbor states.

There are two types of controllers:

– Controllers getting data from a component (introspection)
– Controllers setting parameters (configuration)

A controller is associated to a component and a method. A main controller
must be implemented for all new composite components. We named this controller



522 J.-D. Lesage and B. Raffin

execute. This controller creates children components. For example, in the Com-
putes component, the execute controller creates all Compute/i primitive compo-
nents and constructs the parent links.

The controller can lead to an exception if a mandatory parameter can not be
set. For example, the communication pattern in MergeThenTree component can
not be built if the number of Compute primitive components is not set (Sec.
2.6). In this case, the controller throws an exception.

2.8 Traverse Algorithm

A controller always acts locally on a component, but some actions must be
executed globally on the entire application. For example, building a view of
an application, a graph for instance, requires to call a view builder controller
on each component. Data dependences may impose a given execution order on
controllers. For instance some controllers, like execute, dynamically create new
components. Connection components often have to be constructed after their
neighbors. Most controllers have to be executed at most once by component
to obtain the correct result. Consequently, the iteration algorithm is an impor-
tant issue in our model. We named this algorithm the traverse algorithm. This
algorithm must respect following constraints :

– Top-down iteration : a controller must be applied on the parent compoenent
before to be applied to its children.

– A controller must be applied on a component at most once.
– Constraints on the execution order must be respected.
– The traverse algorithm stops if the controller cannot be called on any re-

maining component.

In the implementation section (Sec. 3), we will present an implementation of
the traverse algorithm and some controllers.

2.9 Interactions with Traverse Algorithm

Due to traverse properties, when a traverse fails, the controller leads to an ex-
ception on the remaining components. Most programming languages enables
exception catching. If exceptions provide enough details, user can know why
controller cannot execute on these components. Often, a parameter is missing.
In order to finish the traverse, the simplest solution is to ask the user to correctly
set this parameter.

Indeed, the exception raised by component can be printed. User can give an
appropriate answer to the algorithm. In case of an application with thousand
components, we have made the interaction simpler with the use of a comma-
separated-value file. This file can be read by a spreadsheet program. User can
fill an automatic generated file with all parameters to be set with his favorite
spreadsheet program.
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Traverse algorithm can also interact with an other program. For example, for
mapping issues, the choice of machines where a process must be mapped is a
complex problem for a human. Mapping has a huge impact on performance like
refresh rate or latency. A mapping program using a hardware description file
could calculate a mapping solution efficiently.

This implementation could give the possibility to make dynamic reconfigu-
rations. During execution, the entire application could be stopped. The system
will proceed to a new instantiation of the application. The traverse algorithm
can now use the log file to resolve exception raised during the traverse algorithm.
This traverse algorithm could be done in parallel with the execution. A mapping
algorithm could adapt the application to resource capacities at execution-time.

3 Implementation

3.1 Greedy Traverse Algorithm

The main issue in the model implementation is the traverse algorithm. This
algorithm must iterate on components and respect several constraints. (Sect.
2.8). This algorithm must find a consistant order considering all constraints for
the iteration through the components.

We make the traverse via a greedy algorithm. This algorithm manages a queue
of non-executed components. For each components in this queue, the algorithm
tries to execute the associated controller. If the controller was successfully exe-
cuted, then all of its children are pushed in the queue. Otherwise, the algorithm
makes a rollback operation on the component and push it at the end of the
queue.

The traverse is done when the queue becomes empty. If the algorithm can
not change the queue state, then a fixed point is reached. No new evolution can
be performed to component states. To respect traverse properties, the algorithm
must stop and signal its fail.

With this implementation of the traverse algorithm, there is no need to express
constraints on components. But, this implementation may lead to unnecessary
controller calls. We provide bounds on the number of controller calls for this
algorithm:

Proposition 1. Let Ncomp the maximum number of composite components in
an application. The maximum (resp. minimum) number of call of controllers
performed by greedy traverse algorithm is O(N2

comp) (resp. O(Ncomp)).

For sake of conciseness, the proof is omitted. The proof outline is to show that
a controller can be called at most Ncomp times by component.

The complexity of our algorithm is upper bounded by O(N2
comp) but we do

not have to compute an order of iterations between components considering all
constraints. The greedy traverse algorithm tries to iterate on components until
it finds an acceptable order. Theses tries can lead to extra costs but computation
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of an acceptable order may involve complex algorithms. Our solution is a good
tradeoff between scalability and complexity of the implementation.

3.2 Implementation on the Top of the FlowVR Middleware

We have built our model on the top of FlowVR [15,8]. This middleware is used
to construct large parallel interactive applications. It eases the development of
virtual reality applications that associates scientific visualization and simulta-
tions. For instance we developed applications involving a real time 3D modeling
algorithm using data from a camera network, parallel simulations and multi-
projector visualization with FlowVR.

FlowVR is based on four types of primitive components [8]:

Modules. User defined components. They make all computational issues in the
application.

Connections. They transmit data from an output port to an input port.
Filters. They make treatments on messages. They are involved in communica-

tion schemes.
Synchronizers. They implement synchronization policies between components.

All these kinds of components have been implemented using our model. The
second step of the implementation was to construct controllers dedicated to
the middleware. The main controller specially developed for FlowVR builds a
XML description of the application. When launching an application, FlowVR
distributes order to FLowVR dameons running on the nodes of the target ma-
chines to load plugins, configure communications schemes, etc. These orders are
describeexgtracted from an XML desctiption of the application. For each primi-
tive component, we have created the controller that builds this XML description.
Composite components just recusrively link children description into the XML
tree.

All examples from the FlowVR suite have been redeveloped with the hierar-
chical model introduced in this paper. The example used in this paper (Fig. 1)
was inspired from one of these applications. Mocing to the hierarchical model im-
proved application modularity. For instance, an application can now be imported
as a composite component in larger applications.

4 Conclusion

We presented an ADL for interactive applications based on the fractal compo-
nent model. Our main goal was to ensure a high level of modularity for large
applications involving parallel components and advanced coupling schemes. Con-
figuration of components is deferred to controllers. It enables us to separate some
aspects of a component from its core functional nature. An application is then
configured by calling the controllers in a traverse process. This ADL has been
implemented and validated on top of the FlowVR middleware. We expect to
integrate it in the FlowVR distribution soon.
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